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Abstract— A method for recovery from the complete loss of
the state estimate is presented for autonomous quadcopters.
Given an aerodynamic force model, the only measurements
used to reinitialize the state estimate by means of a bank
of extended Kalman filters are the angular rate and linear
acceleration measurements of an IMU. The method is integrated
within a complete recovery logic on a quadcopter platform and
experimentally evaluated.

I. INTRODUCTION

Over the course of the last two decades, unmanned
aerial vehicles (UAVs), and particularly quadcopters, have
received increasing attention. Low-cost, lightweight sensing
technology paired with powerful processors enabled their
widespread use as an experimental platform for research in
the field of robotics, as well as in industry: for example
for aerial delivery, inspection, surveillance, photography,
mapping, inventory management and entertainment.

With the emergent use of quadcopters, their safety and
robustness have become important requirements. Ideally, a
quadcopter is completely fault-tolerant, meaning that it is
engineered in such a way that a failure affecting any of
the components of the system does not prevent the intended
operation being completed.

An intuitive concept to create a fault-tolerant system is
redundancy. By duplicating every component, a quadcopter
can continue operation relying on the backup components,
which almost completely eliminates the risk of a catastrophic
failure. The major drawbacks of redundancy, however, are
the increased cost, complexity and weight of the system.
Redundancy for actuator fault-tolerance can alternatively be
achieved by duplicating only a subset of components: For
example, in [1], [2], [3] and [4] fault-tolerant control for
hexacopters is studied. Another alternative way to achieve
actuator redundancy is to introduce different means of actu-
ation, for example by rotors that can be actively tilted [5]. In
the context of sensor fault-tolerance, redundancy is typically
not achieved by duplication of components, but by a sensor
configuration that provides redundant information, see for
example [6]. A summary of work on sensor and actuator
fault-tolerance for quadcopters can be found in [7].

A less strict requirement is a fail-safe design: Such a
system is designed to respond to a failure by taking an action
that minimizes damage and/or harm to the equipment and
its environment. For example, in [8] a control strategy is
proposed that allows a quadcopter to continue controlled
flight despite the loss of up to three propellers, without
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increasing the mechanical complexity of the system, but by
controlling a reduced attitude instead of the full attitude.

Related work in sensor failure detection and isolation,
as well as robust estimation allows estimation and control
despite sensor failure or the presence of outliers (see for
example [9], [10]). These methods may however be bound
by limitations. Consider for instance the scenario in which
a state estimate is lost or corrupted. Such a scenario may
arise when a system using computer vision to estimate
its states experiences a sudden loss of its tracked features
due to aggressive maneuvers, or due to sudden illumination
changes [11]. Also GPS-based state estimators can diverge
due to jammed or lost GPS signal reception [12], or due
to unmodeled forces from collisions or impacts. Finally,
an unforeseen software or hardware issue may freeze the
onboard processing unit leading to a system reset. At best,
these failures temporarily corrupt the state estimate, and the
estimated state converges back close to the actual state.
At worst, these failures result in the complete loss of a
reliable state estimate, which may in turn have catastrophic
consequences.

The aim of this work is the development of a method to
reinitialize the state estimate of quadcopters in such worst
case scenarios. We evaluate the method by throwing the
vehicle and letting it autonomously recover its state estimate
without an initial attitude estimate. Since a quadcopter may
only produce thrust along its thrust axis, it is essential
that this axis is aligned in the opposite direction to gravity
as quickly as possible to prevent the vehicle from further
accelerating towards the ground when in free fall. Therefore,
it is necessary that the vehicle rapidly obtains an estimate of
the direction of gravity.

The problem of reinitializing the state estimate of a
quadcopter has previously been addressed. For example, in
[11] a method enabling a quadcopter to recover from a
throw is presented. In [13] a similar method is developed.
Both methods succeed in reinitializing the state estimate
after aggressive maneuvers, but share a common, significant
assumption: It is assumed that the direction of gravity can
essentially be measured before the vehicle is launched, pro-
viding the subsequent steps with a reasonable initial estimate
of the attitude. In practice, this is realized by turning the
system on while it is still in the operator’s hand, allowing
the accelerometer to approximately measure gravity. While
methods relying on this assumption are shown to work
well for launching the vehicles, they do not allow for state
estimate recovery mid-air or in free fall.

