
A computationally efficient algorithm for state-to-state quadrocopter
trajectory generation and feasibility verification

Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea

Abstract— An algorithm is proposed allowing for the rapid
generation and evaluation of quadrocopter state interception
trajectories. These trajectories are from arbitrary initial states
to final states defined by the vehicle position, velocity and
acceleration with a specified end of time. Sufficient criteria are
then derived allowing trajectories to be tested for feasibility with
respect to thrust and body rates. It is also shown that the range
of a linear combination of the vehicle state can be solved for
in closed form, useful e.g. for testing that the position remains
within a box. The algorithm is applied by revisiting the problem
of finding a trajectory to hit a ball towards a target with a racket
attached to a quadrocopter. The trajectory generator is used
in a model predictive control like strategy, where thousands
of trajectories are generated and evaluated at every controller
update step, with the first input of the optimal trajectory being
sent to the vehicle. It is shown that the method can generate
and evaluate on the order of one million trajectories per second
on a standard laptop computer.

I. INTRODUCTION

The popularity of quadrocopters as aerial robotics re-
search platforms has grown rapidly over the past years, with
research topics including, for example, vision-based pose
estimation [1], nonlinear control [2], cooperative control [3],
aerial manipulation [4] and aerial acrobatics [5].

In most applications, it is necessary to plan flight trajec-
tories for quadrocopters in order to describe the planned
motion. This problem is complicated by the underactuated
and nonlinear nature of the quadrocopter dynamics and large
uncertainties caused by aerodynamic effects [6], [7]. Various
algorithms have been proposed, focusing on different trade-
offs between computational complexity, high-performance
flight, level of detail in which maneuver constraints can be
specified, and the ability to handle complex environments.

Broadly speaking, a first group of algorithms handles the
trajectory problem by decoupling geometric and temporal
planning: in a first step, a geometric trajectory without time
information is constructed, for example using lines [8], poly-
nomials [2], or splines [9]. In a second step, the geometric
trajectory is parameterised in time in order to guarantee
feasibility with respect to the dynamics of quadrocopters.

A second group of algorithms exploits the differential
flatness of the quadrocopter dynamics in order to derive
constraints on the trajectory, and then solves an optimization
problem over a class of trajectories, for example minimum
snap [10], minimum time [11], shortest path under uncertain
conditions [12], or combinations of position derivatives [13].

The authors are with the Institute for Dynamic Systems and Control,
ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
{mullerm, hehnm, rdandrea}@ethz.ch

A number of applications require trajectory generation
algorithms with particularly short execution times. For exam-
ple, trajectory generation algorithms can be used as implicit
feedback laws similar to model predictive control [11],
requiring the computation of a trajectory for each controller
update. Higher-level planning algorithms often require the
computation of large numbers of trajectories, for example
to navigate cluttered environments through randomized tar-
get point sampling [13], or to coordinate the collision-free
motion of multiple agents [14].

This paper presents a quadrocopter trajectory generation
algorithm that is designed to minimize computational com-
plexity. Minimum jerk trajectories are generated without
consideration of the dynamic constraints of quadrocopters,
and an efficient feasibility verification is carried out a pos-
teriori. The resulting algorithm is capable of generating and
verifying trajectories at speeds on the order of one million
trajectories per second on a standard laptop computer.

The possibilities offered by a computationally efficient
trajectory generation algorithm are demonstrated by its ap-
plication to the previously presented task of hitting a ball
with a racket attached to a quadrocopter [15]. The low
computational complexity allows the evaluation of thousands
of possible ways to hit the ball at tens of times per second,
from which the best way to hit the ball towards a specified
target under the given constraints is chosen.

The quadrocopter model is presented in Section II, with
the trajectory generation scheme given in Section III. An
algorithm to determine feasibility of generated trajectories
is introduced in Section IV. The example application of
hitting a ball is introduced and results thereof are presented
in Section V, and an outlook is given in Section VI.

