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a b s t r a c t 

This paper presents a novel type of flying vehicle called the Monospinner, which has only one moving part, 

the propeller, and is yet able to hover and fully control its position. Its translational and attitude dynamics are 

formulated as a twelve-dimensional state space system, which may be linearized to a linear time-invariant system 

amenable to controllability analysis, controller synthesis, and vehicle design. It is shown that the linearized system 

may be both horizontally and vertically controllable in position after removing its yaw state, and in particular, 

this is shown for the case of a vehicle with the shape of a planar object and an offset thrust location (with respect 

to its center of mass). The vehicle’s mass distribution is designed based on two robustness metrics: the ability to 

maintain hover under perturbations by means of Monte-Carlo nonlinear simulation, and the probability of input 

saturation based on a stochastic model. Experiments are conducted for the resulting vehicle and controller. The 

equilibrium of the resulting system has a large region of attraction such that it recovers after being thrown into 

the air like a frisbee. 
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. Introduction 

Highly underactuated flying vehicles have the advantages of in-
reased reliability and reduced manufacturing and maintenance costs
ue to their reduced mechanical complexity. At the same time, this also
eads to increased difficulty in the control of their attitude and position.
herefore, many researchers have explored the aerodynamic properties
nd the mass distributions of different vehicle designs that make the
ystem’s attitude passively stable ( [1–10] ): if the vehicle in hover is dis-
urbed and tilts away or moves sideways, aerodynamic forces will damp
ut the lateral motion and induce a restoring moment, bringing the ve-
icle’s attitude back to its hover state and its translational velocity to
ero. The vehicle’s position will not recover to its position before the
isturbance, which means that its position is not passively stable. While
liminating the need for attitude sensing (onboard sensors such as gy-
oscope, attitude estimation, etc.) and active attitude control, this can
imit the vehicle’s maneuverability, as its actuators have to counteract
hese restoring aerodynamic forces and moments to achieve controlled
orward flight. 

This paper presents a different approach: a highly underactuated ve-
icle (called the “Monospinner ” and shown in Fig. 1 1 ) is designed with-
☆ This paper was recommended for publication by Associate Editor Prof. Dr. Lei Zu
∗ Corresponding author. 
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1 A video showing the Monospinner can be found under https://youtu.be/ 
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ut relying on aerodynamic effects (apart from the airframe drag torque
nd the propeller) or attitude passive stability. It has a single moving
art (its rotating propeller), and its attitude is stabilized by active feed-
ack control. While attitude sensing is required for the Monospinner, ac-
ive attitude control increases the vehicle’s maneuverability. The vehicle
s fully controllable in position. To the best of the authors’ knowledge,
here exist only two types of vehicles (the other one is the Maneuverable
iccolissimo [8] ) that are both horizontally and vertically controllable
ith only one moving part. 

This article includes a formulation of the Monospinner’s translational
nd attitude dynamics in a twelve dimensional state space and its corre-
ponding equilibrium. With the linearized system matrices at hand, the
ystem is analyzed as a whole and its controllability leads to a definitive
nswer to whether the vehicle is controllable in position. It is shown
hat the full twelve state system is not stabilizable for any vehicle con-
guration. However, the system may be fully controllable in position
fter removing the yaw state, as it does not affect the dynamics of other
tates. This reduced eleven state system is thus investigated. Specifically,
hree types of vehicle configuration under simplifying assumptions are
nalyzed, giving guidelines for the mechanical design of the vehicle.
 linear, time-invariant controller is designed to control the hovering
o. 

er), rdandrea@ethz.ch (R. D’Andrea). 
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Fig. 1. The Monospinner is approximately 30 cm in size, the frame consists 

of five carbon-fiber plates, and the electronics are mounted in an aluminium 

cage. The carbon fiber rods help to protect the propeller during landing. A more 

detailed list of components is given in Table 1 . 
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move anywhere in space. 
ehicle, and a vehicle design is found by optimizing mainly for the ve-
icle’s mass distribution. Two robustness metrics are chosen: the ability
o maintain hover under perturbations and the probability of input sat-
ration based on a stochastic model. Experimental results showed that
he resulting vehicle is not only able to hover, but also has a large region
f attraction such that it recovers after being thrown into the air like a
risbee. 

.1. Related work 

A vehicle similar to the Monospinner is the Maneuverable Piccol-
ssimo: it also features only one moving part (the propeller) and one
ctuator and is yet fully controllable in position. While aiming for small
ize (the vehicle is 39 mm in its largest dimension and 4.47 g in weight),
he authors designed the vehicle’s mass distribution and relative rotor
peed to achieve passive stability in attitude. With an offset between its
hrust location and the center of mass, the whole body rotates in the
ir with a small tilt angle. Horizontal control is achieved by modulating
ts thrust at a rate of once per body revolution and thus creating net
oments and forces that control its roll, pitch and position. 

Highly-underactuated flying machines can be categorized into sev-
ral subgroups: The first category is the samara-type vehicle, which can
e traced back to the 1950’s [11] and is also referred to as the Mono-
opter. Inspired by the maple seed (or samara), the vehicle’s whole body
s similar to that of a samara or a single wing and rotates around the
ertical axis during flight. Rotation is usually achieved by the thrust
roduced by a propeller mounted at one end of the body, and the lift
reated by this rotation counterbalances the vehicle’s weight. Through
roper vehicle design, Monocopters become passively stable in attitude
12] and can hover for a trimmed open loop control input. With a servo-
riven control surface installed on the wing, they may be controllable
n the horizontal plane. Thus, they require two actuators to be fully con-
rollable in position. Notable references are [2–7] , which focused on as-
ects related to the modeling, design, and control of the Monocopters.
 more detailed study and modeling on the Monocopter’s system dy-
amics, especially regarding its aerodynamic properties, can be found
n [13,14] . 

Vehicles in the second category are equipped with one actuator (a
otating propeller), providing thrust in the vertical direction and induc-
ng body rotation around the vertical axis, while aerodynamic dampers
re installed to make sure that they are passively stable in attitude. The
hrust produced goes through the center of mass and can only control
he height of the vehicle. Such vehicles are presented in [1,8] , while
imilar vehicles exist as toys, for example the Air Hogs Vectron [15] or
lower Flutterbye Fairy [16] . 

The third category is the flapping-wing flying vehicle. Biologically
nspired, their main propulsion comes from the flapping of a pair of
118 
ings, and aerodynamic dampers are often installed to ensure passive
ttitude stability. In [9,10] , the presented flying vehicles have one actu-
tor and are only controllable in height. In [17–19] , the flying vehicles
ave at least two actuators to achieve controlled forward flight. 

Traditional small scale helicopters are not passively stable in attitude
nd require servo-controlled swashplates for attitude control, which re-
ults in at least three actuators. In [20] , the authors presented a coaxial
elicopter that uses only two actuators to control the vehicle’s roll, pitch,
nd yaw orientation, as well as maneuvering thrust. For roll and pitch
ontrol, one actuator uses a pair of passively hinged airfoil blades to
imic a conventional helicopter’s cyclic control and generate torque

round the roll and pitch axes. The other actuator is equipped with
 conventional fixed-pitch propeller, and thrust and yaw control are
chieved by the collective thrust and the differential propeller reaction
orque of these two actuators. In [1] , the author presented a prototype
alled the UNO that uses the same passive hinge mechanism to achieve
orizontal, roll, and pitch control. It has one actuator (the motor) and
hree moving parts (the passively hinged propeller). 

Another category is the flying vehicle with no moving parts. These
re actuated by an ionic jet engine, which produces thrust by emitting
ositively charged ions and harvesting momentum from their collisions
ith a neutral fluid. In [21] , a robotic airfish with an ionic jet and plasma

ay propulsion system is presented. However, there is little information
bout its capabilities. In [22] , the flying vehicle presented has a simi-
ar configuration to a standard quadrocopter and uses four ion thrusters
thus four actuators) instead of four propeller-based thrusters. Simula-
ion shows controlled flight, and the vehicle prototype is able to have
n open-loop, uncontrolled takeoff. Another class of vehicles with ar-
uably no moving parts are spacecraft operating only under thrusters
e.g. lunar landers) – they typically have significant redundancy, with
ubstantially more actuators than degrees of freedom, and thus do not
t into the category of underactuated vehicles considered in this work. 

Vehicles in the last category have only fixed-pitch propellers with
arallel axes of rotation as inputs, and they are fully controllable in po-
ition. In [23,24] it is shown that a quadrocopter can maintain flight
espite the complete loss of two propellers (that is, with only two pro-
ellers remaining) and in theory, control is possible after the complete
oss of three propellers. The Monospinner (one propeller), the Bispin-
er (two propellers) [24] , and the Maneuverable Piccolissimo belong to
his category. The Monospinner and the Bispinner require active atti-
ude control, whereas the Maneuverable Piccolissimo does not, since it
s passively stable in attitude. 

In [23] , the authors derived conditions under which two degrees
f freedom in attitude are controllable for three different propeller loss
ases (that is, complete loss of one, two or three propellers) for a quadro-
opter. They also derived in [24] a general framework for establishing
ttitude controllability of the vehicles in the last category and investi-
ated a special case where a quadrocopter loses two opposing motors. In
25] , a controllability test method is developed for multicopter systems
ith positive thrust constraints and around their conventional hover

tate (zero translational and rotational velocity). 
This paper follows previous work presented at a conference [26] and

xtends these previous results by presenting: 

• a twelve-dimensional state-space system description for the
Monospinner, for which an equilibrium exists and where techniques
from linear time-invariant system theory may be applied for system
analysis and control design, 

• a proof that the twelve-dimensional linearized system about hover
is not stabilizable for any vehicle configuration, 

• controllability analysis of the reduced eleven-dimensional linearized
system (with yaw state removed) for three special types of vehicle
configuration, 

• the experimental results with a controller designed using the pro-
posed linear system model, which enables the resulting vehicle to
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The remainder of this paper is organized as follows: the dynamic
odel of the Monospinner is given in Section 2 , together with a twelve-

tate system description and its equilibrium solution. A linearized sys-
em is obtained and a controllability analysis is given in Section 3 . A
inear controller for the system is derived in Section 4 , and the vehicle
esign based on two robustness metrics is discussed in Section 5 . The re-
ulting vehicle is presented in Section 6 . Experimental results including
wo types of takeoff are shown in Section 7 , followed by a conclusion
iven in Section 8 . 

. Modeling and dynamics 

This section provides the dynamic model for analysis and control of
he Monospinner, followed by the discussion of the hover equilibrium
f the resulting twelve-state system. 

.1. Dynamic model 

This model is the same as the one given in [26] and summarized here
or the sake of completeness. Fig. 2 shows some of the salient forces and
uantities used in this section. The vehicle has a total mass m , and the
ravity vector is denoted as g . Boldface symbols like g are used through-
ut the paper to denote vectors in three-dimensional space. The pro-
eller produces a thrust force of magnitude f P in the direction of the
nit vector n P . The position of the vehicle’s center of mass with respect
o a point fixed in the inertial frame is denoted as s . 

Two coordinate systems are used for the modeling: an inertial
ground-fixed) coordinate system E and a body-fixed coordinate system
 . A vector expressed in a specific coordinate system is indicated by a
uperscript, for example g E expresses g in coordinate system E . The body-
xed coordinate system B is oriented such that the motor arm ( Fig. 2 ) is
arallel with its x -axis and the propeller axis of rotation is aligned with
ts z -axis. The propeller force vector 𝒏 𝐵 

𝑃 
is then (0,0,1). The notation

0,0,1) is used throughout this paper to compactly express the elements
f a column vector. 

The translational dynamics of the vehicle, expressed in the inertial
rame E , are captured by Newton’s law: 

̈ 𝐸 = 𝑚 

−1 𝒏 𝐸 
𝑃 
𝑓 𝑃 + 𝒈 𝐸 (1)

here it is assumed that the vehicle travels at low translational veloci-
ies, such that translational drag forces (such as those described in [27] )
re neglected. 

Let I P denote the moment of inertia of the propeller (referred to the
pin axis), and let 𝑰 𝐵 + 𝑰 𝑃 denote the total moment of inertia of the vehi-
le (with respect to its center of mass). The vehicle rotates at an angular
ig. 2. Monospinner in flight, showing some of the symbols and quantities re- 

uired to model the system. 
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119 
elocity 𝝎 BE with respect to the coordinate system E , where the subscript
E means the relative velocity of coordinate system B with respect to E .
he propeller is located at a displacement r P with respect to the center
f mass, and its angular velocity with respect to the coordinate system
 is denoted as 𝝎 PE . Besides the thrust f P , the propeller also experiences
 torque of magnitude 𝜏P in the propeller thrust direction n P due to the
erodynamic drag acting on the propeller blade, which is transmitted to
he body through the motor. The vehicle experiences an airframe drag
orque 𝝉d due to the rotation of the vehicle in the air. 