The main contribution of this work is the development of
a method that allows the vehicle to recover from the com-



plete loss of its state estimate. More precisely, the method
described here relies solely on measurements provided by
an IMU comprised of an accelerometer and a gyroscope to
determine the direction of gravity and velocity of the vehicle
whilst in free fall. It is shown that this may be approached by
formulating a Bayesian tracking problem, and approximately
solving it using a bank of extended Kalman filters (bank of
EKFs).

The remainder of this paper is organized as follows: In
Section II, the mathematical model of a quadcopter platform
is briefly summarized. The aerodynamic force model used
therein is discussed in detail in Section III. Section IV
explains how these models are used in a bank of EKFs
framework to find the attitude and velocity of the quad-
copter platform. Integration in a complete recovery logic is
presented in Section V. Finally, Section VI discusses the
experimental evaluation of the suggested method.

II. SYSTEM MODEL

In this section, the equations describing the motion and
measurements of a quadcopter platform are recalled and the
necessary variables for the following sections are introduced.
For notational convenience, vectors are denoted as n-tuples
x = (x1, x2, . . . , xn) with dimensions and stacking clear
from the context.

A. Equations of Motion

Let I denote an inertially fixed Cartesian coordinate frame,
with its z-axis pointing in the opposite direction to gravity,
and B denote a Cartesian body-fixed frame, with its z-axis
pointing along the vehicle thrust axis. The other axes of both
frames are chosen to satisfy the right-hand rule.

The quadcopter is modeled as a single rigid body. The
state of the vehicle is described by the state variable

x = (p,v, R,ω) , (1)

where p ∈ R3 is the position, and v ∈ R3 is the linear ve-
locity of the center of mass of the vehicle, R ∈ SO(3) is the
attitude, and ω ∈ R3 is the angular velocity of the vehicle.
The attitude R represents a coordinate transformation from
the inertial frame I to the body-fixed frame B, i.e. for a
vector ξ it satisfies the equation

Bξ = RIξ, (2)

where the prefixes denote the frames in which ξ is expressed.
The kinematic relations of the position and attitude can be

written as

I ṗ = Iv (3)

Ṙ = −JBωK×R, (4)

where JBωK× is the skew-symmetric matrix notation of the
crossproduct defined as

JBωK× =

 0 −Bωz Bωy

Bωz 0 −Bωx

−Bωy Bωx 0

 .

The dynamics of the vehicle can be described by the
Newton-Euler equations

mI v̇ = RT
Bfa(v,ω) +RT

Bf +mIg (5)
JBω̇ = −Bω × (JBω) + Bτ , (6)

where m ∈ R is the vehicle mass, J ∈ R3×3 is the mass
moment of inertia matrix, Bf ∈ R3 is the collective thrust
vector produced by the propellers, Bτ ∈ R3 is the torque
vector resulting from the differential thrust of the propellers,
and Bfa(v,ω) ∈ R3 is an aerodynamic force vector.

B. Measurement Models

The measurement models for the accelerometer and gy-
roscope are presented. Considering (5), we assume that the
accelerometer can be modeled as follows

Bzacc =
1

m
(Bfa(v,ω) + Bf) + ηacc (7)

ηacc ∼ N (0,Σacc),

where ηacc ∈ R3 is additive zero-mean Gaussian noise with
a known covariance matrix Σacc. Furthermore, we assume
that the gyroscope can be modeled as

Bzgyro = Bω + ηgyro (8)
ηgyro ∼ N (0,Σgyro),

where ηgyro ∈ R3 is additive zero-mean Gaussian noise with
a known covariance matrix Σgyro.