II. DYNAMIC MODEL

This section is largely taken from [16], and repeated here
for the sake of completeness. The quadrocopter is modelled

g

e3f

ω1

ω2

ω3

x3

x1 x2

Fig. 1. Dynamic model of a quadrocopter, acted upon by gravity g, a
thrust force f pointing along the (body-fixed) axis e3; and rotating with
angular rate ω = (ω1, ω2, ω3), with its position in inertial space given as
(x1, x2, x3).

as a rigid body with six degrees of freedom: linear translation
along the orthogonal inertial x1, x2 and x3 axes, and three
degrees of freedom describing the rotation of the frame at-
tached to the body with respect to the inertial frame, which is
taken here to be the proper orthogonal matrix R. The control
inputs to the system are taken as the total thrust produced
f , for simplicity normalised by the vehicle mass and thus
having units of acceleration; and the body rates expressed in
the body-fixed frame as ω = (ω1, ω2, ω3), as are illustrated
in Fig. 1. It is assumed that high bandwidth controllers
onboard the vehicle track the body rate commands, allowing
the angular dynamics to be neglected.

The differential equations governing the flight of the
quadrocopter are now taken as those of a rigid body [17]

ẍ = R e3f + g (1)

Ṙ = R Jω×K (2)

with g the acceleration due to gravity, e3 = (0, 0, 1), and
Jω×K the skew-symmetric matrix form of the vector cross
product such that

Jω×K =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3)

A. Feasible inputs
The achievable thrust f produced by the vehicle lies in

the range
0 < fmin ≤ f ≤ fmax (4)

where fmin is positive because of the fixed sense of rotation
of the propellers. Furthermore, due to saturation limits of the
onboard rate gyroscopes, the vehicle’s body rates must also
lie in the range

|ωi| ≤ ωmax, i ∈ {1, 2, 3}. (5)

B. Reformulation in jerk
We follow [11] in describing the trajectories of the quadro-

copter in terms of the jerk of the axes, allowing the system to
be considered as a triple integrator in each axis. It is assumed
that a thrice differentiable trajectory x(t) is available, where
the jerk is written as j =

...
x = (

...
x1,

...
x2,

...
x3). The input thrust

f is found by applying the Euclidean norm ‖·‖ to (1),

f = ‖ẍ− g‖ . (6)

Taking the first derivative of (1) and (6), and simplifying
yields respectively

j = RJω×Ke3f + Re3ḟ (7)

ḟ = eT3 R
−1j. (8)

After substitution, and evaluating the product Jω×Ke3,
it can be seen that the jerk j and thrust f values fix two
components of the body rates: ω2

−ω1

0

 =
1

f

1 0 0
0 1 0
0 0 0

R−1j. (9)

Note that ω3 does not affect the linear motion, and can thus
be chosen arbitrarily. A convenient choice is to set ω3 = 0.

III. TRAJECTORY GENERATION

The problem addressed here is that of finding inputs f
and ω to guide a quadrocopter from an initial state to a
final state, each consisting of (at most) a position, velocity
and acceleration, in some specified time T . The desired
final acceleration can be used to encode a partial final
attitude constraint through (1), leaving however one degree
of freedom in the final R consisting of a rotation about e3.
This can be understood intuitively by noting that the vehicle’s
linear dynamics are independent of rotation about e3.

The nonlinear trajectory generation problem is made
tractable by decoupling the trajectory into three orthogonal
inertial axes, and treating each axis as a triple integrator with
jerk as control input. The true control inputs f and ω are
then recovered from the jerk inputs using (6) and (9). Note
that feasibility will be neglected until Section IV.