The angular dynamics of the system, expressed in the body-fixed
oordinate system B , are formulated as: 

 

𝐵 
𝐵 
�̇� 

𝐵 
𝐵𝐸 

+ 𝑰 𝐵 
𝑃 
�̇� 

𝐵 
𝑃𝐸 

+ � 𝝎 

𝐵 
𝐵𝐸 

×� 
(
𝑰 𝐵 
𝐵 
𝝎 

𝐵 
𝐵𝐸 

+ 𝑰 𝐵 
𝑃 
𝝎 

𝐵 
𝑃𝐸 

)
= � 𝒓 𝐵 

𝑃 
×� 𝒏 𝐵 

𝑃 
𝑓 𝑃 + 𝒏 𝐵 

𝑃 
𝜏𝑃 + 𝝉𝐵 

𝑑 

(2) 

here � 𝒂 ×� represents the skew-symmetric matrix form of the cross
roduct, so that � 𝒂 ×� 𝐛 = 𝐚 × 𝐛 for any vectors a and b in ℝ 

3 . 
Without loss of generality, it is assumed that the propeller is left-

anded. The propeller’s scalar speed Ω with respect to the body is usu-
lly controlled by an electronic speed controller, so that 

 

𝐵 
𝑃𝐵 

= (0 , 0 , −Ω) . (3)

ote that 𝝎 

𝐵 
𝑃𝐸 

in (2) can be decomposed as below: 

 

𝐵 
𝑃𝐸 

= 𝝎 

𝐵 
𝑃𝐵 

+ 𝝎 

𝐵 
𝐵𝐸 

. (4)

The thrust f P produced from a stationary propeller is then assumed
o be proportional to its angular velocity 𝝎 

𝐵 
𝑃𝐸 

squared with the propor-
ional coefficient 𝜅f [28] : 

 𝑃 = 𝜅𝑓 
(
𝝎 

𝐵 
𝑃𝐸 

⋅ 𝒏 𝐵 
𝑃 

)|||𝝎 

𝐵 
𝑃𝐸 

⋅ 𝒏 𝐵 
𝑃 

||| (5) 

ith · denoting the vector inner product. 
The propeller torque is assumed to be linear in the propeller thrust:

𝑃 = 𝜅𝑓 𝑃 (6) 

e neglect any potential torque effects due to blade flapping [29] or
he propeller H-force [27] . 

It is assumed that the magnitude of the airframe drag torque 𝝉d is
uadratic in the vehicle’s angular velocity 𝝎 

𝐵 
𝐵𝐸 

[24] : 

𝐵 
𝑑 
= − 

‖‖‖𝝎 

𝐵 
𝐵𝐸 

‖‖‖𝑲 

𝐵 
𝑑 
𝝎 

𝐵 
𝐵𝐸 

(7) 

here ‖ · ‖ denotes the Euclidean norm and K d is a 3 ×3 matrix and
ssumed to be diagonal when expressed in the coordinate system B ,
hich is denoted by 

 

𝐵 
𝑑 
= diag 

(
𝐾 𝑑,𝑥𝑥 , 𝐾 𝑑,𝑦𝑦 , 𝐾 𝑑,𝑧𝑧 

)
. (8) 

t is assumed that the different propeller speeds near the operating point
iscussed in the paper are not significant enough to make a difference in
he drag torque that the vehicle experiences. Therefore it is assumed that
he propeller’s contribution to the drag torque is constant and implicitly
ncluded in (7) . 

.2. Hover solution 

Similar to Section 2.1 , the Monospinner’s hover solution is derived
n [26] and summarized here for the sake of completeness. This hover
olution follows the definition of the “relaxed hover solutions ” [24] ,
hich are defined as solutions that are constant when expressed in a
ody-fixed reference frame and where the vehicle remains substantially
n one position. Specifically, these solutions allow the vehicle to have a
on-zero translational acceleration (but it must average to zero) and a
on-zero angular velocity. 

In hover, the Monospinner’s center of mass has a uniform circular
otion and stays at a constant height, while the vehicle body is rotating

t a constant angular velocity �̄� 

𝐵 
𝐵𝐸 

in the parallel direction of gravity.
ote that the overbar in this paper is always used to denote quantities
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hat are constant in hover (i.e. the equilibrium solution). Also, a body-
xed unit vector n a exists, which does not change when expressed in
he coordinate system E . This vector may be thought of as an averaged
hrust direction of the vehicle: in hover it is aligned with the thrust
ector averaged over one rotation. Note that the instantaneous thrust
irection may not be aligned with gravity. 

Furthermore, the vector n a is parallel to �̄� 𝐵𝐸 : 

 

𝐵 
𝑎 = 

�̄� 

𝐵 
𝐵𝐸 

�̄� 

, (9)

here �̄� is the magnitude of the equilibrium angular velocity ‖�̄� 

𝐵 
𝐵𝐸 

‖. 
The equilibrium propeller force 𝒏 𝐵 

𝑃 
𝑓 𝑃 can be decomposed into hori-

ontal and vertical forces, where the horizontal force induces the circu-
ar motion and the vertical force compensates for the vehicle’s weight.
hus 

 ̄𝑃 𝒏 
𝐵 
𝑃 
⋅ 𝒏 𝐵 𝑎 = 𝑚 ‖𝒈 ‖. (10)

Substituting (9) into (10) yields the following solution for the equi-
ibrium thrust 

 ̄𝑃 = 

𝑚 ‖𝒈 ‖�̄� 

𝒏 𝐵 
𝑃 
⋅ �̄� 

𝐵 
𝐵𝐸 

. (11)

In hover (i.e. setting the derivatives to zero), (2) becomes: 

 ̄𝝎 

𝐵 
𝐵𝐸 

×� ( 𝑰 𝐵 
𝐵 ̄
𝝎 

𝐵 
𝐵𝐸 

+ 𝑰 𝐵 
𝑃 
�̄� 

𝐵 
𝑃𝐸 

) = � 𝒓 𝐵 
𝑃 
×� 𝒏 𝐵 

𝑃 
𝑓 𝑃 + 𝒏 𝐵 

𝑃 ̄
𝜏𝑃 + ̄𝝉𝐵 

𝑑 
. (12)

ote that the quantities �̄� 

𝐵 
𝑃𝐸 

, 𝑓 𝑃 , 𝜏𝑃 and �̄�𝐵 
𝑑 

are uniquely defined by
̄ and �̄� 

𝐵 
𝐵𝐸 

(see (3) –(7) ), such that we have four equations in four un-
nowns. The hover solution is therefore defined by the Ω̄ and �̄� 

𝐵 
𝐵𝐸 

that
olve (11) and (12) . With the resulting Ω̄ and �̄� 

𝐵 
𝐵𝐸 

(if they exist) all other
uantities in hover (such as 𝒏 𝐵 𝑎 or 𝑓 𝑃 ) may be calculated. 

.3. Equilibrium 

In this section two frames (see Fig. 3 ) are introduced: a body frame
onvenient for the controllability analysis and control design, and a
otating reference frame for obtaining attitude equilibrium. Transla-
ional and attitude equilibrium is solved using the hover solution in
ection 2.2 . 
ig. 3. This figure illustrates the two frames introduced in Section 2.3 : the body- 

xed C -frame is introduced such that the body-fixed unit vector n a is aligned 

ith its z -axis, and the propeller force vector 𝒏 𝐶 
𝑃 

has no y -component. The L - 

rame rotates at a constant angular speed �̄� around the gravity vector and there- 

ore the z -axis of the inertial frame E . 
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.3.1. Attitude equilibrium 

For convenience, a body-fixed C -frame is introduced such that 

 

𝐶 
𝑎 = 𝑹 

𝐶𝐵 𝒏 𝐵 𝑎 = (0 , 0 , 1) (13)

Note that (13) remains valid if the C -frame rotates around its z -axis.
his degree of freedom may be fixed by the constraint that the propeller
hrust direction 𝒏 𝐶 

𝑃 
has no y component when expressed in the C -frame,

hat is, 

 

𝐶 
𝑃 
= 𝑹 

𝐶𝐵 𝒏 𝐵 
𝑃 

! 
= (∗ , 0 , ∗) . (14) 

Let ( 𝑝, 𝑞, 𝑟 ) ∶ = 𝝎 

𝐶 
𝐶𝐸 

be the body rates expressed in the C -frame. By
9) and (13) the body rates equilibrium �̄� 

𝐶 
𝐶𝐸 

is 

̄  𝐶 
𝐶𝐸 

= �̄� 

𝐶 
𝐵𝐸 

= 𝑹 

𝐶𝐵 �̄� 

𝐵 
𝐵𝐸 

= 𝑹 

𝐶𝐵 𝒏 𝐵 𝑎 �̄� = (0 , 0 , �̄� ) . (15)

n other words, at equilibrium the body-fixed C -frame is rotating at a
onstant angular speed �̄� about the gravity vector and the yaw angle
etween the C and the E -frame increases linearly with time. In order
o have a constant yaw equilibrium, a frame L rotating at a constant
ngular speed �̄� around the gravity vector is introduced with 

 

𝐿 
𝐿𝐸 

= (0 , 0 , �̄� ) . (16)

hen the vehicle’s orientation may be represented by R 

CL , which re-
ates the body-fixed frame C and the frame L . We parametrize the rota-
ion matrix R 

CL through the Euler Yaw-Pitch-Roll sequence, following
he common aerospace convention [30] , with 𝜙 (roll), 𝜃 (pitch), and 𝜓 

yaw): 

 

𝐶𝐿 = 𝑹 𝑥 ( 𝜙) 𝑹 𝑦 ( 𝜃) 𝑹 𝑧 ( 𝜓) (17)

here 

 𝑥 ( 𝜙) = 

⎡ ⎢ ⎢ ⎣ 
1 0 0 
0 cos 𝜙 sin 𝜙
0 − sin 𝜙 cos 𝜙

⎤ ⎥ ⎥ ⎦ (18)

 𝑦 ( 𝜃) = 

⎡ ⎢ ⎢ ⎣ 
cos 𝜃 0 − sin 𝜃
0 1 0 

sin 𝜃 0 cos 𝜃

⎤ ⎥ ⎥ ⎦ (19)

 𝑧 ( 𝜓) = 

⎡ ⎢ ⎢ ⎣ 
cos 𝜓 sin 𝜓 0 
− sin 𝜓 cos 𝜓 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ . (20)

In hover, it is clear from (15) and (16) that there is only a constant
aw offset (the equilibrium yaw angle) between the C -frame and the
 -frame. Therefore, the equilibrium pitch and roll angles are both zero,
hat is, �̄� = �̄� = 0 . Note that the equilibrium yaw angle ( ̄𝜓 ) depends only
n the choice of the initial yaw between the L and E -frame and is there-
ore set to zero without loss of generality. The rotation matrix R 

CL may
lternatively be parametrized with a 3-1-3 Euler angle sequence, con-
isting of spin, nutation, and precession [31] . This parametrization is
opular for describing spinning bodies, but is less useful than the pro-
osed yaw-pitch-roll sequence as it has a singularity at the equilibrium
ith zero nutation angle. 