Note that we assume for both accelerometer and gyro-
scope, in contrast to other sensor models, cf. [13], that the
measurements are unbiased. This is generally not the case
for most IMU sensors used on quadcopters, but may for
example be achieved by regular calibration. Alternatively,
different sensors may be used in addition to determine the
IMU biases by means of sensor fusion.

III. AERODYNAMIC FORCES

In literature, it is often assumed that the dominant contri-
bution to aerodynamic drag forces is the aerodynamic inter-
action between the air and the propellers, see for example
[14]. A derivation of the aerodynamic forces and torques
using blade element theory for a propeller can be found,
for example, in [15]. These models were shown to be a
reasonable approximation to the true drag forces in certain
flight regimes. Unfortunately, if a vehicle is thrown by hand,
it is generally far away from typical flight regimes: The
vehicle may be translating and rotating at very fast rates.
Therefore, we take a data-driven approach, and learn the
aerodynamic model from experimental data.

To reduce the complexity of the aerodynamic model, the
motors are commanded to spin at a constant, predefined
speed, both while collecting data to determine an aerody-
namic model, as well as in the experimental evaluation of
our recovery method.



A. Model

We propose the following model for the aerodynamic force

fa(v,ω) + f = Av +B‖v‖v + Cψ(ω), (9)

where A ∈ R3×3, B ∈ R3×3, and C ∈ R3×10 are parameter
matrices, and ψ(ω) ∈ R10 is defined as

ψ(ω) := (ωx, ωy, ωz, ω
2
x, ω

2
y, ω

2
z , ωxωy, ωyωz, ωzωx, 1).

(10)
Note that this model assumes constant propeller speeds,
and thus incorporates a constant collective thrust f in the
term Cψ(ω). Furthermore, the model assumes absence of
aerodynamic disturbances such as changing wind. The model
consists of linear and quadratic terms in the vehicle’s linear
and angular velocity. Subsequently, we will use the following
definition of the combined aerodynamic force

fc(v,ω) := fa(v,ω) + f . (11)

B. Model Learning

The parameter matrices A, B, and C are estimated using
a least-squares approach. By defining an input feature vector

φ(v,ω) :=
[
vT ‖v‖vT ψ(ω)T

]T
, (12)

and by using (11), we can rewrite the aerodynamic model
described in (9) to be linear in the feature vector according
to

fc(v,ω) = Λφ(v,ω), (13)

where Λ ∈ R3×16 is the combined parameter matrix defined
as

Λ :=
[
A B C

]
.

Assuming that v, ω, and zacc can be experimentally
obtained, an estimate for Λ can be found as the least-squares
solution

Λ∗ = arg min
Λ

n∑
i=1

(mziacc − Λφi)T(mziacc − Λφi), (14)

where the superscript i indicates the training sample number,
and n is the total number of training samples.

C. Experimental Data

In order to collect data to fit the aerodynamic model (13),
the quadcopter was thrown in the Flying Machine Arena
[16], a 10 m × 10 m × 10 m flight space equipped with a
Vicon motion capture system. During all experiments, all
propellers were commanded to rotate at a constant idle speed.
The result is a dataset consisting of measurements of the
position and attitude of the vehicle, provided by the motion
capture system at 200 Hz, and gyroscope and accelerometer
measurements at 1000 Hz, along multiple parabolic trajec-
tories. The position measurements were low-pass filtered,
and numerically differentiated to obtain the velocity of the
vehicle. Furthermore, both the velocity and attitude were
linearly interpolated to match the sampling time of the IMU
measurements. Using the attitude measurements, the velocity
was then rotated to the body-fixed frame B. The dataset
contains around n = 20 000 samples.

IV. GRAVITY ESTIMATION

This section formulates a Bayesian tracking problem and
shows how to approximately solve it using a bank of EKFs.

A. Problem Formulation

Given a quadcopter in free fall with an arbitrary unknown
initial attitude and an arbitrary unknown initial velocity, the
goal is to determine an estimate of the direction of gravity
at every time step k.