Consider the triple integrator in axis i with the state
si = (pi, vi, ai), as below, consisting of the scalars position,
velocity and acceleration, and the jerk ji taken as input, such
that

ṡi = f(si, ji) = (vi, ai, ji) . (10)

The goal of the trajectory generator is to guide the system
from an initial state to a (possibly only partially defined) final
state in a given time T , while minimizing the cost function

Ji =

T∫
0

ji(t)
2 dt (11)

where the optimal input and state trajectory are written
as j∗i and s∗i , respectively. This cost function is chosen
primarily for computational convenience, but also has an
interpretation as an upper bound on a product of the inputs
to the (nonlinear, coupled) quadrocopter system, as described
in [16]:

T∫
0

f(t)2 ‖ω(t)‖2 dt ≤
3∑
i=1

Ji. (12)

For the sake of readability, the axis subscript i will be
discarded for the remainder of this section. The optimal
trajectory can be solved straightforwardly by employing Pon-
tryagin’s minimum principle (see e.g. [18]) by introducing
the costate λ = (λ1, λ2, λ3) and defining the Hamiltonian
function H(s, j, λ):

H(s, j, λ) = j2 + λT f(s, j)

= j2 + λ1v + λ2a+ λ3j (13)

λ̇ = −∇sH(s∗, j∗, λ)

= (0,−λ1,−λ2) (14)

The costate differential equation (14) can be easily solved,
and for later convenience the solution is written in the
constants α, β and γ, such that

λ(t) =

 −2α
2αt+ 2β

−αt2 − 2βt− 2γ

 . (15)

The optimal input trajectory is solved for as

j∗(t) = arg min
j
H(s∗(t), j(t), λ(t))

=
1

2
αt2 + βt+ γ (16)

from which the optimal state trajectory follows from (10):

s∗(t) =

 α
120 t

5 + β
24 t

4 + γ
6 t

3 + a0
2 t

2 + v0t+ p0
α
24 t

4 + β
6 t

3 + γ
2 t

2 + a0t+ v0
α
6 t

3 + β
2 t

2 + γt+ a0

 (17)

with the initial condition s(0) = (p0, v0, a0).

A. Fully defined end state

Given a fully constrained end state, such that s(T) =
(pf , vf , af), the unknowns α, β and γ are solved by refac-
toring (17): 1

6T
3 1

2T
2 T

1
24T

4 1
6T

3 1
2T

2

1
120T

5 1
24T

4 1
6T

3

αβ
γ

 =

∆a
∆v
∆p

 (18)

where ∆a
∆v
∆p

 =

 af − a0
vf − v0 − a0T

pf − p0 − v0T − 1
2a0T

2

 . (19)

Solving for the unknown coefficients yieldsαβ
γ

 =
1

T 5

 60T 2 −360T 720
−24T 3 168T 2 −360T

3T 4 −24T 3 60T 2

∆a
∆v
∆a

 . (20)

B. Partially defined end state

If some components of the final state are left free, the cor-
responding costates must equal zero at the end time [18]. As
an example, if the final velocity is left free, the requirement
is that λ2(T) = 0. Taking the second component of (15),
and the first and third from (17) yields 2T 2 0

1
6T

3 1
2T

2 T
1

120T
5 1

24T
4 1

6T
3

αβ
γ

 =

 0
∆a
∆p

 (21)

or αβ
γ

 =
1

2T 5

−15T 2 90
15T 3 −90T
−3T 4 30T 2

[∆a
∆p

]
(22)

The solutions for the cases of free final acceleration and
position, and the various combinations, follow similarly, and
are not presented for the sake of brevity.

C. Trajectory cost

The cost value (11) for these trajectories can be solved in
closed form as

J = γ2T +βγT 2 +
1

3
β2T 3 +

1

3
αγT 3 +

1

4
αβT 4 +

1

20
α2T 5.

(23)

IV. DETERMINING FEASIBILITY

This section will describe computationally inexpensive
tests which can be used to verify whether a trajectory gen-
erated with the algorithm of Section III is feasible w.r.t. the
input constraints, and whether the resulting state trajectories
remain within some box constraints.

