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Foreword

Robots! Robots on Mars and in oceans, in hospitals and homes, in factories and
schools; robots fighting fires, making goods and products, saving time and lives.
Robots today are making a considerable impact from industrial manufacturing to
health care, transportation, and exploration of the deep space and sea. Tomorrow,
robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field on the basis of their significance and quality. During the latest fifteen years, the
STAR series has featured publication of both monographs and edited collections.
Among the latter, the proceedings of thematic symposia devoted to excellence in
robotics research, such as ISRR, ISER, FSR, and WAFR, have been regularly
included in STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarging the pool of proceedings to be published in STAR in the
last few years. This has ultimately led us to launching a sister series in parallel to
STAR. The Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the
timely dissemination of the latest research results presented in selected symposia
and workshops.

The twelfth edition of “Robotics Research” edited by Antonio Bicchi and
Wolfram Burgard in its 8-part volume is a collection of a broad range of topics in
robotics. The content of these contributions provides a wide coverage of the current
state of robotics research: the advances and challenges in its theoretical foundation
and technology basis, and the developments in its traditional and new emerging
areas of applications. The diversity, novelty, and span of the work unfolding in
these areas reveal the field’s increased maturity and expanded scope.
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From its beautiful venue to its excellent program, the twelfth edition of ISRR
culminates with this important reference on the current developments and new
directions in the field of robotics—a true tribute to its contributors and organizers!

Stanford, USA Oussama Khatib
November 2016 SPAR Editor
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Preface

The 12th International Symposium of Robotics Research (ISRR 2015) was held
from September 12–15, 2015, in Sestri Levante, Italy. The ISRR series on con-
ferences began in 1983, and it is sponsored by the International Foundation of
Robotics Research (IFRR), an independent organization comprised of top
researchers around the world.

The goal of the ISRR is to bring together active, leading robotics researchers
from academia, government, and industry, to assess and share their views and ideas
about the state of the art of robotics and to discuss promising new avenues for
future research exploration in the field of Robotics.

The choice of the location of ISRR 2015 reflects a tradition in ISRR, holding the
conference in a beautiful place where the natural and cultural setting can inspire
deeper and longer-sighted thoughts in the pauses of a very intense working pro-
gram. Having the symposium in Italy was also meant to be suggestive of the ideal
link between the most advanced robotics research with the ideas and dreams of the
great engineers of the past. They, in particular those who are named “Renaissance
Engineers,” thought and dreamed of realizing intelligent machines, including
robots, but could not build them. Nowadays, robotics technology can make this
possible. Some ideas, like the openings toward human sciences and the concept of
human-centered design, are as much valid now as they were at that time.

Special emphasis in ISRR 2015 was given to the emerging frontiers, such as the
fields of flying robots, soft robotics and natural machine motion, hands and haptics,
multi-robot systems, cognitive robotics and learning, humanoids and legged loco-
motion, robot planning and navigation, and knowledge-based robots.

The goal of the ISRR Symposia is to bring together active leading robotics
researchers and pioneers from academia, government, and industry to assess and
share their views and ideas about the state of the art of robotics and to discuss
promising new avenues for future research. Papers representing authoritative
reviews of established research areas as well as papers reporting on new areas and
pioneering work were sought for presentation at the symposium. In addition to the
open call, a well selected number of leading researchers have been solicited to
contribute by personal invitation.
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A Greatest Hits track was introduced in ISRR 2015. A small number of research
papers which have been selected for the most prestigious awards in the last year
have been invited for presentation. This offered a unique possibility to have a
synoptic view of what the robotics community considered to be the best of robotics
research and put it in a larger context.

During the four-day symposium, 49 papers were presented in a single track, to
cover the broad research area of robotics; two forum sessions integrated the pro-
gram by facilitating group discussions. Poster sessions were also held, in a very
informal interactive style. The procedure to select the papers and the participants
was very strict. A number of selected leading researchers were invited to be part
of the program committee, providing overview talks and participating in the review
process. In addition to an open call for contributions, researchers who had made
significant new contributions to robotics were invited to submit papers to a com-
petitive review process. All papers were reviewed by the Symposium Program
Committee and the International Foundation of Robotics Research (IFRR, the
symposium sponsor) for final acceptance.

The symposium included visits to several beautiful sites in the area, as well as at
encouraging greater participant interaction, also by stimulating cultural discussions
and reflection on robotics, its historical background, and its future challenges. It
furthermore included a technical tour to the Instituto Italiano di Technologia where
a large variety of leading edge robotics science and systems were presented to the
participants.

This book collects the papers presented at the symposium, with authoritative
introductions to each section by the chairs of the corresponding sessions.