Under the assumption that the magnitude of the gravi-
tational acceleration g = ‖g‖ is known, but its direction
expressed in the coordinate frame B is a priori unknown,
the gravity vector Bgk can be modeled as a sample of
a continuous random variable G with a uniform initial
distribution on its sample space, i.e. a sphere S with radius g.
As measurements zk = (zacc,k, zgyro,k) become available,
information about the distribution of G is obtained. The goal
is to extract an estimate B ĝk from the conditional distribution

p(Bgk|z1:k), (15)

where z1:k = (z1, z2, . . . ,zk) is the sequence of measure-
ments from time step 1 up to time step k.

B. Bank of Extended Kalman Filters

In order to solve the Bayesian tracking problem recur-
sively, we discretize the sample space of G by a set of finite
realizations Bg

i
k, allowing us to implement an EKF for every

realization or hypothesis i, where every hypothesis is initially
assigned a probability mass

p(i) =
1

N
∀i ∈ 1, 2, . . . , N, (16)

where N is the number of hypotheses. Note that this assumes
that all possible realizations are evenly spread on the sphere
S. This may, for example, be achieved by choosing Bg

i
0 to

be the vertices of a platonic solid. In practice, for an arbitrary
number of hypotheses N , we use numerical solutions to the
so-called spherical codes problem, provided in [17].

C. Attitude and Velocity Estimation

Every one of the N EKF estimates the velocity and attitude
of the vehicle. Attitude estimation is realized as described in
[18], i.e. the attitude is described by a deterministic reference
attitude Ri

ref ∈ SO(3), and a stochastic error rotation vector
δi ∈ R3 as

Ri = exp(J−δiK×)Ri
ref , (17)

where exp(·) is the matrix exponential. The reference attitude
at time k = 0 is initialized such that it satisfies the equality

Bg
i
0 = Ri

ref,0Ig. (18)

This may for example be done by computing the shortest-arc
rotation between Bg

i
0 and Ig as described, for example, in

[19].
The aerodynamic model contained in the measurement

model of the accelerometer (7) renders the velocities of the
vehicle with respect to the surrounding air observable, and
by estimating the velocity of the vehicle, the direction of



gravity can be inferred through the system dynamics (5).
Note however, that the orientation of the vehicle around the
direction of gravity is not observable, and thus only two
components of the error rotation vector can be tracked. We
therefore choose the third component of the rotation vector
to be zero, such that

δi = (δix, δ
i
y, 0). (19)

The stochastic state xi
k ∈ R5 of the i-th EKF at time step

k consists of the velocity Bv
i
k of the vehicle expressed in

the body-fixed coordinate frame, and the two components
δix,k and δiy,k of the error rotation vector δik. Furthermore,
for every EKF we track its reference attitude Ri

ref,k.
We assume that the initial state is normally distributed

around mean 0, with an initial covariance matrix P i
0 as

xi
0 ∼ N (0, P i

0). (20)

Note that it is assumed that the gyroscope measurement
noise is negligible in relation to the uncertainty of the state
estimate such that we may choose

Bω̂
i
k = zgyro,k. (21)

1) Prior Update: Assuming a constant acceleration over
the time interval ∆T , (5) can be discretized, and expressed in
the body-fixed coordinate frame B yielding the prior update
equation of the velocity

B ˆ̄vik = Bv̂
i
k−1+

∆T

(
−Bω̂

i
k−1 × Bv̂

i
k−1 +

1

m
Bfc + R̂i

k−1Ig
i

)
, (22)

where the bar on top of a symbol indicates that the quantity
is obtained after the prior update step. Assuming a constant
angular rate over the time interval ∆T , the kinematic relation
(4) can be discretized and the reference attitude can directly
be updated according to

ˆ̄Ri
ref,k = exp

(
J−Bω̂

i
k−1K×

)
R̂i

ref,k−1, (23)

resulting in a prior mean state estimate

ˆ̄xi
k = (B ˆ̄vik, 0, 0). (24)