A. Input feasibility

Given some time interval T = [τ1, τ2] and three triple
integrator state trajectories of the form (17) with their cor-
responding jerk inputs ji, the goal is to determine whether
corresponding inputs to the true system f and ω, as used
in (1) and (2), satisfy feasibility requirements of Section II-
A. The choice of T will be revisited when describing the
recursive implementation. These tests provide sufficient, but
not necessary conditions for both feasibility and infeasibility
– meaning that some trajectories will be indeterminable w.r.t.
these tests – and are designed to be computationally cheap.

1) Thrust: The interval T is feasible w.r.t. the thrust limits
(4) if and only if

max
t∈T

f(t)2 ≤ f2max and (24)

min
t∈T

f(t)2 ≥ f2min. (25)

Similarly, squaring (6) yields

f2 = ‖ẍ− g‖2 =

3∑
i=1

(ẍi − gi)2 (26)

where gi is the component of gravity in axis i. By taking the
per-axis extrema of (26) the below bounds follow:

max
t∈T

(ẍi(t)− gi)2 ≤ max
t∈T

f(t)2 for i ∈ {1, 2, 3} (27)

max
t∈T

f(t)2 ≤
3∑
i=1

max
t∈T

(ẍi(t)− gi)2 (28)

min
t∈T

f(t)2 ≥
3∑
i=1

min
t∈T

(ẍi(t)− gi)2 (29)

Note that the value ẍi − gi as given by (17) is a third
order polynomial in time, meaning that its maximum and
minimum (denoted ¯̈xi and ẍi, respectively) can be found
in closed form by solving for the roots of a quadratic and
evaluating ẍi − gi at at most two points strictly inside T ,
and at the boundaries of T . The extrema of (ẍi − gi)2 then
follow as

max
t∈T

(ẍi(t)− gi)2 = max {¯̈x2i , ẍ2i } (30)

min
t∈T

(ẍi(t)− gi)2 =

{
min {¯̈x2i , ẍ2i } if ¯̈xi · ẍi > 0

0 otherwise.
(31)

where ¯̈xi · ẍi < 0 implies a sign change (and thus a zero
crossing) of ẍi(t)− gi in T .

Thus, from (27), a sufficient criterion for input infeasibility
of the section is if

max {¯̈x2i , ẍ2i } > fmax. (32)

Similarly from (28)-(29), a sufficient criterion for feasibil-
ity is if both

3∑
i=1

max {¯̈x2i , ẍ2i } ≤ fmax and (33)

3∑
i=1

min {¯̈x2i , ẍ2i } ≥ fmin (34)

hold. If neither criterion applies, the section is marked as
indeterminate w.r.t. thrust feasibility.

2) Body rates: Applying the induced norm to (9) and
squaring yields an upper bound for the body rates as a
function of the thrust and jerk:

ω2
1 + ω2

2 ≤
1

f2
‖j‖2 (35)

The right hand side of the above can be upper bounded by
ω̄2, defined as below with the denominator evaluated in (31)

ω̄2 =

3∑
i=1

max
t∈T

ji(t)
2

3∑
i=1

min
t∈T

(ẍi(t)− gi)2
(36)

This then also provides an upper bound for the sum ω2
1 +ω2

2 ,
so that the trajectory section T can be marked as feasible
w.r.t. the body rate input if ω̄2 ≤ ω2

max, otherwise the section
is marked as indeterminate.

3) Recursive implementation: The feasibility of a given
trajectory section T ⊆ [0, T] is tested by applying the
above two tests on T . If both tests return feasible, T is
input feasible and the algorithm terminates; if one of the
tests returns infeasible, the algorithm terminates with the
trajectory over [0, T] marked as infeasible. Otherwise, the
section is divided in half, such that

τ 1
2

=
τ1 + τ2

2
(37)

T1 = [τ1, τ 1
2
] (38)

T2 = [τ 1
2
, τ2]. (39)

If the time interval τ 1
2
− τ1 is smaller than some user

defined maximum ∆τ , the algorithm terminates with the
trajectory marked indeterminable. Otherwise, the algorithm
is recursively applied first to T1: if the result is feasible, the
algorithm is recursively applied to T2. If T2 also terminates
as a feasible section, the entire trajectory can be marked
as feasible, otherwise the trajectory is rejected as infeasi-
ble/indeterminable.