.3.2. Translational equilibrium 

Since in hover the center of mass of the vehicle is rotating in a circle
t a constant height, its horizontal position and velocity are oscillatory
hen expressed in the inertial frame. Thus, the position and velocity

tates are expressed in the body frame C , and their dynamics are ob-
ained by applying Euler’s transformation on the position vector s and
elocity vector v : 

̇  𝐶 = 𝒗 𝐶 − � 𝝎 

𝐶 
𝐶𝐸 

×� 𝒔 𝐶 (21) 

̇
 

𝐶 = 𝑹 

𝐶𝐸 ( ̈𝒔 ) 𝐸 − � 𝝎 

𝐶 
𝐶𝐸 

×� 𝒗 𝐶 (22) 

= 

1 
𝑚 

𝒏 𝐶 
𝑃 
𝑓 𝑃 + 𝑹 

𝐶𝐸 𝒈 𝐸 − � 𝝎 

𝐶 
𝐶𝐸 

×� 𝒗 𝐶 (23) 

here 𝒗 ∶ = �̇� and (1) is substituted into (22) . 
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2 In this article, controllability of an LTI system is defined to mean that for any 

initial state, there exists a control trajectory such that the system can be steered 

from that state to 0 in finite time, whereas stabilizability is defined to mean that 

for any initial state, there exists a control trajectory such that the system state 

converges to zero as time goes to infinity [32] . 
Setting (23) ’s left hand side to zero and substituting the hover solu-
ion into the equation yields 

 = 

1 
𝑚 

𝒏 𝐶 
𝑃 
𝑓 𝑃 + �̄� 

𝐶𝐸 
𝒈 𝐸 − � ̄𝝎 

𝐶 
𝐶𝐸 

×� ̄𝒗 𝐶 . (24) 

Recall that in hover the C -frame rotates about the gravity vector, thus
̄
 

𝐶𝐸 
𝒈 𝐸 = 𝒈 𝐸 . Substituting the body rates equilibrium solution (15) and

olving (24) yields 

̄ 𝐶 𝑦 = − 

𝑓 𝑃 𝑛 
𝐶 
𝑃 ,𝑥 

�̄� 𝑚 

, �̄� 𝐶 𝑥 = 

𝑓 𝑃 𝑛 
𝐶 
𝑃 ,𝑦 

�̄� 𝑚 

= 0 , (25)

here ( 𝑛 𝐶 
𝑃 ,𝑥 

, 𝑛 𝐶 
𝑃 ,𝑦 

, 𝑛 𝐶 
𝑃 ,𝑧 

) ∶ = 𝒏 𝐶 
𝑃 
, ( ̄𝑣 𝐶 𝑥 , ̄𝑣 

𝐶 
𝑦 , ̄𝑣 

𝐶 
𝑧 ) ∶ = �̄� 𝐶 . The equilibrium state

̄ 𝐶 𝑥 is equal to 0 since 𝑛 𝐶 
𝑃 ,𝑦 

is zero according to (14) . 
Setting the left hand side of (21) to zero, substituting the hover so-

ution into it, and solving the equation yields: 

̄ 𝐶 𝑧 = 0 , �̄� 𝐶 𝑦 = − 

�̄� 𝐶 𝑥 

�̄� 

= 0 , �̄� 𝐶 𝑥 = 

�̄� 𝐶 𝑦 

�̄� 

= − 

𝑓 𝑃 𝑛 
𝐶 
𝑃 ,𝑥 

�̄� 

2 𝑚 

, (26)

here ( ̄𝑠 𝐶 𝑥 , ̄𝑠 
𝐶 
𝑦 , ̄𝑠 

𝐶 
𝑧 ) ∶ = �̄� 𝐶 . 

Note that �̄� 𝐶 𝑧 does not appear in the equilibrium equations and is set
o zero without loss of generality. The fact that the horizontal position
quilibrium �̄� 𝐶 𝑥 and �̄� 𝐶 𝑦 cannot be set arbitrarily is simply a feature of
hoice of the state and the coordinate system it is represented in. 

.3.3. Equilibrium solution 

In conclusion, the twelve-state equilibrium ( ̄𝑠 𝐶 𝑥 , ̄𝑠 
𝐶 
𝑦 , ̄𝑠 

𝐶 
𝑧 , ̄𝑣 

𝐶 
𝑥 , ̄𝑣 

𝐶 
𝑦 , ̄𝑣 

𝐶 
𝑧 ,

̄, ̄𝜃, �̄� , ̄𝑝 , ̄𝑞 , ̄𝑟 ) is: 

̄ 𝐶 𝑥 = − 

𝑓 𝑃 𝑛 
𝐶 
𝑃 ,𝑥 

�̄� 

2 𝑚 

, �̄� 𝐶 𝑦 = 0 , �̄� 𝐶 𝑧 = 0 

̄ 𝐶 𝑥 = 0 , �̄� 𝐶 𝑦 = − 

𝑓 𝑃 𝑛 
𝐶 
𝑃 ,𝑥 

�̄� 𝑚 

, �̄� 𝐶 𝑧 = 0 , 
̄ = 0 , �̄� = 0 , �̄� = 0 , 
̄ = 0 , 𝑞 = 0 , �̄� = �̄� . 

(27) 

. Linearized system and controllability analysis 

In this section, the attitude kinematics for the Euler angles ( 𝜙, 𝜃, 𝜓)
hat were introduced earlier are derived. The resulting twelve-state dy-
amic system is linearized about hover and the controllability analysis
s subsequently given. 

.1. Linearization 

The angular rates 𝝎 

𝐶 
𝐶𝐿 

and the rates of the Euler angles ( �̇�, �̇�, �̇� ) have
he following relationship [30] : 

 

𝐶 
𝐶𝐿 

= 

⎡ ⎢ ⎢ ⎣ 
�̇�

0 
0 

⎤ ⎥ ⎥ ⎦ + 𝑹 𝑥 ( 𝜙) 
⎡ ⎢ ⎢ ⎣ 
0 
�̇�

0 

⎤ ⎥ ⎥ ⎦ + 𝑹 𝑥 ( 𝜙) 𝑹 𝑦 ( 𝜃) 
⎡ ⎢ ⎢ ⎣ 
0 
0 
�̇� 

⎤ ⎥ ⎥ ⎦ , (28)

he inverse mapping of which (that is, the mapping from 𝝎 

𝐶 
𝐶𝐿 

to ( �̇�, �̇�, �̇� ) )
as the following form: 

 

 

 

 

�̇�

�̇�

�̇� 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
1 sin ( 𝜙) tan ( 𝜃) cos ( 𝜙) tan ( 𝜃) 
0 cos ( 𝜙) − sin ( 𝜙) 
0 sin ( 𝜙)∕ cos ( 𝜃) cos ( 𝜙)∕ cos ( 𝜃) 

⎤ ⎥ ⎥ ⎦ 𝝎 

𝐶 
𝐶𝐿 

(29) 

Note that 

 

𝐶 
𝐶𝐿 

= 𝝎 

𝐶 
𝐶𝐸 

− 𝝎 

𝐶 
𝐿𝐸 

= 𝝎 

𝐶 
𝐶𝐸 

− 𝑹 

𝐶𝐿 𝝎 

𝐿 
𝐿𝐸 

(30)

Substituting (30) into (29) yields 

 

 

 

 

�̇�

�̇�

�̇� 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
1 sin ( 𝜙) tan ( 𝜃) cos ( 𝜙) tan ( 𝜃) 
0 cos ( 𝜙) − sin ( 𝜙) 
0 sin ( 𝜙)∕ cos ( 𝜃) cos ( 𝜙)∕ cos ( 𝜃) 

⎤ ⎥ ⎥ ⎦ 
⎛ ⎜ ⎜ ⎝ 𝝎 

𝐶 
𝐶𝐸 

+ 

⎡ ⎢ ⎢ ⎣ 
sin ( 𝜃) ̄𝜔 

− sin ( 𝜙) cos ( 𝜃) ̄𝜔 

− cos ( 𝜃) cos ( 𝜙) ̄𝜔 

⎤ ⎥ ⎥ ⎦ 
⎞ ⎟ ⎟ ⎠ 

(31) 

Introducing the state deviation from the equilibrium defined in (27) 

 = ( 𝛿𝑠 𝐶 𝑥 , 𝛿𝑠 
𝐶 
𝑦 , 𝛿𝑠 

𝐶 
𝑧 , 𝛿𝑣 

𝐶 
𝑥 , 𝛿𝑣 

𝐶 
𝑦 , 𝛿𝑣 

𝐶 
𝑧 , 𝛿𝜙, 𝛿𝜃, 𝛿𝜓, 𝛿𝑝, 𝛿𝑞 , 𝛿𝑟 ) , (32)
121 
efining the control input u as deviation of the motor force from the
quilibrium motor force 𝑓 𝑃 , and linearizing the system dynamics ( (21),
23), (31) and (2) ) about the equilibrium yield a linear, time-invariant
LTI) system: 

̇  ≈ 𝐴𝑥 + 𝐵𝑢. (33)

ubstituting the equilibrium solution �̄� = �̄� = 0 into (33) ( ̄𝜓 does not
ppear in the linearization), the system matrices A and B become 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− � ̄𝝎 

𝐶 
𝐶𝐸 

×� 𝐼 3 0 � ̄𝒔 𝐶 ×� 

0 − � ̄𝝎 

𝐶 
𝐶𝐸 

×� − � 𝒈 𝐸 ×� � ̄𝒗 𝐶 ×� 

0 0 − � ̄𝝎 

𝐶 
𝐶𝐸 

×� 𝐼 3 

0 0 0 𝐴 

𝐶 
𝑆 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 𝐵 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

𝑚 

−1 𝒏 𝐶 
𝑃 

0 

𝐵 

𝐶 
𝑆 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. 

(34) 

very entry of A in the above expression denotes a 3 by 3 matrix and
very entry of B denotes a 3 by 1 matrix. 𝐴 

𝐶 
𝑆 

and 𝐵 

𝐶 
𝑆 

denote the lin-
arization matrices of the Euler’s Eq. (2), and I 3 is an identity matrix
f dimension 3. Note that the appearance of �̄� 𝐶 𝑧 in the system matrix A
omes from the fact that the position state is formulated in the body
rame. It does not, however, affect the controllability of the system pair
see Section 3.2.2 , �̄� 𝐶 𝑧 does not appear in the matrices in (37) –(39) ). 

.2. Controllability analysis 

In this section, controllability analysis for the linearized system
s conducted to gain intuition of when it is possible to control the
onospinner. It will be shown that the full twelve-state system (from

ow on referred to as the full state system) is never stabilizable 2 , and
he controllability test of the reduced eleven state system (with yaw
tate removed and from now on referred to as the reduced state system)
s equivalent to the full rank tests of at most five matrices (two 4 ×4
atrices and three 3 ×4 matrices). The controllability analysis of three

pecial cases for the reduced state system is subsequently given. 

.2.1. The full state system 

Note that the matrix A in (34) is an upper block diagonal matrix. The
pectrum of A is therefore the union of the spectra of the diagonal block
atrices, that is, 

pec ( 𝐴 ) = spec 
(
� ̄𝝎 

𝐶 
𝐶𝐸 

×� 
)
∪ spec 

(
𝐴 

𝐶 
𝑆 

)
(35)

The spectrum of the skew-symmetric matrix � ̄𝝎 

𝐶 
𝐶𝐸 

×� is { ̄𝜔 𝑖, − ̄𝜔 𝑖, 0} ,
ith i denoting the imaginary unit. The eigenvalues of A are then di-
ided into three categories: 0, ± ̄𝜔 𝑖 and the eigenvalues of 𝐴 

𝐶 
𝑆 

. 
For a linear, time-invariant system, one could apply the Popov–

elevitsch–Hautus (PBH) test to investigate its controllability (Corollary
2.6.19, [33] ), the pair ( A, B ) is controllable if and only if for all eigen-
alues 𝜆 of A , the concatenated matrix [ 𝜆𝐼 −𝐴 𝐵] ∈ ℂ 

12×13 has full rank.
his includes the case of eigenvalue 0, where the test matrix has the
orm [− 𝐴 𝐵] . Note that the third and the ninth column of the matrix A
re zero vectors, meaning that the concatenated test matrix [− 𝐴 𝐵] has
t most rank 11 and therefore does not have full rank. The pair ( A, B )
s thus not stabilizable. Note that including the translational drag forces
such as those described in [27] ) in (23) would not change the system’s
tabilizability, as they do not depend on the yaw and height of the ve-
icle and thus this does not change the rank of the test matrix [− 𝐴 𝐵] . 
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Fig. 4. A possible shape of the vehicle in the special case 1 of the controllability 

analysis for the reduced state system. It is a planar object with an offset thrust 

location. 
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.2.2. The reduced state system and equivalent controllability tests 

Rearranging the states in (32) (moving the yaw state 𝛿𝜓 to the last
tate) yields: 

̃
 = 

[ 
𝐴 11 0 
𝐴 21 0 

] 
, �̃� = 

[ 
𝐵 1 
0 

] 
(36)

ith 𝐴 11 ∈ ℝ 

11×11 , 𝐴 21 ∈ ℝ 

1×11 , 𝐵 1 ∈ ℝ 

11×1 and 0 being the zero matrix
ith associated dimension. From (36) , it can be seen that the yaw state
oes not affect the dynamics of other states. 

Furthermore, changing the yaw state (the yaw angle between the L
nd the C -frame) in hover would not affect the direction of the aver-
ged thrust, and therefore not the roll angle, pitch angle, and position
n the inertial frame. This motivates investigating the controllability of
he system without the yaw state, that is, the system matrix pair ( A 11 ,
 1 ). Stabilizability of this reduced state system implies the ability of the
ystem to maintain a relaxed hover solution while rejecting disturbances
e.g. a step change in reference position), remaining substantially at one
oint in space (though the yaw angle may not be able to simultaneously
chieve some setpoint). Note that the stabilizability of the reduced sys-
em also implies that the yaw rate of the vehicle stays bounded. 