The covariance matrix P i
k−1 is propagated according to

P̄ i
k = F i

k−1P
i
k−1

(
F i
k−1

)T
+Q, (25)

where F i
k−1 is the state-transition matrix of the linearized

system model evaluated at
(
Bω̂

i
k−1,Bv̂

i
k−1

)
(see the Ap-

pendix), and Q is the process noise covariance matrix.
2) Posterior Update: The posterior update is computed as

Br
i
k = Bzacc,k −

1

m
Bfc(B ˆ̄vik,Bω̂

i
k−1) (26)

Ki
k = P̄ i

k

(
Hi

k

)T
(
Hi

kP̄
i
k

(
Hi

k

)T
+ Σacc

)−1

(27)

x̂i
k = ˆ̄xi

k +Ki
kBr

i
k, (28)

where Hi
k is the linearization of the measurement equation

(7) evaluated at B ˆ̄vik (see the Appendix), and Σacc is the

measurement noise covariance matrix of the accelerometer.
The state covariance matrix is updated according to

P i
k =

(
I−Ki

kH
i
k

)
P̄ i
k. (29)

Finally, the reference attitude is updated as

R̂i
ref,k = exp(J−δ̂ikK×) ˆ̄Ri

ref,k, (30)

and the error rotation and the state covariance matrix are
reset according to [18].

3) Hypothesis Likelihood: The posterior probability mass
function of hypothesis i at time step k, given the measure-
ment sequence z1:k, is computed using Bayes’ law

p(i|z1:k) =
p(z1:k|i)p(i)
p(z1:k)

, (31)

where the likelihood p(z1:k|i) is updated according to the
recursion

p(z1:k|i) = p(zk|z1:k−1, i)p(z1:k−1|i). (32)

The term p(zk|z1:k−1, i) is given [20] as

p(zk|z1:k−1, i) =
1√

2π|W i
k|

exp

[
−1

2

(
rik
)T

(W i
k)−1rik

]
,

(33)
where | · | is the matrix determinant, and rik and W i

k =

Hi
kP̄

i
k

(
Hi

k

)T
+Σacc are computed in the posterior update of

the i-th EKF.
Note that the term p(z1:k) in (31) can be calculated by

the law of total probability

p(z1:k) =

N∑
i=1

p(z1:k|i)p(i) (34)

The output of the bank of EKF is chosen as the posterior
mean xi∗

k and posterior covariance P i∗

k of the most likely
filter

i∗ = arg max p(i|z1:k). (35)

In a failure recovery scenario, this output may be passed to
the estimator used for nominal operation after processing a
sufficient amount of data.

4) Approximate Conditional Distribution of Gravity: In
addition, an approximation to the conditional probability
distribution p(Bg|z1:k) can be found as

p(Bg|z1:k) ≈
N∑
i=1

p(Bg|i)p(i|z1:k). (36)

V. EXPERIMENTAL SETUP

This section summarizes the experimental setup used to
verify the performance of the proposed method for gravity
estimation. The method is embedded into a complete state
estimate recovery framework with the goal being to reini-
tialize an estimate of the vehicle state after being thrown by
a human in an aggressive manner, allowing a controller to
subsequently recover the vehicle into controlled flight. The
experiments are conducted in the Flying Machine Arena,



where ground truth position and attitude measurements pro-
vided by the motion capture system are used for analysis
and monitoring purposes only. All computation is performed
onboard and the vehicle has no access to the motion capture
data. The bank of EKFs is implemented with N = 40
hypotheses.

A. Recovery Logic

As in related work [11], full estimation and control is
established sequentially. In particular, the vehicle is switched
on while held by a human, and its propellers are commanded
to spin at idle speed. Then, the vehicle is thrown, which is
detected by the recovery logic if the following condition is
true

‖zacc,k‖ < β1, (37)

where β1 is the detection threshold, chosen as β1 = 7 m/s2.
After a throw is detected, the gravity estimator is run until

it has converged according to the condition

Sg < β2, (38)

where Sg is a variable representing the variance of the gravity
estimate, which we define as

Sg := 1−

∥∥∥∑N
i=1 p(i|z1:k)B ĝ

i
k

∥∥∥
g

, (39)

and β2 is a threshold, chosen as β2 = 0.06. This formulation
is inspired by the spherical variance presented in [21]. Note
that 0 ≤ Sg ≤ 1, where Sg = 0 means that the estimator
has converged to a single direction, and Sg = 1 represents
maximum uncertainty.