Note that as τ 1
2
− τ1 tends to zero the right hand sides

of (28)-(29) converge and the thrust feasibility test becomes
exact. This does not, however, apply to the body rate feasi-
bility test due to the approximation in (35).

B. Box state constraints

Referring to (17), it can be seen that calculating the range
of some linear combination of the system’s state can be done
by solving for the extrema of a polynomial of order at most

five. This involves finding the roots of its derivative, now
a polynomial of order at most four, for which closed form
solutions exist [19]. This is useful, for example, to verify
whether the position of the quadrocopter remains within
some bound.

V. EXAMPLE APPLICATION

The trajectory generator can be applied to problems in-
volving interception trajectories over a large search space,
specifically where the trajectories have clearly defined end
states and end times, and the fast execution times allow
it to be used in feedback in real-time applications. This
is illustrated by revisiting the problem of controlling a
quadrocopter with an attached badminton racket tasked with
hitting a ball towards a target. This problem was originally
investigated in [15], where a near-hover strategy was used
to generate reference trajectories without any input/state
constraint guarantees.

The experiments were conducted in the Flying Machine
Arena, a space equipped with an overhead motion capture
system which tracks the pose of the quadrocopters and the
position of the balls. The motion capture data is processed
by a PC to generate a state estimate, which is then used
by the algorithm described in this paper to generate vehicle
commands. These commands are transmitted wirelessly to
the vehicles at 50 Hz. More information on the system can
be found in e.g. [20].

The ball is modelled as a point mass, and impacts between
the racket and the ball are modelled as impulses acting purely
on the ball, in the direction of the racket normal, with a
coefficient of restitution capturing the loss of energy during
the collision [15].

There exists a family of candidate flight paths for a ball
to move from some starting point to a final point, which will
here be indexed by the maximum height hmax that the ball
achieves – specifically, given some desired hmax, and two
positions to pass through, the ball flight path is uniquely
determined. The pre- and post-impact ball velocities then
define the required racket normal direction at impact, and
the speed of the racket at impact time [15], while the racket
must be at the same position as the ball at impact time. Note

Fig. 2. A quadrocopter with attached badminton racket and a ping-pong
ball, as used in the experiments. Note that the racket normal coincides with
the vehicle’s thrust vector.

Fig. 3. A snapshot of generated candidate trajectories, showing the current position of the quadrocopter, the ball and the target position. The predicted
ball flight path is shown as a solid green line, along which candidate interception points are chosen. For each interception point candidate trajectories
are generated ending at one of a set of final thrust values, and hitting the ball through one of a set of maximum heights toward the target, at left in the
figure. 100 candidate trajectories are shown of the total of 10’740 candidates created at this time instant. Note that all candidates, including those that are
infeasible, are shown. Generating and evaluating the full set of 10’740 candidates took 8.9ms. The candidate trajectory with the lowest cost is shown in
solid bold red, and the first timestep of this trajectory is used to generate an input to send to the quadrocopter. At the next timestep, the ball’s predicted
flight path and the quadrocopter’s current state are updated, and the process is repeated. A detail of four candidates is given in Fig. 4, and the inputs
corresponding to the optimal candidate are shown in Fig. 5. A video animation visualising the entire process is available on the first author’s web page.

in Fig. 2 that the racket normal is parallel to the vehicle
thrust direction R e3, as defined in (1).