The PBH test is then applied to the reduced system matrix pair ( A 11 ,
 1 ). Applying the algebra outlined in Appendix A , it is revealed that for
he eigenvalue 0, the matrix [− 𝐴 11 𝐵 1 ] has full rank if and only if the
atrix 𝑈 0 ∈ ℝ 

4×4 has full rank, where 

 0 = 

⎡ ⎢ ⎢ ⎣ 
𝑉 0 − 

(
𝐴 

𝐶 
𝑆 

)⊤
𝑚 

−1 𝑛 𝐶 
𝑃 ,𝑧 

( 𝐵 

𝐶 
𝑆 
) ⊤

⎤ ⎥ ⎥ ⎦ (37)

ith 𝑉 0 = ( ̄𝑣 𝐶 𝑦 , 0 , 0) . 
Similarly, for the eigenvalues ± ̄𝜔 𝑖, since [ ̄𝜔 𝑖𝐼 − 𝐴 11 𝐵 1 ] and [− ̄𝜔 𝑖𝐼 −

 11 𝐵 1 ] have the same rank (Fact 2.19.3, [33] ), it suffices to investigate
 ̄𝜔 𝑖𝐼 − 𝐴 11 𝐵 1 ] , which has full rank if and only if the matrix 𝑈 𝑖 ∈ ℂ 

4×4

as full rank ( Appendix A ), where 

 𝑖 = 

[ 

𝑉 𝑖 �̄� 𝑖𝐼 − 

(
𝐴 

𝐶 
𝑆 

)⊤
0 ( 𝐵 

𝐶 
𝑆 
) ⊤

] 

(38)

ith 𝑉 𝑖 = (1 , − 𝑖, 0) . 
Finally, for the eigenvalues of 𝐴 

𝐶 
𝑆 
, assuming that its eigenvalues are

istinct from 0 and ± ̄𝜔 𝑖 (otherwise we can check the rank of U 0 or U i ),
ts associated full rank tests are equivalent to the test of whether or not
he matrix 𝑈 𝑠 ( 𝜆) ∶ ℂ ↦ ℂ 

3×4 has full rank ( Appendix A ), where 

 𝑠 ( 𝜆) = 

[
𝜆𝐼 − 𝐴 

𝐶 
𝑆 

𝐵 

𝐶 
𝑆 

]
(39)

ith 𝜆 ∈ spec ( 𝐴 

𝐶 
𝑆 
) . 

In summary, the system pair ( A 11 , B 1 ) is stabilizable if and only if
 0 , U i have full rank, and U s ( 𝜆) has full rank for the eigenvalues of 𝐴 

𝐶 
𝑆 

hose real part is non-negative. Also note that obtaining the matrices
 

𝐶 
𝑆 

and 𝐵 

𝐶 
𝑆 

symbolically is nontrivial, since it requires the knowledge of
he equilibrium solution to define the C -frame, and solving the nonlinear
qs. (11) and (12) symbolically for the equilibrium is in most cases very
edious, if not impossible. 

.2.3. Special cases for the reduced state system 

In this section, special cases under simplifying assumptions are in-
estigated to provide intuition of when the reduced state system matrix
air ( A 11 , B 1 ) is stabilizable. This may be useful since if the system is sta-
ilizable for the simplified system equations, then it will be stabilizable
or the actual system, provided that the modeling error is small enough.
his stems from the fact that the eigenvalues of a matrix are continuous
unctions of its elements (Fact 10.11.9, [33] ) that are also locally contin-
ous at the model parameters. Therefore, the PBH test matrix does not
ose rank for a perturbation of the system matrices that is small enough.
onversely, if the system is not stabilizable for the simplified system
quations, it may still be stabilizable for the actual system, but it is very
ikely that large control efforts would be required to stabilize it. 
122 
First, it is assumed that the terms 𝑰 𝐵 
𝑃 
�̇� 

𝐵 
𝑃𝐸 

and 𝑰 𝐵 
𝑃 
𝝎 

𝐵 
𝑃𝐸 

are negligible.
or a typical vehicle design (that is, the vehicle is roughly the size of a
uadrocopter described in [34] ), the largest component of the propeller
oment of inertia 𝑰 𝐵 

𝑃 
(the moment of inertia around its body z -axis) is

wo orders of magnitude smaller than the smallest diagonal entries of the
ehicle moment of inertia 𝑰 𝐵 

𝐵 
, and the equilibrium angular momentum

erm 𝑰 𝐵 
𝑃 
�̄� 

𝐵 
𝑃𝐸 

is an order of magnitude smaller than 𝑰 𝐵 
𝐵 ̄
𝝎 

𝐵 
𝐵𝐸 

. The Euler’s
q. (2) thus becomes 

 

𝐵 
𝐵 
�̇� 

𝐵 
𝐵𝐸 

+ � 𝝎 

𝐵 
𝐵𝐸 

×� 𝑰 𝐵 
𝐵 
𝝎 

𝐵 
𝐵𝐸 

= � 𝒓 𝐵 
𝑃 
×� 𝒏 𝐵 

𝑃 
𝑓 𝑃 + 𝒏 𝐵 

𝑃 
𝜏𝑃 + 𝝉𝐵 

𝑑 
. (40)

t is also assumed that the vehicle’s angular velocity with respect to the
nertial frame is much smaller than the propeller’s angular velocity with
espect to the body, i.e., ‖𝝎 BE ‖≪ ‖𝝎 PB ‖, so that f P is not a function of
he body rates. 

The following three special cases are then investigated: 

ase 1 

It is first assumed that the vehicle is a planar object ( Fig. 4 ). The
erpendicular axis theorem applies then, that is, for a coordinate system
here the object is lying in the xy -plane, the sum of the moments of

nertia about axis x and y is equal to the moment of inertia about axis
 . Furthermore, the vehicle’s inertia matrix is assumed to be diagonal in
he B -frame. In summary, 𝑰 𝐵 

𝐵 
= diag 

(
Θ𝑥 , Θ𝑦 , Θ𝑥 + Θ𝑦 

)
. 

It is assumed that the propeller thrust location has a positive offset to
he center of mass, that is, 𝒓 𝐵 

𝑃 
= ( 𝑙, 0 , 0) , with l being positive. It is also as-

umed that the vehicle’s equilibrium pitch and roll rates are small, such
hat the airframe drag torque around the body x and y -axes is neglected:

𝐵 
𝑑 
= (0 , 0 , − 𝐾𝑟 𝐵 |𝑟 𝐵 |) , (41)

here K is a positive constant and r B is the yaw rate in the B -frame. In
 typical vehicle design, it is found that the terms � ̄𝝎 

𝐵 
𝐵𝐸 

×� 𝑰 𝐵 
𝐵 ̄
𝝎 

𝐵 
𝐵𝐸 

and
 𝒓 𝐵 
𝑃 
×� 𝒏 𝐵 

𝑃 
𝑓 𝑃 are at least an order of magnitude larger than the airframe

rag torque around the body x and y -axes. A further reason for this as-
umption is that, intuitively, for such a fast, almost flat wobbling planar
bject, the gyroscopic effect and the offset propeller thrust dominate
he roll and pitch rate dynamics, whereas the propeller torque has to be
ounterbalanced by the airframe drag torque in the body z -axis. 

It is shown that in this case the reduced system matrix pair ( A 11 ,
 1 ) is always stabilizable (see B.1 ). This implies that a vehicle of flat
hape is a viable choice when designing a Monospinner. A special
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Fig. 5. A possible shape of the vehicle in the special case 2 of the controllability 

analysis for the reduced state system. It has the shape of a cylinder and the thrust 

location goes through the cylinder’s center axis. 
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ase here is when the vehicle has the shape of a flat plate, that is,
 

𝐵 
𝐵 
= diag ( Θ, Θ, 2Θ) . The Maneuverable Piccolissimo [8] , for instance,

as such an inertia distribution. 

ase 2 

It is assumed that the vehicle’s inertia matrix has the form 𝑰 𝐵 
𝐵 
=

iag ( Φ, Θ, Θ) , and the airframe drag matrix expressed in the body frame
 has the form 𝑲 

𝐵 
𝑑 
= diag ( 𝐽 , 𝐾, 𝐾 ) , where Φ, Θ, J , and K are non-zero.

ere the vehicle’s equilibrium pitch and roll rates may not be small, thus
he aerodynamic effects in the pitch and roll axes cannot be neglected.
s in case 1, it is assumed that the thrust location 𝒓 𝐵 

𝑃 
is equal to ( l , 0, 0)

ith positive l . This corresponds to the case where the vehicle has the
hape of a cylinder and the thrust location is aligned with its center axis
 Fig. 5 ). Note that this case also includes the special case that the ve-
icle’s mass distribution is symmetric, that is, 𝑰 𝐵 

𝐵 
= diag ( Θ, Θ, Θ) (e.g. a

phere or cube). 
It can be proved that the reduced state system is not stabilizable , since

he PBH test matrix associated with the eigenvalues on the imaginary
xis does not have full rank (see B.2 ). Intuitively, the cross-coupling term
the term � 𝝎 

𝐵 
𝐵𝐸 

×� 𝑰 𝐵 
𝐵 
𝝎 

𝐵 
𝐵𝐸 

in the Euler’s equation) in the x -axis disappears
ue to the structure of the inertia matrix, so that the roll rate dynam-
cs can be hardly influenced by other states. In addition, the propeller
hrust only creates moment around the pitch axis. The reduced state sys-
em is therefore not stabilizable. This indicates that when designing a
onospinner, the design should avoid to have an inertia matrix similar

o the one given in this case. 

ase 3 

In this case, the propeller thrust location r P is assumed to be
qual to (0,0,0). Assume the vehicle’s inertia matrix has the form
 

𝐵 
𝐵 
= diag 

(
Θ𝑥 , Θ𝑦 , Θ𝑧 

)
. Then one equilibrium of this special case is �̄� 𝐵 =

 , 𝑞 𝐵 = 0 , �̄� 𝐵 = 

√ 

𝜅𝑓 𝑃 ∕ 𝐾 𝑑,𝑧𝑧 , where ( ̄𝑝 𝐵 , ̄𝑞 𝐵 , ̄𝑟 𝐵 ) ∶ = �̄� 

𝐵 
𝐵𝐸 

. It can be shown

hat the linearized reduced state system around this equilibrium is un-
ontrollable (B.3) . 

This is also intuitively easy to see, namely, due to the lack of the
ross-coupling term in hover and the term � 𝒓 𝐵 

𝑃 
×� 𝒏 𝐵 

𝑃 
𝑓 𝑃 in the x and y -

xis, the control input could influence the yaw rate dynamics, but not
he roll and pitch rate dynamics. This indicates that when designing a
onospinner, the thrust location should not be too close to the center

f mass. 

. Control strategy 

The above analysis indicates that by giving up the control of yaw, the
educed state system may be stabilized by a state feedback controller.
ecall that the vehicle’s position can still be controlled. 
123 
Furthermore, the motor dynamics may have a large influence on the
ystem, if the time constant of their response to commands is comparable
o the time constants of the remainder of the system. For this reason the
otor force is also included as a state, and is approximated by a first

rder system with time constant 𝜏mot : 

̇
 𝑃 = 𝜏−1 mot ( 𝑓 com 

− 𝑓 𝑃 ) (42)

here 𝑓 com 

is the command thrust for the propeller and f P is the current
ropeller thrust. 

Augmenting the deviation of the motor force from the equilibrium
orce (i.e. 𝑓 𝑃 − 𝑓 𝑃 ) as a state to the reduced state system, denoting the
ew state as x , and introducing the new control input 𝑢 ∶ = 𝑓 com − 𝑓 𝑃 ,

he augmented state system equation is then 

̇  ≈ 𝐴 𝑐 𝑥 + 𝐵 𝑐 𝑢 (43)

ote that although the motor force state (or equivalently, the motor
peed) represents a degree of freedom of the system, including it in the
tate space or not does not affect the system’s controllability, as the
otor force is considered directly as the input to the system in the latter

ase. From now on, it is always assumed that the system matrix pair ( A c ,

 c ) is controllable, such that a stabilizing feedback controller may be
esigned. 

An infinite-horizon linear-quadratic regulator (LQR) [35] may be
eadily designed with the cost on the position states set to 1 m 

−2 s −1 ,
ost on the roll and pitch states set to 10 m 

−2 s −1 , cost on the input set
o 1 m 

−2 s −1 , and cost on the rest of the states set to 0, yielding a static
eedback gain K : 

 = − 𝐾𝑥. (44)

he resulting thrust command is then: 

 com = 𝑓 𝑃 + 𝑢. (45)

Note that the controller presented here is different from the one in
he conference version [26] : it is a single linear controller that regu-
ates both translational and attitude states, whereas the controller in
he conference version employs a cascaded control scheme that exploits
ime scale separation. This full state control strategy may bring advan-
ages if the desired position dynamics have a similar time constant to
he desired attitude dynamics. It also allows for the investigation of the
tability margin of the closed-loop system and addressing the issue of ac-
uator saturation, by designing a model predictive controller that takes
he input constraint into account while considering the position at the
ame time. 

. Design 

Since the system has only limited control authority at its disposal, it
s important to find the vehicle design that is least sensitive to uncer-
ainties such as parametric uncertainties and measurement noise. This
ection presents the methods to find a vehicle configuration such that
he vehicle is sufficiently robust against these uncertainties. 