The ISRR 2015 co-chairs/editors would like to thank Floriana Sardi, for their
invaluable help in the organization of the program; Monica Vasco and Simona
Ventriglia for their tireless secretarial work on local organization; Nick Dring for
the management of the Web site; and Abhinav Valada for helping especially in the
final assembly of this book.

Genoa/Pisa, Italy Antonio Bicchi
Freiburg im Breisgau, Germany Wolfram Burgard
August 2016
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Part I
Flying Robots

Session Summary

The past ten years have seen an explosive growth in interest in unmanned aerial
vehicles and the development of the new concept of aerial robots, that is, aerial
vehicles able to autonomously interact with theworld bymeans of exogenous sensors
and virtual/physical interaction with the environment. There is now a recognized
commercial market in a range of remote surveillance applications such as monitoring
traffic congestion, environmental sensing, and regular inspection of infrastructure
such as bridges, dam walls, power lines, commercial photography applications, and
emergency response surveillance. The robotics research community is leading the
development of enabling technology for these applications, as well as beginning to
probe the boundaries of what may be possible in other more challenging applications
such as aerial manipulation for construction/assembly tasks.

This session included a wide range of topics ranging from theoretical advances to
more applied contributions and with relevance across the whole spectrum of flying
robot applications. In our opinion, it is worth noting the emphasis on vision-based
control of aerial vehicles in the talks presented. This is a natural consequence of the
passive low-power, lightweight, and information-rich nature of the vision-sensing
modality, making it ideal for light aerial vehicles. The broad scope of papers is also a
natural consequence of the very diverse (and highly active) nature of research across
the field of aerial robotics. For such a research field, the best that can be hoped for in
a short session is a snapshot of activity in the field. This is indeed what the session
"Flying Robots” at the International Symposium on Robotics Research was able to
provide.

The first technical talk, by Siddall, Kennedy, andKovac, presented a novel concept
of a flying robot that can dive into water and then escape again to continue flying.
The key technology in this design is a system for powerful, repeatable generation of
thrust in order to escape the water. The paper proposed a system that used acetylene
explosions in a 34-gram water jet thruster, which expels water collected from its
environment as propellant. Miniaturization problems of combustible fuel control
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and storage were addressed by generating acetylene gas from solid calcium carbide,
which is reacted with environmental water. The resulting system produced over 20N
of thrust, sufficient to propel small robots into the air from water. The ability to
move between air and water with miniature robots has application in environmental
monitoring for distributedwater sampling andmonitoring of a variety of unstructured
marine environments, such as coral reefs and coastal areas.

In the second talk, Ritz and D’Andrea considered the question of controlling a
tail-sitter aerial vehicle. Such systems have highly nonlinear dynamics, and simple
local control designs are insufficient to recover to hover from a large set of initial
conditions. The proposed attitude control law was based on an optimal control prob-
lem, with the objective of correcting large attitude errors by turning primarily around
the vehicles strongly actuated axis. Solutions for a set of initial attitudes are precom-
puted and stored in a lookup table. For each controller update, the optimal inputs are
read from this table and applied to the system in an MPC-like manner. The resulting
control was shown to be robust and highly effective in bringing a tail-sitter vehicle
back into hover from any configuration.

In the third talk, Do, Carrillo-Arce, and Roumeliotis considered visual control of
quadrotors through a known environment. They focused on the case where collection
of images is already available and the desired path is represented as a graph of linked
images. The quadrotor follows the desired path by iteratively determining the desired
motion to the next reference frame, and then, a visual servoing controller is used to
reduce the error between current and desired image. The accuracy and robustness
of the algorithm were demonstrated by navigating two quadrotors along lengthy
corridors and through tight spaces inside a building and in the presence of dynamic
obstacles.

The quality of papers in the session was exceptional, and several of the authors
were only able to give short talks in the oral session, although all authors provided
poster sessions later that day.

Helbling, Fuller, and Wood continue the Harvard research program into insect-
scale robotics. The inherent instability of such systems, exacerbated by the faster
dynamics that result from increasing angular accelerations with decreasing scale,
requires high bandwidth sensing to maintain stable flight. In this paper, they build
on previous work by incorporating a sensor that is size- and power-compatible with
the Harvard RoboBee and is capable of estimating the distance by measuring the
time of flight of an infrared laser pulse. The goal of the sensor is to provide sensor
data that can be used to regulate altitude of an insect like flying robot. This work on
onboard altitude control represents the latest results in achieving autonomous control
and visually guided flight for such small-scale flying robotic systems.