A. Desired quadrocopter end state and trajectory generation

Given an impact location xb at impact time T , and the
maximum height that the ball should pass through to hit its
target, the quadrocopter must achieve the following:

1) the same position as the ball: x(T) = xb,
2) a specific racket normal: R(T)e3 = nR, and
3) a specific velocity component in the direction of the

racket: nR · ẋ(T) = v⊥.
To apply the trajectory generation routine, the second re-
quirement must be transformed to an acceleration value by
specifying the thrust value ff at T , such that ẍ(T) =
nRff + g. Thus, for every impact location and maximum
height, there exist a family of trajectories with different end
thrust values ff that would hit the ball towards the target.

Fig. 4. A detail of four candidate trajectories from Fig. 3, also showing the
quadrocopter orientation along the trajectory. The globally optimal trajectory
is shown in bold red, with three other candidate trajectories shown in blue.
The green line is the ball’s predicted pre-impact flight path, while the dash-
dotted lines represent the post-impact ball paths. The inputs corresponding
to the optimal trajectory are shown in Fig. 5.

The problem is reformulated by introducing a reference
frame, related to the inertial reference frame by the constant
rotation matrix Rb, such that nR = Rb (0, 0, 1)1. The
initial and final states are now rotated through Rb into the
reference frame, and (22) is used to generate trajectories in
the first two reference directions (with free final velocities),
and (20) for the third (fully constrained) reference direction.
The trajectory is then tested for feasibility w.r.t. the input
constraints (4) and (5), as described in Section IV-A. Next,
it is verified whether the quadrocopter position along the
trajectory remains within a “safe” box, defined in the original
(unrotated) world coordinates – most importantly that the
quadrocopter remains above a minimum safe height. This is
done in closed form as described in Section IV-B, noting that
the rotation through Rb is a linear operation on the state.

B. Candidate trajectories

At every controller update step, the ball’s state is predicted
forward until it hits the ground. This predicted trajectory
is then discretized in time at 50 Hz to generate a set ST
of possible ball interception times, where each time has an
associated interception point in space. Typically ST contains
between 15 and 35 elements. A set Sh of maximum ball
heights is also defined, ranging from 1 m to 10 m with 20
equally spaced elements. Finally a set Sf of end thrust values
is defined ranging from 5 m s−2 to 20 m s−2, also with 20
equally spaced elements.

Typically there are thus thousands of candidate trajectories
to generate and evaluate in ST ×Sh×Sf at every controller
update step, with any self-contradictory elements removed
before candidate generation (such as if the desired maximum
ball height is below either the impact point or the target
point). A cost value defined as the average of the jerk input

1Note that this constraint leaves one degree of freedom in Rb, which can
be chosen arbitrarily and does not influence the resulting trajectory.

Fig. 5. The inputs corresponding to the optimal candidate trajectory
shown in Fig. 3, with the feasible input bounds shown as broken lines. The
controller would take the first input step as commands for the quadrocopter.

squared over all axes is assigned to each candidate, defined
as

Jcandidate =
1

T

3∑
i=1

Ji (40)

which can be solved for in closed form as given in (23). Note
that this cost is invariant under the rotation Rb. Candidates
infeasible w.r.t. the input or whose position leaves the safe
box are rejected. Furthermore, if a feasible candidate has
been found, subsequent candidates with higher cost values
can be immediately rejected.

The candidate with the lowest cost value is then used
to generate inputs to the system as in model predictive
control [21], with the thrust and body rates calculated with
(6) and (9). If there are no feasible candidates found, but
a previous timestep had yielded a feasible trajectory, the
old trajectory is used as reference tracked by a feedback
controller. If no candidate is feasible, and no reference trajec-
tory exists, no action is taken and the quadrocopter remains
in hover. Snapshots of controller update steps are shown in
Fig. 3, and a video animation of the process is available on
the first author’s web page. The inputs corresponding to the
optimal candidate, of which the first timestep input is used
as input to the quadrocopter, are shown in Fig. 5.