.1. Simplified mechanical model 

To allow for efficient evaluation, a simplified mechanical model is
sed for the analysis, where there are three major components in the
ehicle: the battery, the electronics and the motor (including the pro-
eller). The components’ contribution to the composite inertia matrix is
pproximated as follows: the three major components are approximated
s point masses and the connecting frame components are approximated
s thin rods. From the inertia matrix (and by assuming that the vehicle
as similar drag coefficients as the quadrocopter in [34] ), the resulting
ehicle’s equilibrium solution and the linearized system matrices can be
omputed as described in the preceding sections. 

By measuring the weights of the available components of the proto-
ype, the battery is taken to have a weight of 0.06 kg, the electronics
.045 kg and the motor 0.04 kg. The connecting rods are taken to have
 length density of 0 . 06 kg m 

−1 . 
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Fig. 6. The probability of the input saturation for one time step for varying 

positions of the electronics. In the colored area, a grid search with resolution 

0.001 m both in x and y -direction is conducted. Electronics positions for which 

a hover solution cannot be solved are marked with hatching (the upper right 

corner of the color area). Note that the color bar has logarithmic scale. Note that 

on the boundary between the regions that has equilibrium solutions and that has 

no solution, there is a rapid increase of the input saturation probabilities. This 

is due to the rapid increase in the equilibrium motor force at this boundary. The 

chosen position of the electronics is also plotted. 
.2. Choosing the vehicle configuration 

The vehicle design focuses on optimizing over the vehicle’s mass
istribution. One motivation here is that a mass distribution where
he cross-coupling term (i.e. the gyroscopic effect) dominates in hover
ould make the system’s body rate dynamics more coupled and there-

ore easier to control. 
The vehicle’s approximate size and shape are based on the existing

rispinner [24] , with a Y-shape and a vehicle diameter of approximately
0 cm. The positions of the battery and the motor are fixed to be two
ertices of an equilateral triangle, while the position of the electronics
s to be determined. 

A two-dimensional grid search of the position of the electronics is
hen conducted, where two different quality metrics are considered. The
rst is the probability of input saturation and is based on the linear, time-

nvariant model of the dynamic system. The second metric uses Monte
arlo simulations of the nonlinear system, including parameter pertur-
ations and noise, to approximate the probability that the resulting ve-
icle is able to maintain hover. The probability of input saturation may
e computed in closed form for a given design and is therefore cheap to
valuate, but is less informative than the Monte Carlo simulations. 

.2.1. Probability of input saturation 

In feedback control, system noise may be amplified into the control
nput command and cause input saturation even if the system is near
quilibrium. It is therefore important to know how measurement and
rocess noise relates to the actual input force, specifically how likely it
eads to input saturation. This is particularly true for the Monospinner:
ith the available motor and propeller, the hover propeller force is near

aturation (about 75% of the maximum available thrust). In the follow-
ng, a stochastic analysis is presented: a discretized version of the linear
ystem is derived and augmented with measurement and actuator noise,
hich is identified by dedicated experiments. The probability that input

aturation occurs may then be computed in closed-form. 
Discretizing the system (43) with a zero-order-hold on the input u [ k ]

eads to: 

 [ 𝑘 + 1] = 𝐴 𝑑 𝑥 [ 𝑘 ] + 𝐵 𝑑 𝑢 [ 𝑘 ] (46)

here A d and B d are the discretized system matrices. 
The measurement outputs are taken to be those available on the ex-

erimental platform, that is, every state except the linear velocity. The
easurement z [ k ] is then 

 [ 𝑘 ] = 𝐶 𝑑 𝑥 [ 𝑘 ] + 𝑤 meas [ 𝑘 ] (47)

here 𝑤 meas [ 𝑘 ] ∈ ℝ 

9 is the measurement noise, which is assumed to be
ero-mean, white, and Gaussian. Furthermore, 𝐶 𝑑 ∈ ℝ 

9×12 has the form

 𝑑 = 

[ 
𝐼 3 0 0 
0 0 𝐼 6 

] 
(48)

here I 3 and I 6 are identity matrices with dimension 3 and 6, and 0 is
he zero matrix with associated dimension. Clearly, the system matrix
air ( A d , C d ) is observable. 

With �̂� defined as the state estimate, a steady-state Kalman filter has
he following form: 

̂ [ 𝑘 ] = ( 𝐼 12 − 𝐾 𝑓 𝐶 𝑑 ) 
(
𝐴 𝑑 ̂𝑥 [ 𝑘 − 1] + 𝐵 𝑑 𝑢 [ 𝑘 − 1] 

)
+ 𝐾 𝑓 𝑧 [ 𝑘 ] (49)

here K f is the filter gain and I 12 is the identity matrix with dimension
2. 

The controller input follows from applying the discrete LQR gain 𝐾 𝑑 .
t is also assumed that white, Gaussian, and zero-mean actuator noise
 act [ k ] exist and act on the system. The true control input u true [ k ] is

hen 

 true [ 𝑘 ] = − 𝐾 𝑑 ̂𝑥 [ 𝑘 ] + 𝑤 act [ 𝑘 ] . (50)
124 
Introducing the extended state �̃� [ 𝑘 ] = ( 𝑥 [ 𝑘 ] , ̂𝑥 [ 𝑘 ]) and noise �̃� [ 𝑘 ] =
 𝑤 meas [ 𝑘 + 1] , 𝑤 act [ 𝑘 ]) , substituting (50) into (46) yields 

 [ 𝑘 + 1] = 𝐴 𝑑 𝑥 [ 𝑘 ] − 𝐵 𝑑 𝐾 𝑑 ̂𝑥 [ 𝑘 ] + 𝐵 𝑑 𝑤 act [ 𝑘 ] (51)

ubstituting (51) into (47) and then into (49) leads to 

̂ [ 𝑘 ] = 𝐾 𝑓 𝐶 𝑑 𝐴 𝑑 𝑥 [ 𝑘 − 1] + 

(
( 𝐼 12 − 𝐾 𝑓 𝐶 𝑑 ) 𝐴 𝑑 − 𝐵 𝑑 𝐾 𝑑 

)
�̂� [ 𝑘 − 1] 

+ 𝐵 𝑑 𝑤 act [ 𝑘 − 1] + 𝐾 𝑓 𝑤 meas [ 𝑘 ] (52) 

Combining (50) –(52) and introducing the corresponding extended
ystem matrices �̃� , �̃� , �̃� and �̃� , the extended system equations are: 

̃ [ 𝑘 + 1] = �̃� ̃𝑥 [ 𝑘 ] + �̃� ̃𝑤 [ 𝑘 ] (53a) 

 true [ 𝑘 ] = �̃� ̃𝑥 [ 𝑘 ] + �̃� ̃𝑤 [ 𝑘 ] . (53b) 

By separation theorem for LTI systems and quadratic cost [35] , the
xtended system (53a) is stable with a stable feedback controller and a
table state estimator. Thus, the extended system will reach steady state
the equilibrium) as k goes to infinity. Let 𝑃 �̃� , 𝑃 �̃� and 𝑃 𝑢 true be the vari-
bles’ associated steady-state covariance matrices (e.g. 𝑃 �̃� = Var ( ̃𝑥 [ 𝑘 ] )
or k →∞). Through the steady state equations of (53a) and (53b) , the
ovariance matrices have the following relationship: 

 �̃� = �̃� 𝑃 �̃� �̃� 

𝑇 + �̃� 𝑃 �̃� �̃� 

𝑇 (54a) 

 𝑢 true 
= �̃� 𝑃 �̃� �̃� 

𝑇 + �̃� 𝑃 �̃� �̃� 

𝑇 . (54b) 

Note that (54a) is a discrete-time Lyapunov equation, for which a
olution 𝑃 �̃� is guaranteed to exist, since �̃� is discrete-time asymptoti-
ally stable, and �̃� 𝑃 �̃� �̃� 

𝑇 is positive semi-definite (Proposition 11.10.6
33] ). Furthermore, since the measurement noise variance 𝑃 �̃� is mea-
ured from experiment, and �̃� and �̃� are known, 𝑃 �̃� can be readily solved
y (54a) . Substituting the solution into (54b) gives the variance of the
ctuator 𝑃 𝑢 true . 

Since the noise �̃� [ 𝑘 ] is assumed to be Gaussian and zero-mean,
 true [ k ] is also Gaussian and zero-mean at steady state. As a result, the
ropeller thrust at equilibrium is a Gaussian random variable with mean
 ̄𝑃 and variance 𝑃 𝑢 true , from which the probability of saturating the maxi-
al allowed thrust may be calculated. Note that this allows for capturing

he fact that a design with low variance may still have a high probabil-
ty of saturation if it has a high mean thrust. In this way the saturation
robabilities of varying positions of the electronics are computed and
hown in Fig. 6 , and the results are discussed in the following. 
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Table 1 

Components of the Monospinner. 

Component Name 

Propeller GEMFAN GF 8045 

Motor T-Motor MN2204-28 KV:1400 

Motor controller DYS SN20A 

Command radio Laird RM024-S125-M-20 

Flight controller Custom-made flight computer 

Battery G8 Pro-Lite 480 mAh 3-Cell/3S 11V 

6

 

t

𝑰  

0 
1 
0 
25 . 6
0 
0 
0 
0 
0 
0 
0 
0 
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R

𝑥  

a
 

a  
.2.2. Monte Carlo analysis 

For each position of the electronics, the nominal hover solution is
alculated and an LQR controller is designed using the costs given in the
receding section: this controller is denoted as the “nominal controller ”.
wo hundred perturbed vehicles are then generated, by perturbing the
ollowing: inertia matrix 𝑰 𝐵 

𝐵 
, mass m , and drag coefficients K d,xx , K d,yy 

nd K d,zz . Each of these parameters is perturbed by sampling within
 certain percentage range of the nominal value. For each perturbed
ehicle a nonlinear simulation based on the dynamic model given in
ection 2.1 is conducted, lasting 10 simulated seconds. In addition to
he perturbed parameters, actuator noise and measurement noise are
imulated as in (47) and (50) . 

The perturbed vehicle starts at the hover equilibrium of the unper-
urbed system and is controlled by the nominal controller. If the vehicle
as distance greater than 5m from the reference position at the end of
he simulation, it is counted as a failure case. For each candidate position
f the electronics, the number of failure cases is plotted in Fig. 7 . This
umber is used as an indicator of the robustness of the corresponding
ominal configuration. 

.2.3. Discussion 

Note that in both Figs. 6 and 7 , there is a good, relatively flat region
f electronics positions which have a similar small number of failure
ases (respectively a low probability of input saturation). The electron-
cs’ position was chosen as (−0 . 32 , −0 . 03 , 0) m in the coordinate system
hown, based on good performance in both metrics, and on a compro-
ise with mechanical strength/complexity and the length of the cables

equired to connect the components. 

𝐴 𝑐 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 25 . 65 0 1 
−25 . 65 0 0 0 
−0 0 0 0 
0 0 0 0 
0 0 0 −25 . 65 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
ig. 7. The number of failure cases of vehicles under perturbations in nonlinear 

imulation for varying positions of the electronics. In the colored area, a grid 

earch with resolution 0.02 m both in x and y -direction is conducted. Electronics 

ositions for which a hover solution cannot be solved are marked with hatching 

the upper right corner of the color area). The chosen position of the electronics 

s also plotted. 
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. Resulting vehicle 

The resulting vehicle, as shown in Fig. 1 , has a mass of 0.208kg and
he moment of inertia as below (calculated from a CAD-model): 

 

𝐵 
𝐵 
= 

⎡ ⎢ ⎢ ⎣ 
103 15 13 
15 307 4 
13 4 400 

⎤ ⎥ ⎥ ⎦ × 10 −5 kg m 

2 . (55)

The linearized system matrices are: 

0 0 0 0 0 0 0 
0 0 0 0 0 −0 . 004 0 
1 0 0 0 0 . 004 0 0 

5 0 0 9 . 81 0 0 0 . 11 −1 . 30 
0 −9 . 81 0 0 0 0 0 
0 0 0 −0 . 11 0 0 4 . 63 
0 0 25 . 65 1 0 0 0 
0 −25 . 65 0 0 1 0 0 
0 0 0 −3 . 41 −16 . 64 1 . 48 −8 . 95 
0 0 0 19 . 89 0 . 64 10 . 94 −66 . 19 
0 0 0 0 . 04 −6 . 78 −0 . 53 3 . 22 
0 0 0 0 0 0 −13 . 33 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(56) 

 𝑐 = 

[
0 0 0 0 0 0 0 0 0 0 0 13 . 33 

]⊤
. (57)

ecall that the state x is 

 = ( 𝛿𝑠 𝐶 𝑥 , 𝛿𝑠 
𝐶 
𝑦 , 𝛿𝑠 

𝐶 
𝑧 , 𝛿𝑣 

𝐶 
𝑥 , 𝛿𝑣 

𝐶 
𝑦 , 𝛿𝑣 

𝐶 
𝑧 , 𝛿𝜙, 𝛿𝜃, 𝛿𝑝, 𝛿𝑞 , 𝛿𝑟, 𝛿𝑓 𝑃 ) , (58)

nd the input is 𝑢 = 𝑓 com − 𝑓 𝑃 . 
It can be confirmed that the pair ( A c , B c ) is controllable,

nd the eigenvalues of the system matrix A c are: {±25 . 6 𝑖, 0 , −0 . 9 ±
0 . 0 𝑖, −1 . 6 , −13 . 3} . 