Alhinai, Braithwaite, Haas-Hegerm, McFarlane, and Kovac considered the prob-
lem of using aerial robots for construction tasks. They took a highly novel approach
based on multimodality of the vehicles and tensile construction. They designed and
implemented mechanical and electronic designs of two payload packages for attach-
ment to nanoquadrotor robots with a total integrated mass of only 26 g per robot.
The payloads enabled a team of autonomous nanoaerial vehicles to construct a mul-
tielement tensile structure between anchor points in an irregular environment, such
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as a natural woodland. In addition to the mechanism, they provided trajectory plan-
ning and control algorithms required to enable robust execution of the construction
scheme. The work was undertaken for nanovehicles but provides a indication of how
aerial robots can move to take key roles in construction.

Tan, Lohmiller, and Slotine considered the general problem of simultaneous local-
ization and mapping (SLAM) for general 3D position measurements. The approach
taken applies a combination of linear timevarying (LTV)Kalmanfiltering andnonlin-
ear contraction tools in a fashion which avoids linearized approximations altogether.
By exploitingfictive syntheticmeasurements, theLTVKalmanobserver avoids errors
and approximations brought by the linearization process in the EKF SLAM. Con-
ditioned on the robot position, the covariances between landmarks are decoupled,
making the algorithm easily scalable.

Costante, Delmerico, Werlberger, Valigi, and Scaramuzza consider the question
of vision-based localization for aerial robotic vehicles. Such systems rely heavily
on highly textured images in order to achieve accurate pose estimation. The authors
point out that most path-planning strategies use only geometric information and con-
sequently can cause an aerial vehicle to fly away from key visual information. Their
path planner exploits the scenes’ visual appearance (i.e., the photometric informa-
tion) in combination with its 3D geometry. The approach is demonstrated with the
real and simulated micro-aerial vehicles (MAVs) that perform perception-aware path
planning in real time during exploration and demonstrate significantly reduced pose
uncertainty over trajectories planned without considering the perception of the robot.

Huang and Leonard are also concerned with the question of visual navigation. In
this paper, they introduce a new optimal state constraint for visual inertial naviga-
tion systems. Their proposed solution uses a tightly coupled visual inertial sensor
fusion algorithm undertaken on a sliding window of poses. The key novelty is a novel
measurement model that utilizes all feature measurements available within the slid-
ing window and derives probabilistically optimal constraints between poses while
without estimating these features as part of the state vector. For each sliding window,
they perform structure andmotion using only the available camerameasurements and
subsequently marginalize out the structure (features) to obtain the optimal motion
constraints that will be used in the EKF update. The resulting motion estimation is
validated in real-world experiments.



High-Power Propulsion Strategies
for Aquatic Take-off in Robotics

Robert Siddall, Grant Kennedy and Mirko Kovac

1 Introduction

1.1 Aquatic Micro Air Vehicles

Distributed water sampling by small unmanned aerial vehicles has applications in
disaster relief, oceanography, and agriculture, in which the monitoring of water con-
taminants is both time and resource intensive. In remote or dangerous marine envi-
ronments, aerial vehicles can provide samples to a base station over a broad area, and
can respond more rapidly than aquatic or terrestrial systems, increasing the spatial
range of data that can be collected. We have proposed that implementing aquatic
locomotion capability onto a fixed wing flying vehicle offers a low cost, versatile
solution [16] (Fig. 1).

We are developing a small fixed wing aquaticMicro Air Vehicle (AquaMAV) able
to dive directly into the water from the air and subsequently retaking flight. A fixed
wing vehicle provides greater range and speed than hovering vehicles, particularly
at the small scale, and the plunge diving approach reduces the need for accurate
control, which allows for platforms to be produced at lower cost and operated in larger
numbers. One of the most significant challenges in the implementation of a plunge
divingminiature aerial robot is the provision of sufficient power for transition to flight
fromwater. The provision of highly buoyant pontoons for a floatplane take off greatly

R. Siddall and G. Kennedy contributed equally to this work.

R. Siddall (B) · G. Kennedy · M. Kovac
Imperial College London, London, UK
e-mail: r.siddall13@imperial.ac.uk

G. Kennedy
e-mail: grant.kennedy09@imperial.ac.uk

M. Kovac
e-mail: m.kovac@imperial.ac.uk

© Springer International Publishing AG 2018
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 2, DOI 10.1007/978-3-319-51532-8_1
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6 R. Siddall et al.

Fig. 1 Plunge diving AquaMAVs map a marine accident, retaking flight in a cluttered aquatic
environment using powerful bursts of water jet thrust (adapted from [16])

inhibits aquatic locomotion, and makes diving from flight extremely difficult. A
minimally buoyant vehicle must instead be able to produce significant thrust in order
to propel itself out of the water. We propose that the best way to realise an AquaMAV
is with the use of a powerful, impulsive thruster that can be easily integrated onto a
flying platform.