C. Applied limits

The allowable thrust for the vehicle was limited to fmin =
5 m s−2 and fmax = 20 m s−2, and the allowable body
rates to ωmax = 20 rad s−1. The minimum time section for
the input feasibility test was set to ∆τ = 20 ms. Finally,
the allowable position of the quadrocopter was restricted to
lie between 1 and 5 m above the ground, and to remain
within 1.5 m from the vehicle’s start position in either of
the horizontal directions.

D. Computation times

The algorithms were implemented on a laptop computer
with an Intel Core i7-2620M CPU running at 2.7GHz, with
8GB of RAM, with the solver compiled with Microsoft
Visual C++ 11.0. The computation times of the algorithm are
investigated by looking at four snapshots similar to Fig. 3.
In total, 881’600 candidates were generated, covering four

Fig. 6. Time required to generate a control input vs the number of
candidates considered. Shown are 1151 controller update steps, taken over a
total of 23 ball interception manoeuvres, for a total of 8’187’980 candidates.
The dotted line represents the average time cost of evaluating every
trajectory for both input feasibility and state box constraints, calculated as
1.77 µs in Section V-D. The actual implementation usually performs better
because trajectories that fail one test are immediately discarded.

different ball interceptions (note that here more candidates
were considered per intercept to allow for more accurate
estimation of the calculation time).

The average time needed to compute the candidate trajec-
tories, and run only the input feasibility test of Section IV-A
was 1.21 µs. This can be compared to a naı̈ve brute force
algorithm, which calculates the actual inputs of the candidate
trajectories at times discretized at 50 Hz and terminates at
the first timestep with an infeasible input, which requires
on average 10.41 µs per candidate. However, the brute force
method is able to correctly distinguish a total of 15’091 (or
1.7% of the total number of trajectories) of additional feasi-
ble trajectories (these are trajectories for which the method of
Section IV-A terminated with the result ‘indeterminable’ due
to the body rate constraint). The average time per candidate
to generate trajectory, and check for both input feasibility as
in Section IV-A and position box constraints with the method
of Section IV-B was 1.77 µs.

Note that the real-time implementation of the trajectories
for feedback control as described in Section V-B allows
for a lower per-candidate computational time of 0.77 µs on
average, as not all tests need to be run on all candidates (since
candidates failing one test can be rejected immediately). The
time required per controller update step as a function of the
number of candidates calculated is shown in Fig. 6.

VI. CONCLUSION AND OUTLOOK

Presented in this paper was a computationally efficient
method of generating a trajectory guiding a quadrocopter
from an initial state to a final state consisting of position,
velocity and/or acceleration in a given time; where the accel-
eration can be related to two components of the final attitude.
The trajectories are optimal in the sense of minimizing an
upper bound of the inputs to the quadrocopter. Efficient
tests are then presented to determine whether a trajectory
is feasible w.r.t. input constraints. It is also shown that the
range of the quadrocopter states can be solved for in closed
form. The time to calculate a trajectory, and apply the tests,

is shown to be on the order of microseconds on a standard
laptop PC.

The algorithm is applied to the problem of finding a
trajectory to hit a ball towards a target, where it is applied as
an implicit feedback controller, similar to model predictive
control. In the application, on the order of 10’000 candidate
trajectories are calculated and evaluated per controller update
step, where the controller is run at 50 Hz.

An interesting extension of the algorithm presented herein
would be to provide a bound for the minimum recursion time
interval size as a function of tolerances on the input bounds.
This could, for example, for a given input tolerance allow for
some trajectories to be rejected earlier and at larger interval
sizes, speeding up execution.

The algorithm also appears well-suited to other problems
requiring the generation of many candidate trajectories, such
as probabilistic planning algorithms [22], or the problem of
planning for dynamic tasks with multiple vehicles in real
time, similar to [23]. The authors intend to investigate this
in further work.