After the gravity estimator has converged, the estimator
corresponding to the most likely hypothesis is determined
using (35). Its posterior mean state estimate and covariance
are then used to initialize an estimator and a controller
intended for normal operation.

B. Estimation

After an estimate of the direction of gravity is obtained,
an estimator similar to one single filter of the bank of EKFs
presented in the previous section is initialized which differs
only from the latter in the aerodynamic force model and
in additionally using pressure measurements to update the
estimate. We will refer to this estimator as the nominal
estimator hereafter. The aerodynamic force model optimized
for near hover conditions is described in detail in [14].
Since neither this aerodynamic force model nor the one
described by (9) is designed to approximate the aerodynamic
effects sufficiently accurately during an aggressive recovery
maneuver, we disable accelerometer measurement updates as
long as the attitude control error is greater than a threshold
β3, chosen as β3 = 15 deg.
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Fig. 1. Angle error between estimated and true direction of gravity, error
magnitude between estimated and true velocity immediately after the gravity
estimator has converged, and corresponding error histograms for 32 throw
experiments: successful recovery (green), recovery to brief hover (blue), no
successful recovery within the flight space (orange), and crash (red cross).

C. Control

The controller utilized in this work is a cascaded con-
troller. The outermost loop is a velocity and altitude control
loop which computes a desired acceleration in the inertial
frame given the desired velocity and altitude and the es-
timates thereof as outlined in the appendix of [16]. The
desired acceleration is then passed to the reduced attitude
control loop which computes the desired angular velocity
in the body-fixed coordinate frame as described in [19].
Finally, the innermost control loop tracks the desired angular
velocity by adjusting the rotational speeds of the propellers
as documented in the appendix of [16].

D. Quadcopter

The quadcopter utilized for all experiments
has a mass m = 0.5 kg, inertia matrix J =
diag(0.0023, 0.0023, 0.0046)kgm2, and arm length
L = 0.17 m. Computation required for flight is performed
on a Snapdragon Flight board. Specifically, estimation and
control described in sections V-B and V-C respectively,
are performed on its digital signal processor, while gravity
estimation is performed on its application processor. The
bank of EKFs is updated at a frequency of 1000 Hz.

VI. RESULTS

In this section, experimental results of the proposed
method are presented. First, the results of an experimental
robustness analysis are shown, and then a single experiment
is analyzed in greater depth. A selection of successful
experiments is shown in the accompanying video.

A. Robustness Analysis

In order to investigate the robustness of the proposed
approach, we conducted 32 throw experiments where the



Fig. 2. Ground truth (red) and estimated (blue) velocity of the vehicle
expressed in the body-fixed frame B during a single throw experiment. At
t1 a throw is detected, at t2 the bank of EKFs has converged, and at t3
nominal operation is entered.

quadcopter was programmed to recover and subsequently
hover. Figure 1 shows the angle error between the true
and the estimated direction of gravity, as well as the error
magnitude between the true and the estimated velocity at the
moment when the bank of EKFs converges, i.e. when (38) is
true. In 16 cases, the vehicle was able to successfully recover
its attitude and hover for at least 10 seconds, after which
the experiment was manually terminated and the vehicle
commanded to land. This corresponds to a success rate of
50%. In another 5 cases, the vehicle was able to hover for at
least 3 seconds, but less than 10 seconds. We consider these
cases to be successful, since the vehicle was able to recover
its attitude, despite translating too much to remain within a
safe flight zone within the Flying Machine Arena. In one
case the vehicle crashed due to a poor attitude estimate. In
the remaining 10 cases we were not able to conclude whether
the vehicle might have converged if given more space. The
IMU was calibrated on average after every seventh flight.