Several projects have already demonstrated the efficacy of water sampling with
UAVs using larger rotary wing vehicles [14, 15], by taking samples whilst hovering
near the water surface. This approach relies on accurate sensing and control to main-
tain position while a sample probe is lowered, and has a limited range. Several large
unmanned seaplanes are currently in operation [12, 16], experimental studies have
shown the potential of an aerial-aquatic robot that is propelled by adaptable flapping
wings [5, 9], or able to plunge dive into water [7]. Other work has demonstrated the
efficacy of jumpgliding locomotion in terrestrial robots [3, 21, 23], and fixed wing
Micro Air Vehicles (MAVs) have been implemented with terrestrial mobility [6].
Amphibious robots have been implemented in many forms [4, 8], but these robots
are not able to cross large, sheer obstacles, and generally can only exit the water on
gentle inclines. Such robots would have limited use in situations with large amounts
of debris separating bodies of water (e.g. a flooded town). Despite the recent research
effort in this emerging topic of investigation, to the best of the authors’ knowledge
no Aquatic MAV (AquaMAV) has been realised to date.

1.2 High Power Density Actuation

The challenge of equipping robots with large power reserves for rapid, impulsive
movements is a recurring problem in robotics. This is often addressed with the use
of elastic energy storage, compressed gas, or combustible fuels, all of which can
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Fig. 2 a A jet propelled jumpgliding robot launching out of water using a CO2 powered water jet
thruster. b A timelapse image of the robot’s trajectory, with wings deployed in the final still [17]

release large amounts of energy in a short space of time. A recent example is the
‘Sandflea’ robot produced by Boston Dynamics, a 5kg wheeled vehicle that uses a
CO2 powered piston to jump 9m into the air. Siddall and Kovač [18] created a 100g
jumpgliding robot with deployable wings, that was able to leap out of the water into
flight using a miniature CO2 tank to propel water through a nozzle (Fig. 2). However,
this prototype must be recharged between actuations.

Combustion offers an alternative means of creating high pressures, without the
need for a pre-pressurised tank and release mechanism. Churaman et al. [2] created
robots weighing only 314mg which were able to jump over 8cm vertically using
explosive actuators. A larger robot was built by researchers at Sandia Laboratories,
which used combustion to power piston driven jumping, achieving 4,000 2m jumps
from 20g of fuel [22]. More recent work has focussed on the use of combustion to
power soft terrestrial jumping robots; [10, 20] have demonstrated the use of explosive
hydrocarbon gas for locomotion in small soft robots. These systems use pressurised
liquid reservoirs of butane gas as fuel, metered into a combustion chamber by elec-
tronic valves, and ignited by a spark.

However, the provision of multiple liquid fuel tanks and flow control apparatus
is a significant mass and complexity penalty for a miniature flyable thruster. In this
paper, we present a method for producing water jet thrust explosively, in a system
that weighs only 34g, using a solid fuel reserve to produce combustible acetylene
gas, which is ignited in a valveless combustion chamber.

2 Solid Reactants as a Combustion Gas Source

Large volumes of fuel gas can be stored in a small space as a liquid under pressure.
However, this means that the storage and regulation systems must be able to sustain
the large pressures required, which makes components considerably heavier, and
the provision of a pressurised container of combustible gas is a hazard in and of
itself. If the combustible fuel is instead produced by the reaction of two separately
stable components, high pressures can be avoided and the fuel storage and dispensing
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systems can be greatly simplified. In the particular case of an aquatic robot, water
can be used as a reactant, exploiting the robot’s environment to reduce system mass.

The gas production efficiencies for several water-reacting solid fuels are sum-
marised in Table1, with fuel required calculated based on a stoichiometric pre-
combustion mix with air at standard temperature and pressure (STP). The energy
content of the gases given off (again for combustion in air at STP) are given in
Table2, with the butane used by [10, 20] included for reference. Energy density is
based on the fuel’s high heating value (HHV, values taken from [11]), which includes
energy recovery from the condensation of steam given off by the reaction, to consider
work extraction from the products down to ambient temperature.

Table 1 Water-reactive solid fuel production efficiency, the combustible gas product is highlighted
in bold

Fuel Reaction mg fuel per cm3

combustor volume
µl fuel per cm3

combustor volume

Lithium (Li) 2Li + 2H2O −→
2LiOH + H2

0.18 0.34

Lithium Hydride
(LiH)

LiH + H2O −→ LiOH
+ H2

0.10 0.13

Lithium Aluminium
Hydride (LiAH4)

LiAH4 + 4H2O −→
LiOH + Al(OH)3 +
4H2

0.12 0.14

Sodium (Na) 2Na + 2H2O −→
2NaOH + H2

0.60 0.62

Sodium Hydride
(NaH)

NaH + H2O −→
NaOH + H2

0.31 0.22

Potassium (K) 2K + 2H2O −→
2KOH + H2

1.02 1.18

Calcium (Ca) 2Ca + 2H2O −→
2CaOH + H2

1.06 0.69

Calcium Carbide
(CaC2)

CaC2 + 2H2O −→
Ca(OH)2 + C2H2

0.22 0.10

Table 2 Gas combustion energy content

Gas Reaction (in air 20.9% O2 by
vol.)