The expected hover solution for this vehicle is 

̄ 𝐶 𝑥 = 0 . 0043 m , �̄� 𝐶 𝑥 = 0 . 11 m s −1 (59) 

̄  𝐵 
𝐵𝐸 

= (6 . 62 , −2 . 04 , 24 . 69) rad s −1 (60) 

 ̄𝑃 = 2 . 12 N . (61) 

ote that �̄� 𝐶 𝑥 = 0 . 0043 m implies that the vehicle’s center of mass is ro-
ating in a circle with a radius of 4 mm. 

Table 1 lists the major components of the Monospinner. 

. Experimental results 

The experiments are carried out in the Flying Machine Area, an in-
oor aerial vehicle testbed at ETH Zurich [34] . An infrared motion cap-
ure system provides high-quality position and attitude measurements
f the vehicle, which are transmitted wirelessly to the Monospinner at
0 Hz. The full state control of the vehicle are run onboard at 1000 Hz.
he motor’s electronic speed controller directly measures the motor
peed, and these measurements are used to estimate the motor force
tate using (5) . The attached video shows two types of experiments:
ake-off from a platform and hand-launching. 
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Fig. 8. Experimental results for the Monospinner’s take-off from the platform. 

The vehicle takes off at 11 s and lands at 20 s. At time 15 s, a reference position 

change of 1 m is set in the (horizontal) y -direction. Note that at steady-state 

there is an offset between the vehicle’s height z and the reference height z ref . 

This is due to the discrepancy between the expected hover solution and the true 

hover solution and it may be readily compensated by adding an integral term 

to the position control. The angular velocity is plotted as expressed in the body- 

fixed coordinate system, where 𝝎 𝐵 
𝐵𝐸 

= ( 𝑝 𝐵 , 𝑞 𝐵 , 𝑟 𝐵 ) . The roll and pitch angles are 

the standard Euler sequence (1,2,3) angles from the E -frame to the B -frame. The 

attached video shows such an experiment. 
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Fig. 9. Experimental results for a successful hand launch of the Monospinner. 

Its initial angular velocity has about 30% deviation of the equilibrium angular 

velocity, and its initial roll and pitch both have about 20 ∘ deviation of the equi- 

librium roll and pitch. The vehicle is thrown at approximately 2 s, after which 

the controller is switched on. The angular velocity is plotted as expressed in 

the body-fixed coordinate system, where 𝝎 𝐵 
𝐵𝐸 

= ( 𝑝 𝐵 , 𝑞 𝐵 , 𝑟 𝐵 ) . The roll and pitch 

angles are the standard Euler sequence (1,2,3) angles from the E -frame to the 

B -frame. The attached video shows such an experiment. 
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.1. Take-off from a platform 

Ideally, one would like the Monospinner to start near the equilib-
ium, especially in terms of its body rates: if instead the equilibrium
hrust is applied when the vehicle has zero angular velocity (e.g. it is at
est on the ground), the vehicle would simply flip over. This is because
he cross-coupling term (i.e. the gyroscopic effect) and the airframe drag
orque are second-order terms in the angular velocity and thus negligi-
le. Moreover, the propeller’s pitch torque is larger than its yaw torque
ue to the vehicle’s geometry: the torque to thrust ratio of the pro-
eller is of the order of 1.5 cm, and the propeller thrust moment arm
s 15 cm. Thus, a passive mechanism is designed to allow the Monospin-
er achieve an angular velocity close to its equilibrium before taking
ff. The mechanism consists of a platform, on which the Monospinner
ests, connected by a bearing to the ground, so that the vehicle can freely
otate about its vector n a . The rotation is achieved solely through the
ropeller torque 𝜏P , and the thrust is slowly ramped up from zero to
he equilibrium solution. Once sufficiently close to equilibrium, the full
ontrol is switched on and the vehicle takes off. A representative state
istory during a take-off is shown in Fig. 8 . The equilibrium body rates
f the vehicle in hover are as below, which may be compared to the
xpected values in (60) and (61) 

̄  𝐵𝐸 = (6 . 9 , −1 . 2 , 24 . 8) rad s −1 (62)

 ̄𝑃 = 2 . 12 N . (63)

.2. Hand launch 

Alternatively, the Monospinner can be launched by throwing it like
 frisbee. This is a faster method of achieving hover than the takeoff
echanism in Section 7.1 , and shows that the resulting system’s equi-

ibrium has a large region of attraction. A representative state history
uring a hand-launch is shown in Fig. 9 . 
126 
. Conclusion 

This paper presents the modeling, design, and control of a flying ve-
icle with only one moving part and a single control input, which is able
o fully control its position and may be used as novel hobbyist platforms,
oys, or low-cost flying vehicles. First, the vehicle’s coupled translational
nd attitude dynamics are formulated as a twelve state system for which
n equilibrium exists. This allows for analysis of the linearized system
sing the powerful tools from linear system theory. Then a controlla-
ility analysis is given: It is shown that the full state system is never
tabilizable, and after removing the yaw state, the reduced state system
aybe fully controllable in position. In particular, the reduced state sys-

em is always stabilizable for a class of vehicles that has the shape of a
lanar object and an offset thrust location with respect to the center of
ass. The resulting vehicle may be approximated by an instance of this

lass of vehicles and its corresponding system matrix pair is shown to
e indeed stabilizable. An LQR controller for the reduced state system
s designed and is shown to work reliably in the experiments. A vehicle
esign method is also presented: it optimizes mainly over the vehicle’s
hape and hence its mass distribution, in order to find a design that is
obust against system noise and parametric uncertainties. Finally, the
esulting vehicle is shown to be capable of hovering and its equilibrium
as a large region of attraction such that the vehicle recovers to hover
fter being thrown into the air like a frisbee. An area of additional inves-
igation may be the analysis of the presented linear controller and the
etermination of the region of attraction of the resulting equilibrium. 
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ppendix A. Equivalent controllability tests for the reduced state 

ystem 

In this appendix it will be shown that the matrices [− 𝐴 11 𝐵 1 ] , [± ̄𝜔 𝑖𝐼 −
 11 𝐵 1 ] and [ 𝜆𝐼 − 𝐴 11 𝐵 1 ] with 𝜆 ∈ spec ( 𝐴 

𝐶 
𝑆 
) have full rank if and only if

he matrices U 0 (37) , U i (38) , and U s ( 𝜆) (39) have full rank, respectively.
According to [36] , the system matrix pair ( A 11 , B 1 ) is uncontrollable

f and only if there exists a v ≠0 with 

 

⊤𝐴 11 = 𝜆𝑣 ⊤, 𝑣 ⊤𝐵 1 = 0 , (A.1)

here 𝜆 and its associated left eigenvector v is an uncontrollable mode.
herefore, to determine whether the test matrix [ 𝜆𝐼 − 𝐴 11 𝐵 1 ] has full
ank is equivalent to solving for a non-zero solution v in the equation
 

⊤[ 𝜆𝐼 − 𝐴 11 𝐵 1 ] = 0 (e.g. if there exists a non-zero v , then the test matrix
oes not have full rank, and vice versa). In the following, the equation
ill be solved for each eigenvalue of A 11 , which are 0, ± ̄𝜔 𝑖, and the

igenvalues of the submatrix 𝐴 

𝐶 
𝑆 

. 

igenvalue 𝜆 = 0 

Taking the transpose of the matrices on both sides of the equation
ields 

− 𝐴 11 𝐵 1 ] ⊤𝑣 = 0 . (A.2)

enote 𝑣 ∈ ℝ 

11 by 𝑣 = [ 𝑣 1 , 𝑣 2 , 𝑣 3 , 𝑣 4 ] with 𝑣 1 , 𝑣 2 , 𝑣 4 ∈ ℝ 

3 and 𝑣 3 =
 𝑣 31 , 𝑣 32 ) ∈ ℝ 

2 . In total, there are 12 equations. 
Solving the first three equations of (A.2) , 

 � ̄𝝎 

𝐶 
𝐶𝐸 

×� 𝑣 1 = 0 , (A.3)

eads to 𝑣 1 = 𝛼�̄� 

𝐶 
𝐶𝐸 

, where 𝛼 ∈ ℝ . 
The next three equations are 

 𝑣 1 − � ̄𝝎 

𝐶 
𝐶𝐸 

×� 𝑣 2 = 0 . (A.4)

ubstituting 𝑣 1 = 𝛼�̄� 

𝐶 
𝐶𝐸 

into (A.4) yields 𝛼 = 0 and thus 𝑣 1 = 0 , and 𝑣 2 =
�̄� 

𝐶 
𝐶𝐸 

, with 𝛽 ∈ ℝ . 
From the 7th and the 8th equations it follows that 

 

0 �̄� 

− ̄𝜔 0 

] [ 
𝑣 31 
𝑣 32 

] 
= 0 , (A.5)

ielding 𝑣 3 = 0 . 
The last four equations are 

 ̄𝒗 𝐶 ×� 𝑣 2 − 

(
𝐴 

𝐶 
𝑆 

)⊤
𝑣 4 = 0 (A.6)

nd 

 

−1 ( 𝒏 𝐶 
𝑃 
) ⊤𝑣 2 + ( 𝐵 

𝐶 
𝑆 
) ⊤𝑣 4 = 0 . (A.7)

ts solution depends on the entries of 𝐴 

𝐶 
𝑆 

and 𝐵 

𝐶 
𝑆 
, which are functions

f the vehicle’s physical parameters. 
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In summary, the existence of the solution of (A.2) is equivalent to
he existence of the solution of the following equation: 

 

 

 

 

𝑉 0 − 

(
𝐴 

𝐶 
𝑆 

)⊤
𝑚 

−1 𝑛 𝐶 
𝑃 ,𝑧 

( 𝐵 

𝐶 
𝑆 
) ⊤

⎤ ⎥ ⎥ ⎦ 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ 𝑈 0 

[ 
𝑣 23 
𝑣 4 

] 
= 0 (A.8) 

ith 𝑉 0 = ( ̄𝑣 𝐶 𝑦 , 0 , 0) and v 23 denoting the third component of v 2 . Thus
here exists a non-zero solution for (A.2) if and only if the matrix U 0 

oes not have full rank. 
igenvalue 𝜆 = ± ̄𝜔 𝑖 

As pointed out in Section 3.2.2 , only the case of 𝜆 = �̄� 𝑖 needs to be
nvestigated. The equation to be solved is 

 𝑖 ̄𝜔 𝐼 − 𝐴 11 𝐵 1 ] ⊤𝑣 = 0 . (A.9)

Solving the first three equations 

𝑖 ̄𝜔 𝐼 − � ̄𝝎 

𝐶 
𝐶𝐸 

×� 
)
𝑣 1 = 0 . (A.10)

his leads to 𝑣 1 = ( 𝛼, − 𝑖𝛼, 0) , with 𝛼 ∈ ℝ . 
The next three equations are 

𝑖 ̄𝜔 𝐼 − � ̄𝝎 

𝐶 
𝐶𝐸 

×� 
)
𝑣 2 − 𝑣 1 = 0 . (A.11)

t follows that 𝛼 = 0 and thus 𝑣 1 = 0 , and 𝑣 2 = ( 𝛽, − 𝑖𝛽, 0) , with 𝛽 ∈ ℝ . 
From the 7th to the 8th equations 

 

0 ‖𝒈 ‖
− ‖𝒈 ‖ 0 

] [ 
𝛽

− 𝑖𝛽

] 
+ 

[ 
𝑖 1 
−1 𝑖 

] 
�̄� 𝑣 3 = 0 . (A.12)

he result follows as 𝛽 = 0 , which leads to 𝑣 2 = 0 , and 𝑣 3 = ( 𝛾, − 𝑖𝛾) . 
The last four equations are 

 

 

 

 

1 0 
0 1 
0 0 

⎤ ⎥ ⎥ ⎦ 
[ 

𝛾

− 𝑖𝛾

] 
+ 

(
𝑖 ̄𝜔 𝐼 3 − 𝐴 

𝐶 
𝑆 

)⊤
𝑣 4 = 0 (A.13)