ACKNOWLEDGEMENT
The Flying Machine Arena is the result of

contributions of many people, a full list of which
can be found at http://www.idsc.ethz.ch/
Research DAndrea/FMA/participants.

This research was supported by the Swiss National Science
Foundation (SNSF).

REFERENCES

[1] S. Weiss, M. Achtelik, M. Chli, and R. Siegwart, “Versatile distributed
pose estimation and sensor self-calibration for an autonomous MAV,”
in IEEE International Conference on Robotics and Automation, 2012,
pp. 31–38.

[2] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“A prototype of an autonomous controller for a quadrotor UAV,” in
Proceedings of the European Control Conference, Kos, Greece, 2007,
pp. 1–8.

[3] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative
grasping and transport using multiple quadrotors,” in Proceedings
of the International Symposium on Distributed Autonomous Robotic
Systems, Nov 2010, pp. 545–558.

[4] S. Bellens, J. De Schutter, and H. Bruyninckx, “A hybrid pose/wrench
control framework for quadrotor helicopters,” in International Confer-
ence on Robotics and Automation. IEEE, 2012, pp. 2269–2274.

[5] R. Ritz, M. W. Müller, M. Hehn, and R. D’Andrea, “Cooperative
quadrocopter ball throwing and catching,” in Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE,
2012, pp. 4972–4978.

[6] M. Bangura and R. Mahony, “Nonlinear Dynamic Modeling for High
Performance Control of a Quadrotor,” in Australasian Conference on
Robotics and Automation, 2012, pp. 1–10.

[7] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Pre-
cision flight control for a multi-vehicle quadrotor helicopter testbed,”
Control engineering practice, vol. 19, pp. 1023–1036, June 2011.

[8] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Quadrotor heli-
copter trajectory tracking control,” in 2008 AIAA Guidance, Navigation
and Control Conference and Exhibit, Honolulu, Hawaii, USA, August
2008, pp. 1–14.

[9] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory Planning for a
Quadrotor Helicopter,” in Mediterranean Conference on Control and
Automation, Jun. 2008, pp. 1258–1263.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in International Conference on Robotics and
Automation, 2011, pp. 2520–2525.

[11] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” in IFAC World Congress, vol. 18, no. 1, 2011, pp. 1485–1491.

[12] M. P. Vitus, W. Zhang, and C. J. Tomlin, “A hierarchical method for
stochastic motion planning in uncertain environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Villam-
oura, Portugal, 2012, pp. 2263–2268.

[13] C. Richter, A. Bry, and N. Roy, “Polynomial Trajectory Planning
for Quadrotor Flight,” in International Conference on Robotics and
Automation, 2013.

[14] O. Purwin, R. DAndrea, and J.-W. Lee, “Theory and implementation
of path planning by negotiation for decentralized agents,” Robotics
and Autonomous Systems, vol. 56, no. 5, pp. 422 – 436, 2008.

[15] M. W. Muller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball
juggling,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2011, pp. 5113–5120.

[16] M. W. Mueller and R. D’Andrea, “A model predictive controller
for quadrocopter state interception,” in European Control Conference,
2013, pp. 1383–1389.

[17] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics
Second Edition. AIAA, 2007.

[18] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I.
Athena Scientific, 2005.

[19] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities,
ser. Graduate Texts in Mathematics Series. Springer, 1995.

[20] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in IEEE
International Conference on Robotics and Automation, 2010, pp. 1642
–1648.

[21] C. E. Garcı́a, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice–a survey,” Automatica, vol. 25, no. 3, pp. 335 –
348, 1989.

[22] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” Journal of Guidance Control and
Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[23] M. Sherback, O. Purwin, and R. DAndrea, “Real-time motion
planning and control in the 2005 cornell robocup system,” in Robot
Motion and Control, ser. Lecture Notes in Control and Information
Sciences, K. Kozlowski, Ed. Springer London, 2006, vol. 335, pp.
245–263.