Combustion energy density
(J/cm3, based on HHV)

Hydrogen (H2) 2H2 + O2 −→ 2H2O 3.6 (100% H2)

Acetylene (C2H2) 2C2H2 + 5O2 −→ 4CO2
+2H20

4.2 (119% H2)

Butane (C4H10) 2C4H10 + 13 O2 −→ 8CO2 +
10H2O

3.8 (106% H2)
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Fig. 3 Calcium Carbide: The 0.5g of fuel shown here is sufficient for 10 launches of the 34g
thruster presented in this paper

The use of solid compounds for gas storage is common in many applications. One
example is the use of sodium azide (NaN3) decomposition to release nitrogen (N2)
for car airbag deployment, and more recently solid alkali metal hydrides have been
explored by the fuel cell industry as a compact means of hydrogen storage. More
relevant to aquatic propulsion are studies undertaken by the USNavy [13] examining
Lithium Hydrides for use in a torpedo propulsion system, or work by [1] examining
solid reactants for buoyancy control. Alkali metal hydrides have particularly high
volumetric gas production per gram of reactant, and among the alkali metals and
their hydrides, lithium hydride produces the largest volume of hydrogen per gram
reacted with water (Table1). However, the compound itself is acutely toxic, and an
inhalation hazard, because it is generally supplied as a powder.

The alkali metals of group 1 are very malleable, and so the hazards of powder
can be avoided. However, these elements have low melting points, and the reactions
between group 1 elements and water is sufficiently violent to melt the metal itself and
ignite the hydrogen produced, even at low quantities. This would make a fuel supply
vulnerable to unplanned ignitions, and requires that the fuel be stored under oil. This
would add significant complexity and weight to fuel storage and release systems. We
considered lithium, sodium and potassium, the least reactive of the series. The higher
weight elements have lower melting points, react too violently and some (caesium)
are radioactive, and so were excluded.

Of the fuels in Table1, calcium carbide (CaC2, Fig. 3) and lithium aluminium
hydride (LiAH4) are the safest to store and easiest to handle. Of the two, LiAH4

has the greatest weight efficiency, but CaC2 has the greatest volumetric efficiency
(reducing the fuel tank size and weight). In addition, the acetylene gas produced by
CaC2 has a greater combustion energy than hydrogen (Table2). Therefore, CaC2 was
selected as a fuel source for the prototype presented in this paper.
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Fig. 4 a Jet propulsion principle: Expanding combustion products drive a jet of water through a
nozzle, propelling the vehicle, with a small amount of gas lost through a choked needle. b The total
thruster momentum change extracted from the combustion products can be maximised by finding
the optimum air-water ratio in the combustion chamber using a numerical model

3 Theory

In order to size the engine and predict thrust, we created a simple model of the
combustion and water expulsion. In this section we use the subscripts 1, 2 and 3
to denote variables relating to the the expanding combustion gases, the air-water
interface, and the nozzle outlet respectively (Fig. 4a). The thrust force F produced
by an expelled jet of mass flow ṁ3 and velocity u3 is given by Eq.1.

F = ṁ3u3 (1)

The incompressibility of water means the expelled jet will be at atmospheric
pressure, and the gas expansion rate will equal the water outflow (Eq.2). The water
flow with the tank is treated as quasi-1D by assuming uniform axial flow across the
jet section.

u3 =V̇2/A3 (2)

A2u2 =A3u3 (3)

where u is the water velocity, An is the jet cross sectional area and V2 is the volume
flow of water out of the tank. The unsteady form of Bernoulli’s equation (Eq.4) can
be recovered from Euler’s equation by integrating from the air-water interface to the
nozzle exit (Fig. 4a). Total pressure along a streamline running from 2 to 3 is equal
to the instantaneous gas pressure in the chamber:

∫ 3

2

∂u

∂t
ds + p1 − pa

ρw
+ 1

2
(u23 − u22) = 0 (4)
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where p1 is the combustion gas pressure, pa is atmospheric pressure and ρw is the
density of water. To model the pressure of the combustion products driving jetting,
the heat addition from combustion is assumed to take place rapidly, such that the
enthalpy of the combustion gases increases by the HHV (49.92MJ/kg fuel, [11])
instantaneously at the start of combustion. The precombustion atmosphere is mostly
air (93% by volume), and so the combustion products are treated as air, obeying the
ideal gas equation of state (Eq.5). The combustion chamber has a small vent needle
(inside diameter 0.6mm) fitted to allow it to fill passively with water (Sect. 4.2), that
vents a small amount of the combustion products. Flow through this needle will be
choked, with mass flow given by Eq.6. A first law energy balance is then used to
account for both the work done against water pressure and the energy lost through
the vent needle (Eq.7).