 𝐵 

𝐶 
𝑆 
) ⊤𝑣 4 = 0 , (A.14)

he solution of which depends on the parameters of 𝐴 

𝐶 
𝑆 

and 𝐵 

𝐶 
𝑆 

. 
In summary, the existence of a non-zero solution for (A.9) is equiv-

lent to the existence of a non-zero solution for the following equation

 

 

 

 

𝑉 𝑖 �̄� 𝑖𝐼 − 

(
𝐴 

𝐶 
𝑆 

)⊤
0 ( 𝐵 

𝐶 
𝑆 
) ⊤

⎤ ⎥ ⎥ ⎦ 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑈 𝑖 

[ 
𝛾

𝑣 4 

] 
= 0 (A.15) 

here 𝑉 𝑖 = (1 , − 𝑖, 0) . This is the case if and only if the matrix U i does not
ave full rank. 

igenvalues of 𝐴 

𝐶 
𝑆 

Recall that it is assumed that the eigenvalues of 𝐴 

𝐶 
𝑆 

are distinct from
 and ± ̄𝜔 𝑖 (otherwise we can check the rank of U 0 or U i ). Therefore,
he upper left 9 by 9 block matrix of [ 𝜆𝐼 − 𝐴 11 𝐵 1 ] has full rank, and
t suffices to investigate the rank of its lower right 3 by 4 block matrix
 𝜆𝐼 − 𝐴 

𝐶 
𝑆 

𝐵 

𝐶 
𝑆 
] (Fact 2.11.13 [33] ). 

ppendix B. Controllability analysis for three special cases of the 

educed state system 

In Section 3.2.3 , controllability analysis is performed for three spe-
ial cases of reduced state system under simplifying assumptions. In this
ppendix, details of derivation are shown for each case. 

https://doi.org/10.13039/501100004343
http://flyingmachinearena.org/
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1. Controllability analysis for case 1 

In this case (for assumptions see Section 3.2.3 ), we will show that
he system is at least stabilizable. Let 𝝎 

𝐵 
𝐵𝐸 

= ( 𝑝 𝐵 , 𝑞 𝐵 , 𝑟 𝐵 ) . Writing out the
implified Euler’s Eq. (40) under the proposed assumptions for case 1
ields 

̇ 𝐵 = − 𝑞 𝐵 𝑟 𝐵 (B.1)

̇ 𝐵 = 𝑝 𝐵 𝑟 𝐵 − 

𝑙 

Θ𝑦 

𝑓 𝑃 (B.2)

̇ 𝐵 = 

Θ𝑥 − Θ𝑦 

Θ𝑥 + Θ𝑦 

𝑝 𝐵 𝑞 𝐵 − 

𝐾 

Θ𝑥 + Θ𝑦 

𝑟 2 
𝐵 
+ 

𝜅

Θ𝑥 + Θ𝑦 

𝑓 𝑃 . (B.3)

Setting the right hand side of the above three equations to zero
ields three nonlinear equations, from which the equilibrium body rates
 ̄𝑝 𝐵 , ̄𝑞 𝐵 , ̄𝑟 𝐵 ) may be solved: 

 = 𝑞 𝐵 ̄𝑟 𝐵 (B.4)

 = �̄� 𝐵 ̄𝑟 𝐵 − 

𝑙 

Θ𝑦 

𝑓 𝑃 (B.5)

 = 

Θ𝑥 − Θ𝑦 

Θ𝑥 + Θ𝑦 

�̄� 𝐵 ̄𝑞 𝐵 − 

𝐾 

Θ𝑥 + Θ𝑦 

�̄� 2 
𝐵 
+ 

𝜅

Θ𝑥 + Θ𝑦 

𝑓 𝑃 . (B.6)

olving the above equations yields: 

̄ 𝐵 = 

𝑙 

Θ𝑦 

√ 

𝑓 𝑃 

𝜅
, 𝑞 𝐵 = 0 , �̄� 𝐵 = 

√ 

𝜅𝑓 𝑃 . (B.7)

Linearizing (B.1) –(B.3) around ( ̄𝑝 𝐵 , ̄𝑞 𝐵 , ̄𝑟 𝐵 ) and 𝑓 𝑃 yields 

 

𝐵 
𝑆 
= 

⎡ ⎢ ⎢ ⎣ 
0 − ̄𝑟 𝐵 0 
�̄� 𝐵 0 �̄� 𝐵 
0 𝐷 ̄𝑝 𝐵 −2 𝑘 ̄𝑟 𝐵 

⎤ ⎥ ⎥ ⎦ , 𝐵 

𝐵 
𝑆 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 

− 

1 
Θ𝑦 

𝜅∕Θ𝑥 + Θ𝑦 

⎤ ⎥ ⎥ ⎥ ⎦ . (B.8)

here 

 ∶ = 

Θ𝑥 − Θ𝑦 

Θ𝑥 + Θ𝑦 

, 𝑘 ∶ = 

𝐾 

Θ𝑥 + Θ𝑦 

. (B.9)

From (B.5) and (B.6) , 𝐵 

𝐵 
𝑆 

can be written as 

 

𝐵 
𝑆 
= (0 , − 

�̄� 𝐵 ̄𝑟 𝐵 

𝑓 𝑃 
, 
𝑘 ̄𝑟 2 

𝐵 

𝑓 𝑃 
) . (B.10)

Let R 

BC be parametrized by the standard aeronautics Euler angle
equence with roll ( 𝜈), pitch ( 𝜇), and yaw ( 𝜂) angles such that 

 

𝐵𝐶 = 𝑹 𝑥 ( 𝜈) 𝑹 𝑦 ( 𝜇) 𝑹 𝑧 ( 𝜂) . (B.11)

Combining (9), (13) and (B.11) yields 

�̄� 𝐵 

�̄� 

= − sin 𝜇, 
𝑞 𝐵 

�̄� 

= cos 𝜇 sin 𝜈, 
�̄� 𝐵 

�̄� 

= cos 𝜇 cos 𝜈. (B.12)

ince 𝑞 𝐵 = 0 and �̄� 𝐵 ≠ 0 , it can be seen from (B.12) that sin 𝜈 is equal to
, which leads to 𝜈 = 0 . 

With the second row of (14) the remaining degree of freedom 𝜂 can
e solved: 

os ( 𝜈) sin ( 𝜇) sin ( 𝜂) − sin ( 𝜈) cos ( 𝜂) = 0 (B.13)

hich yields 

= arctan 
( 

tan ( 𝜈) 
sin ( 𝜇) 

) 

= 0 . (B.14)

herefore, the coordinate transformation from the C -frame to the B -
rame is a rotation around the y -axis of the C -frame, that is, 

 

𝐵𝐶 = 

⎡ ⎢ ⎢ ⎣ 
cos 𝜇 0 − sin 𝜇
0 1 0 

sin 𝜇 0 cos 𝜇

⎤ ⎥ ⎥ ⎦ (B.15)
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nd 𝑹 

𝐵𝐶 �̄� 

𝐶 
𝐶𝐸 

= �̄� 

𝐵 
𝐵𝐸 

leads to 

̄ 𝐵 = − sin ( 𝜇) ̄𝜔 , �̄� 𝐵 = cos ( 𝜇) ̄𝜔 . (B.16)

or brevity, let 𝛼 = − sin ( 𝜇) > 0 (since �̄� 𝐵 > 0 ) and 𝛽 = cos ( 𝜇) > 0 . Note
hat 𝛼2 + 𝛽2 = 1 . 

Substituting (B.16) into 𝐴 

𝐵 
𝑆 

and 𝐵 

𝐵 
𝑆 

and applying coordinate trans-
ormation 𝐴 

𝐶 
𝑆 
= 𝑹 

𝐶𝐵 𝐴 

𝐵 
𝑆 
𝑹 

𝐵𝐶 and 𝐵 

𝐶 
𝑆 
= 𝑹 

𝐶𝐵 𝐵 

𝐵 
𝑆 

yields 

 

𝐶 
𝑆 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
−2 𝑘𝛽𝛼2 �̄� (− 𝛽2 − 𝐷𝛼2 ) ̄𝜔 2 𝑘𝛽2 𝛼�̄� 

( 𝛽2 − 𝛼2 ) ̄𝜔 0 2 𝛽𝛼�̄� 

2 𝑘𝛽2 𝛼�̄� (− 𝛽𝛼 + 𝐷𝛽𝛼) ̄𝜔 −2 𝑘𝛽3 �̄� 

⎤ ⎥ ⎥ ⎥ ⎦ (B.17)

nd 

 

𝐶 
𝑆 
= 

[
− 𝑘𝛽2 𝛼�̄� 

2 ∕ 𝑓 𝑃 − 

𝛽𝛼�̄� 2 

𝑓 𝑃 

𝑘𝛽3 �̄� 2 

𝑓 𝑃 

]
, (B.18)

espectively. 
Substituting 𝑛 𝐶 

𝑃 ,𝑧 
= 𝛽, (25), (B.17) , and (B.18) into U 0 (A.8) and com-

uting its determinant yields 

et ( 𝑈 0 ) = − 

2 𝑘𝛽4 �̄� 

3 

𝑚 

( 𝛽2 + 𝛼2 ) 2 , (B.19)

hich is non-zero, meaning that [− 𝐴 11 𝐵 1 ] has full rank. 
For the eigenvalues ± ̄𝜔 𝑖, (A.15) becomes 

 𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 �̄� 𝑖 + 2 𝑘𝛽𝛼2 �̄� −( 𝛽2 − 𝛼2 ) ̄𝜔 −2 𝑘𝛽2 𝛼�̄� 

− 𝑖 ( 𝛽2 + 𝐷𝛼2 ) ̄𝜔 �̄� 𝑖 𝛽𝛼�̄� − 𝐷𝛽𝛼�̄� 

0 −2 𝑘𝛽2 𝛼�̄� −2 𝛽𝛼�̄� �̄� 𝑖 + 2 𝑘𝛽3 �̄� 

0 − 𝑘𝛽2 𝛼�̄� 

2 ∕ 𝑓 𝑃 − 

𝛽𝛼�̄� 

2 

𝑓 𝑃 

𝑘𝛽3 �̄� 

2 

𝑓 𝑃 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (B.20)

o compute its determinant, multiply its fourth row by −2 𝑓 𝑃 ∕ ̄𝜔 and add
o the third row and then compute its determinant yields 

et ( 𝑈 𝑖 ) = − 𝑖 
𝛽𝛼�̄� 

4 

𝑓 𝑃 
(−( 𝛽2 + 𝐷𝛼2 − 1)) . (B.21)

ssume det ( 𝑈 𝑖 ) = 0 , then the following equation has to hold 

2 + 𝐷𝛼2 = 1 , (B.22) 

implifying which yields 

𝑥 − Θ𝑦 = Θ𝑥 + Θ𝑦 , (B.23) 

hich is clearly a contradiction ( Θy ≠0). Thus, [ ̄𝜔 𝑖𝐼 − 𝐴 11 𝐵 1 ] has full
ank. 

For the eigenvalues of 𝐴 

𝐶 
𝑆 
, the matrix [ 𝜆𝐼 − 𝐴 

𝐶 
𝑆 

𝐵 

𝐶 
𝑆 
] has full rank for

ll 𝜆 is equivalent to the controllability of the matrix pair ( 𝐴 

𝐶 
𝑆 
, 𝐵 

𝐶 
𝑆 
) (the

BH test), which is then equivalent to the full rankness of its associated
ontrollability matrix 

 = 

[
𝐵 

𝐵 
𝑆 

𝐴 

𝐵 
𝑆 
𝐵 

𝐵 
𝑆 

(
𝐴 

𝐵 
𝑆 

)2 
𝐵 

𝐵 
𝑆 

]
. (B.24)

ote that the matrix pair ( 𝐴 

𝐵 
𝑆 
, 𝐵 

𝐵 
𝑆 
) with substitution from (B.16) is used

nstead, since coordinate transformation (which is the same as change
f basis) does not affect the controllability of the linear system matrix
air, and it is easier to evaluate the controllability matrix  using the
air ( 𝐴 

𝐵 
𝑆 
, 𝐵 

𝐵 
𝑆 
) . 