B. Detailed Analysis

In this section, a single successful experiment is analyzed
in greater depth. Again, the vehicle is programmed to recover
and subsequently hover after being thrown. Figure 4 shows
an image sequence of the experiment and Figure 2 illus-
trates the ground truth and estimated velocity of the vehicle
expressed in the body-fixed coordinate frame. At t1 = 1.12 s
a throw is detected according to criterion (37). Overall, the
estimated velocity has a similar waveform when compared
to ground truth, but exhibits a rather large bias in the x and
y directions of frame B. After 570 ms, i.e. at t2 = 1.69 s,
the bank of EKFs has converged according to criterion (38),
and the nominal estimator is initialized. At t3 = 1.96 s the
attitude control error has dropped below the threshold β3,
and from this moment on the nominal estimator is updated
with accelerometer measurements. The estimated velocities
then converge towards the true velocities.

Figure 3 shows the angle error between the true and the

Fig. 3. Angle error between the estimated and true directions of gravity
(top), and estimator likelihoods (bottom) for all 40 hypotheses during a
single throw experiment. The most likely (blue) and least likely (red)
estimator, and the estimators achieving the lowest (yellow) and largest
(purple) angle error at t2 are highlighted.

estimated direction of gravity, and the hypothesis likelihood
p(i|z1:k) for all 40 hypotheses between t1 and t2, with
interesting graphs highlighted. The angle error of the most
likely estimator, i.e. the one used to subsequently initialize
the nominal estimator, quickly decreases to 30 to 50 degrees,
while the bank of EKFs often switches between different
hypotheses. Towards, t2, the most likely filter settles at an
angle error of about 10 degrees. Note that in this experiment
the estimator achieving the smallest angle error is not the
most likely estimator, while after about 150 ms, the worst
performing estimator in terms of angle error is also the least
likely estimator.

VII. CONCLUSION

We have proposed and experimentally evaluated a method
that allows an aerial vehicle to autonomously reinitialize its
state estimate without prior information utilizing only IMU
measurements. The method was shown to work for more
than 50% of the tested recovery actions, but also led to a
crash. A promising approach to increase the robustness of
the method might be to evaluate different aerodynamic force
models, as this is the critical component of the method. Such
aerodynamic models might for example include aerodynamic
effects due to varying propeller speeds or downwash. By us-
ing measurements from more sensors, e.g. by employing an
optical flow sensor, the robustness could be further increased



Fig. 4. An image sequence of the experiment discussed in VI-B and Figure
2, 3. The numbers indicate the time the image was taken in seconds.

and the dependence on unbiased IMU measurements could
also be removed. Finally, the robustness and sensitivity to
biases of the method could be studied in greater depth.

APPENDIX
LINEARIZATION

The state-transition matrix of the linearized system is

F i
k−1 = I + ∆T

[
Γ1 Γ2

Γ3 Γ4

]
, (40)

where

Γ1 = −JBω̂i
k−1K× +

1

m
Υi

k−1 (41)

Γ2 =

 0 −B ĝ
i
z,k−1

B ĝ
i
z,k−1 0

−B ĝ
i
y,k−1 B ĝ

i
x,k−1

 (42)

Γ3 = O (43)

Γ4 =
1

2

[
0 Bω̂

i
z,k−1

−Bω̂
i
z,k−1 0

]
, (44)

with B ĝ
i
k−1 = R̂i

k−1Ig, O a matrix of zeros of appropriate
size, and

Υi
k−1 =

∂Bfc (Bv,Bω)

∂Bv

∣∣∣∣
B v̂i

k−1,Bω̂i
k−1

=

 A+

(
B v̂i

k−1B v̂iT
k−1+I‖B v̂i

k−1‖
2
)

‖B v̂i
k−1‖

ifBv̂ik−1 6= O
A otherwise.

(45)

The linearization of the measurement model is

Hi
k =

[
1
mΥi

k−1 O
]
. (46)
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