p1 =m1RT1/V1 (5)

ṁ1 = γ√
γ − 1

(
γ + 1

2

)− 1
2

(
γ+1
γ−1

)

p1Aneedle/
√
cpT1 (6)

Ḣ1 = − p1V̇1 − ṁ1h1 (7)

where γ , cp and R are the adiabatic index, heat capacity and gas constant of air,
and H1 and T1 are the gas enthalpy and temperature. The inclusion of a simple
conductive heat transfer model of energy loss through the chamber walls into Eq.7
had negligible effect on predictions (1% decrease in total impulse), so the process
was treated as adiabatic. The model overpredicts the total thrust production (Sect. 5),
which is interpreted as being largely due to incomplete combustion and quenching
of the hot combustion products by the water in the chamber.

3.1 Optimum Gas-Water Ratio

For a given combustion energy density, the volumeof air before launch determines the
total energy that can be recovered as thrust. Once the stored water has been expelled,
further gas expansion produces negligible thrust, but if too little gas is stored, there
is insufficient energy to expel all the water at significant speed. There then exists an
optimum ratio of air to water. To obtain this optimum, the system specific impulse,
Isp, is used as an objective. This is numerically computed by integrating the predicted
thrust profile with respect to time, and dividing it by the total mass of the thruster
before launch, including the mass of water in the combustion chamber (Eq.8). This
maximises the momentum imparted to the thruster, and consequently the launch
height that can be achieved.

Isp =
∫

Fdt/mtotal (8)
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(a) (b) (c) (d) (e)

Fig. 5 Illustration of the jet firing sequence: a Water enters combustion chamber, with air exiting
through the central needle. b Water reaches central needle and further water is prevented from
entering. Fuel tank plunger is actuated, drawing a drop of water onto the fuel reserve. c Acetylene
gas is produced, enters the combustion chamber and mixes with air. d A spark is created in the
chamber, igniting the Acetylene. e After combustion, the high pressure products expel the water,
producing thrust. Air flow through the narrow needle is choked and limited. After combustion, the
sequence can be repeated, and furhter fuel reserves reacted

where mtotal is the total mass of the vessel at the point of launch, including water.
Based on the geometry of the final vessel and the HHV of acetylene, a water volume
fraction of 0.45 was predicted to give the maximal performance (Fig. 4b).

4 Engine Design

In this section,we introduce the operation of the fabricated explosivewater jet thruster
(Fig. 5) and several key design features, including a valveless combustion chamber
with passive water fill control, and an on board ignition system. The final engine
design requires 4.5ml of acetylene for stoichiometric combustion, produced by react-
ing 13mg of CaC2 with 8µl of water. The CaC2 used is supplied in 1mm granules
of 75% purity (Fig. 3), and the 1ml fuel tank can hold sufficient fuel for 10 launches.
Twice as much fuel as is necessary is stored in the system and further room is left in
the fuel tank, because the Ca(OH)2 reaction byproduct has a tendency to passivate the
CaC2 reaction after several fuellings, by preventing water from reaching unreacted
CaC2.

4.1 Fuelling System

The fuel system uses a simple syringe primer mechanism to produce Acetylene in
small quantities. This system consists of a narrow (� 0.5mm) Teflon pipe connected
to the combustion chamber below the water, running to the fuel tank. The fuel tank



High-Power Propulsion Strategies for Aquatic Take-off in Robotics 13

Table 3 Thruster weight breakdown

Engine part Mass [g] % of total

Combustion chamber 12.1 35.5

CaC2 Fuel (10 shots) 0.3 0.9

Fuel tank / plunger 2.5 7.3

Fuel servo 4.4 12.9

Piezo igniter 2.6 7.6

Igniter actuator / frame 3.5 10.3

Supercapacitor 4.2 12.3

Microcontroller 1.5 4.4

100mAh LiPo battery 3.2 9.4

Total mass 34.1 100

is otherwise sealed to the outside atmosphere, and surface tension is sufficient to
prevent water from entering the fuel tank through the teflon pipe (Table3).

To force water into the fuel tank, a small plunger in the top of the tank is actuated.
As the plunger is retracted, water is drawn from the combustion chamber through
the pipe, onto the CaC2 in the fuel tank. The water then reacts with the fuel, and
Acetylene gas is produced. The resulting pressure pushes acetylene back through the
pipe and into the combustion chamber, where it can be ignited. The 8µl of water
required is near to the smallest droplet that can be formed on the end of the teflon
tube. Because of this, priming and spark delivery occur in a timed sequence, with
1 s between the introduction of a water drop into the fuel tank (the start of acetylene
production) and combustion, This stops overproduction of acetylene from preventing
ignition, in the event a larger droplet is aspirated.