Substituting (B.8) into  leads to 

 = 

𝛽�̄� 

2 

𝑓 𝑃 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 𝛽𝛼�̄� − 𝑘𝛽2 𝛼�̄� 

2 

− 𝛼 𝑘𝛽𝛼�̄� 𝛼�̄� 

2 ( 𝛽2 − 𝐷𝛼2 − 2 𝑘 2 𝛽2 ) 

𝑘𝛽 −( 𝐷𝛼2 + 2 𝑘 2 𝛽2 ) ̄𝜔 𝑘𝛽�̄� 

2 (3 𝐷𝑟 2 2 + 4 𝑘 2 𝛽2 ) 

⎤ ⎥ ⎥ ⎥ ⎦ . (B.25)

o compute its determinant, multiply the first and second column by
𝛽�̄� and add it to the second and third column, respectively, which
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𝒆

𝒆
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w
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w
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S  

t

−

S
y

𝐵  

S  

i

d  

T  

c

B

 

S

Θ

Θ

Θ

 

(

𝐴  
ields 

 = 

𝛽�̄� 

2 

𝑓 𝑃 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 𝛽𝛼�̄� 0 

− 𝛼 0 𝛼�̄� 

2 ( 𝛽2 − 𝐷𝛼2 − 𝑘 2 𝛽2 ) 

𝑘𝛽 −( 𝐷𝛼2 + 𝑘 2 𝛽2 ) ̄𝜔 𝑘𝛽�̄� 

2 (2 𝐷𝑟 2 2 + 2 𝑘 2 𝛽2 ) 

⎤ ⎥ ⎥ ⎥ ⎦ . (B.26)

Again, multiply the second column by 2 𝑘𝛽�̄� and add it to the third
olumn 

 = 

𝛽�̄� 

2 

𝑓 𝑃 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 𝛽𝛼�̄� 2 𝑘𝛽2 𝛼�̄� 

2 

− 𝛼 0 𝛼�̄� 

2 ( 𝛽2 − 𝐷𝛼2 − 𝑘 2 𝛽2 ) 

𝑘𝛽 −( 𝐷𝛼2 + 𝑘 2 𝛽2 ) ̄𝜔 0 

⎤ ⎥ ⎥ ⎥ ⎦ . (B.27)

The determinant is then computed as 

et ( ) = 

𝑘𝛽5 𝛼2 �̄� 

9 

𝑓 3 
𝑃 

( 𝐷𝛼2 + 𝛽2 + 𝑘 2 𝛽2 ) . (B.28)

Assume det ( ) = 0 , by exploiting 𝛼2 = 1 − 𝛽2 , 

 + 𝛽2 ( 𝑘 2 − 𝐷 + 1) = 0 . (B.29) 

ubstituting the definition of D and k (B.9) back into the above equation
ields 

2 = 

Θ2 
𝑥 − Θ2 

𝑦 

−2Θ2 
𝑦 − 2Θ𝑥 Θ𝑦 − 𝐾 

2 . (B.30)

If Θ2 
𝑥 − Θ2 

𝑦 ≥ 0 , clearly, the left hand side of (B.30) cannot be equal
o its right hand side. Thus, the matrix  has full rank. 

If Θ2 
𝑥 − Θ2 

𝑦 < 0 , the eigenvalues of 𝐴 

𝐵 
𝑆 

are guaranteed to be stable.

o see this, computing the characteristic polynomial of the matrix 𝐴 

𝐵 
𝑆 

eigenvalues of a matrix stay invariant under coordinate transformation)
eads to 

et ( 𝜆𝐼 − 𝐴 ) = 𝜆3 + 2 𝑘𝛽�̄� 

⏟⏟⏟
𝑎 1 

𝜆2 + ( 𝛽2 �̄� 

2 − 𝛼2 �̄� 

2 𝐷) 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎 2 

𝜆 + 2 𝑘𝛽3 
⏟⏟⏟

𝑎 3 

�̄� 

3 = 0 . (B.31)

According to the Routh–Hurwitz stability criterion, the poles of
B.31) have strictly negative parts if and only if the conditions a 1 > 0,
 2 > 0, a 1 a 2 > a 3 > 0 are fulfilled (Fact 11.17.2 [33] ). This is clearly the
ase if Θ2 

𝑥 − Θ2 
𝑦 < 0 (i.e. D < 0) and recall that k > 0, 𝛽 > 0, and �̄� > 0 . 

In conclusion, the system matrix pair ( A 11 , B 1 ) is at least stabilizable
or this case. 

2. Controllability analysis for case 2 

In this case (for assumptions see Section 3.2.3 ), we will show that
he system is not stabilizable. 

The Euler’s equation simplifies to 

̇ 𝐵 = − 

𝐽 

Φ
𝑝 𝐵 

‖‖‖𝝎 

𝐵 
𝐵𝐸 

‖‖‖ (B.32) 

̇ 𝐵 = − 

𝑙 

Θ
𝑓 𝑃 − 

𝐾 

Θ
𝑞 𝐵 

‖‖‖𝝎 

𝐵 
𝐵𝐸 

‖‖‖ + 

Θ − Φ
Θ

𝑝 𝐵 𝑟 𝐵 (B.33) 

̇ 𝐵 = 

𝜅

Θ
𝑓 𝑃 − 

𝐾 

Θ
𝑟 𝐵 

‖‖‖𝝎 

𝐵 
𝐵𝐸 

‖‖‖ + 

Φ − Θ
Θ

𝑝 𝐵 𝑞 𝐵 . (B.34) 

etting the left hand side of (B.32) to zero yields �̄� 𝐵 = 0 . 
Let the components of R 

BC be 

 

𝐵𝐶 = 

[
𝒆 1 𝒆 2 𝒆 3 

]
= 

⎡ ⎢ ⎢ ⎣ 
𝑟 1 𝑟 2 𝑟 3 
𝑟 4 𝑟 5 𝑟 6 
𝑟 7 𝑟 8 𝑟 9 

⎤ ⎥ ⎥ ⎦ , (B.35)

here 𝒆 𝑖 , 𝑖 = 1 , 2 , 3 denote the column vectors of R 

BC , and 𝑟 𝑖 , 𝑖 = 1 , …9
enote the entries. Since R 

BC is a coordinate transformation matrix, the
olumn vectors satisfy the following properties: 

 1 × 𝒆 2 = 𝒆 3 (B.36) 
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 2 × 𝒆 3 = 𝒆 1 (B.37) 

 3 × 𝒆 1 = 𝒆 2 . (B.38) 

𝑹 

𝐵𝐶 �̄� 

𝐶 
𝐶𝐸 

= �̄� 

𝐵 
𝐵𝐸 

can be written as 

̄ 𝐵 = �̄� 𝑟 3 = 0 , 𝑞 𝐵 = �̄� 𝑟 6 , �̄� 𝐵 = �̄� 𝑟 9 , (B.39)

hich also leads to 𝑟 3 = 0 . 
Furthermore, by (14) 

 = 𝑛 𝐶 
𝑃 ,𝑦 

= 

(
𝑹 

𝐶𝐵 𝑛 𝐵 
𝑃 

)
2 = 𝑟 8 , (B.40)

here 
(
𝑹 

𝐶𝐵 𝑛 𝐵 
𝑃 

)
2 denotes the second entry of 𝑹 

𝐶𝐵 𝑛 𝐵 
𝑃 

. 
Linearizing (B.32) –(B.34) around ( ̄𝑝 𝐵 , ̄𝑞 𝐵 , ̄𝑟 𝐵 ) yields 

 

𝐵 
𝑆 
= 

⎡ ⎢ ⎢ ⎣ 
− 𝑗 ̄𝜔 0 0 
− 𝑐 ̄𝑟 𝐵 − 𝑘 ̄𝜔 0 
𝑐 ̄𝑞 𝐵 0 − 𝑘 ̄𝜔 

⎤ ⎥ ⎥ ⎦ − 

𝑘 

�̄� 

�̄� 

𝐵 
𝐵𝐸 

(
�̄� 

𝐵 
𝐵𝐸 

)⊤
, 𝐵 

𝐵 
𝑆 
= 

[
0 − 𝑙∕Θ 𝜅

Θ

]
(B.41) 

here 𝑗 ∶ = 

𝐽 

Φ , 𝑘 ∶ = 

𝐾 

Θ and 𝑐 ∶ = 

Φ−Θ
Θ . 

Substituting (B.39) into 𝐴 

𝐵 
𝑆 

and applying coordinate transformation
 

𝐶 
𝑆 
= 𝑹 

𝐶𝐵 𝐴 

𝐵 
𝑆 
𝑹 

𝐵𝐶 and some simplifications ( (B.36) –(B.38) , and (B.40) ),
t follows that 

 

𝐶 
𝑆 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
− 𝑘 ̄𝜔 + 𝑐𝑟 1 𝑟 2 ̄𝜔 + 𝑟 2 1 ( 𝑘 − 𝑗) ̄𝜔 𝑟 2 2 𝑐 ̄𝜔 + 𝑟 1 𝑟 2 ( 𝑘 − 𝑗) ̄𝜔 𝑟 2 𝑟 3 𝑐 ̄𝜔 

− 𝑟 2 1 𝑐 ̄𝜔 + 𝑟 1 𝑟 2 ( 𝑘 − 𝑗) ̄𝜔 − 𝑘 ̄𝜔 − 𝑐𝑟 1 𝑟 2 ̄𝜔 + 𝑟 2 2 ( 𝑘 − 𝑗) ̄𝜔 𝑟 1 𝑟 3 𝑐 ̄𝜔 

0 0 −2 𝑘 ̄𝜔 

⎤ ⎥ ⎥ ⎥ ⎦ .
(B.42) 

ubstituting (B.39) into (B.33) and (B.34) and setting their left hand side
o zero yields 

 

𝑙 

Θ
= 

1 
𝑓 𝑃 

𝑘𝑟 6 ̄𝜔 

2 (B.43) 

𝜅

Θ
= 

1 
𝑓 𝑃 

𝑘𝑟 9 ̄𝜔 

2 . (B.44) 

ubstituting (B.43) and (B.44) into 𝐵 

𝐵 
𝑆 

in (B.41) and simplifying 𝑹 

𝐶𝐵 𝐵 

𝐵 
𝑆 

ields 

 

𝐶 
𝑆 
= 

[
0 0 𝑘 ̄𝜔 

2 ∕ 𝑓 𝑃 
]
. (B.45)

ubstituting the (B.42) and (B.45) into the definition of U i and comput-
ng its determinant leads to 

et ( 𝑈 𝑖 ) = 0 . (B.46)

his implies that the modes associated with the eigenvalues ± ̄𝜔 𝑖 are not
ontrollable, and the system is therefore not stabilizable. 

3. Controllability analysis for case 3 

The simplified Euler equation (40) for this case (for assumptions see
ection 3.2.3 ) has the form 

𝑥 ̇𝑝 𝐵 = (Θ𝑦 − Θ𝑧 ) 𝑞 𝐵 𝑟 𝐵 − 𝐾 𝑑,𝑥𝑥 𝑝 𝐵 
‖‖‖𝝎 

𝐵 
𝐵𝐸 

‖‖‖ (B.47) 

𝑦 ̇𝑞 𝐵 = (Θ𝑧 − Θ𝑥 ) 𝑝 𝐵 𝑟 𝐵 − 𝐾 𝑑,𝑦𝑦 𝑞 𝐵 
‖‖‖𝝎 

𝐵 
𝐵𝐸 

‖‖‖ (B.48) 

𝑧 ̇𝑟 𝐵 = (Θ𝑥 − Θ𝑦 ) 𝑝 𝐵 𝑞 𝐵 − 𝐾 𝑑,𝑧𝑧 𝑟 𝐵 
‖‖‖𝝎 

𝐵 
𝐵𝐸 

‖‖‖ + 𝜅𝑓 𝑃 . (B.49) 

Linearizing the above three equations around the equilibrium

0 , 0 , 
√ 

𝜅𝑓 𝑃 ∕ 𝐾 𝑑, zz ) yields 

 

𝐵 
𝑆 
= 

⎡ ⎢ ⎢ ⎣ 
− 𝑘 𝑥 ̄𝜔 𝑎 ̄𝑟 𝐵 0 
𝑏 ̄𝑟 𝐵 − 𝑘 𝑦 ̄𝜔 0 
0 0 − 𝑘 𝑧 ̄𝜔 

⎤ ⎥ ⎥ ⎦ , 𝐵 

𝐵 
𝑆 
= 

⎡ ⎢ ⎢ ⎣ 
0 
0 

𝜅∕ Θ𝑧 

⎤ ⎥ ⎥ ⎦ (B.50)
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here 𝑘 𝑥 ∶ = 𝐾 𝑑,𝑥𝑥 ∕Θ𝑥 , 𝑘 𝑦 ∶ = 𝐾 𝑑,𝑦𝑦 ∕Θ𝑦 , 𝑘 𝑧 ∶ = 𝐾 𝑑,𝑧𝑧 ∕Θ𝑧 , 𝑎 ∶ = (Θ𝑦 −
𝑧 )∕Θ𝑥 , 𝑏 ∶ = (Θ𝑧 − Θ𝑥 )∕Θ𝑦 . 

From (B.12) and (B.13) it can be solved that 𝜇 = 𝜈 = 𝜂 = 0 . Therefore,
 

BC is a three dimensional identity matrix. 
For the eigenvalue ± ̄𝜔 𝑖, it is clear that det ( 𝑈 𝑖 ) = 0 . Thus the system

or this case is not stabilizable. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.mechatronics.2019.06.004 . 
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