To actuate the fuel system, the plunger is driven by a small 4.4g servomotor,which
is controlled by an Arduino microcontroller. By modifying the stroke of the plunger
and the dwell time at the top of the stroke, this process can be accurately controlled
so that the correct amount of water is aspirated into the fuel tank, controlling the
amount of fuel reacted and consequently the volume of acetylene produced.

4.2 Combustion Chamber

The acetylene produced is then ignited in a combustion chamber partially filled with
water. This chamber has been designed not only to contain the acetylene explosion,
but also to control the fill level of water, ensuring that the correct gas-water ratio
is maintained prior to firing (Sect. 3). This is achieved passively without the use of
valves, by exploiting the choking of high pressure gas flow through a narrow needle.
With the vehicle floating nose up on thewater surface, air can pass through the needle,
allowing water to enter the combustion chamber through the exit nozzle. The end of
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the needle is positioned so that it is blocked when the water reaches the desired fill
point, and the chamber fills no further, leaving sufficient air volume for combustion.

The air remaining inside the chamber can then be mixed with acetylene and
ignited. During engine firing, pressure inside the combustion chamber reaches up to
10barwithin 5ms.Consequently, the outflow through the narrowneedle used to allow
water to enter will choke, limiting the mass flow rate through the needle. Because of
this, high pressure is maintained inside the combustion chamber for a short time, and
the water inside the chamber is forced through the main nozzle, generating thrust. A
small amount of water is also ejected through the needle during firing, but this will
only further restrict needle outflow.

The fabricated combustion chamber is constructed in two parts from high impact
polystyrene. The lower section is a cylinder terminated by a 20◦ cone, which forms
the water outflow nozzle. The upper section is a hemispherical dome which contains
the ignition spark gap and the regulator needle. The regulator needle has an inside
diameter of 0.6mm. Performance would be improved if this were smaller, but nar-
rower needles had a tendency to block with soot and prevent refilling of the chamber
with water after ignitions.

4.3 Ignition System

Experiments with hotwire and spark systems showed that a spark produced ignition
more reliably, and a hot wire was prone also prone to breaking during firings. The
fabricated prototype uses a piezoelectric igniter, which can produce electric arcs of
up to 1cm in length. The igniter is connected to two spark gaps in series, placed at
different points in the chamber, to produce two smaller sparks and ensure ignition
where the air and fuel have mixed poorly. The central needle vent forms the final
contact.

To produce a spark, the piezoelectric igniter requires 30N of force over a 5mm
stroke, which is produced by two Flexinol NiTi shape memory alloy (SMA) wires in
series. The wires are sheathed in teflon and the tubes sealed with grease to allow the
wires to actuate underwater. Wire actuation is driven by an aerogel supercapacitor,
triggered by the samemicrocontroller used to drive the servo. The wires are mounted
through carbon fibre tubes, which support the compression forces on the igniter, and
are also used to mount the other engine components (Fig. 6).

5 Combustion Tests

The operation of the fabricated final prototype was tested statically, with the com-
bustion chamber and control components mounted to a perspex sheet, which was
mounted to a fixed force sensor. During tests, the jet was mounted vertically, and
immersed in a 5 l glass tank. The fuelling and ignition systems were then actuated,
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Fig. 6 Fabricated prototype, with removable fuel tank, fuel priming pump and shape memory alloy
piezoelectric ignition system

Fig. 7 Video sequence of the jet combustion, filmed at 480fps: The acetylene explosion rapidly
increases the internal pressure to up to 10 bar, expelling water and producing over 20N of thrust
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Fig. 8 Experimental Data: Static thrust measurements of prototype engine compared to theoretical
thrust prediction. The prediction assumes combustion takes place instantaneously, while in practice
peak pressure occurs around 5–10ms after ignition, and the predicted thrust curve has been shifted
left to offer a clearer visual comparison

force data was collected at 2500Hz (Figs. 7, 8), and the engine was filmed at 480 fps.
The recorded data shows a good level of consistency between successive actua-
tions, although maximal pressure was not achieved repetitively. Video data showing
gas bubbles leaving the nozzle exit indicated that all water was expelled during
each explosion. The recorded thrust time histories were integrated to give the total
impulse, which were 0.25, 0.30 and 0.27Ns for the first, second and third ignitions
respectively.

6 Discussion

6.1 Combustion Tests

The shape and duration of the measured thrust profiles compare well to theory, but
total impulse is reduced by 28–40% from prediction. The fall off in thrust after the
initial peak ismuch steeper in themeasured data. Thismeans that pressure is dropping
in the chamber faster than predicted by the change in gas volume and needle outflow.
This is interpreted as the both result of incomplete combustion and quenching of
the hot combustion products by the water they are expelling, neither of which are
accounted for by the model.

While the tests show a level of consistency sufficient for design, there is also a vari-
ation in total impulse of approximately 10% between successive tests. Examination
of the data suggests that this is due to incomplete combustion, due to inhomogeneities
in the pre-combustion atmosphere: In the two tests which showed less than the max-
imum peak pressure, oscillations in thrust at approximately 500Hz can be observed.
The oscillations are characteristic of ‘knock’ in internal combustion engines, caused
by autoignition of unburned gases compressed by the combustion products. In inter-
nal combustion engines, the tendency for a fuel to autoignite is expressed in terms
of octane number, with a lower number indicating a lower level of compression for
autoignition, and a stronger tendency to knock. Acetylene has a Research Octane
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Number (RON) of 50 [11] indicating a high susceptibility to autoignition (this can
be compared to common automobile petrol with an RON of 100). The presence of
secondary ignitions towards the end of the gas expansion indicates that the initial
combustion was not complete, resulting in reduced pressure. This is borne out by the
lack of secondary ignitions in the higher peak thrust profile.

The incomplete combustion does not have a significant effect on the overall perfor-
mance, but the actuation consistency could nonetheless be improved by modification
of the gas dispersal system. Discharging the acetylene through a smaller tube will
build higher pressure in the fuel tank and result in smaller, more scattered gas bub-
bles, or the splitting of the fuel line to enter the engine at two points could increase
the mix homogeneity before ignition.

6.2 Engine Design

The prototype has demonstrated the functionality of the key systems of the engine.
The fuelling system is able to meter the gas accurately enough for powerful combus-
tion, and the combustion chamber’s valveless design allows repeated refuelling and
ignition. The presence of water, and the short duration of the combustion means that
the polystyrene combustion chamber showed no signs of melting or burning after
over 20 actuations.

The most significant loss in performance comes from the choked needle, which
vents energy from the combustion chamber. Making the needle narrower, to reduce
this loss would improve performance, but prevents the chamber from refilling with
water reliably. The losses could instead be greatly reduced by the addition of a
sprung check valve with a minimum closing pressure, but this would add mass
and complexity, and the functionality of a sprung valve is liable to degrade with
repeated exposure to explosions, unlike the implemented choking system, which has
no moving parts.

Importantly, the fuelling and ignition systems (50% of total engine mass) repre-
sent the device’s ‘mass capital’, and only the fuel tank will increase in size if the
combustion chamber is scaled up. The system could therefore be readily resized for
a larger payload or higher jumps, as a mission demands and achieve increased per-
formance to weight. The total cost of the engine is $35, including the arduino and
lipo battery, enabling the device to be treated as disposable.

The fuel supply of the device is also a fraction of the total vehicle mass (0.9%),
and an increase in fuel capacity would allow the engine to function as an aquatic
jump-glider, with fuel for a similar number of jumps to many terrestrial jumping
microrobots. This would enable aquatic locomotion over obstacles in flooded or
littoral areas in a similar capacity to terrestrial jumpers. Both for gliding locomotion
andpropelledflight, the engine design lends itselfwell to integration onto an airframe.
The ignition and fuel systems are both only linked to the chamber by flexible wires
and tubes, and so may be freely positioned within a vehicle, facilitating both stable
mass distribution and compact design. This is also important because the filling and
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ignition sequence described in Sect. 4.2 relies on the vehicle being upright, and the
ability to position mass to achieve this passively will be important.

6.3 Comparison to Another Water Jet Thruster

Siddall andKovač [17] previously demonstrated aquatic escapewith a similar system,
using a tank of compressed CO2 instead of an acetylene explosion to drive the
expulsion of water. This system weighed 40g, and was able to propel a 100g flying
robot to a speed of 12m/s from beneath the water. Comparing the thrust profiles
from [17] with the measured thrust from the acetylene engine (Fig. 9) it can be seen
that while the peak thrust is much higher, the acetylene engine has a smaller total
impulse. However, the CO2 thruster can only produce a single shot, and when the 10
total shots of the combustion prototype are taken into account, the mass efficiency is
much greater (Table4). With further design improvements, and an increase in engine
size, the combustion prototype is expected to be a far better system for aquatic escape.

6.4 Other Potential Combustible Fuel Sources

Fuels were chosen principally based on their source reactant, rather than the perfor-
mance of their product gas. Other combustible gases such as methane and hydrogen
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Fig. 9 Comparison of the explosive thruster presented here with the single shot CO2 aquatic escape
thruster presented by [18]

Table 4 Explosive CaC2 water jet system compared to the compressed CO2 thruster presented by
[18]

Thruster type Mass (g) Peak thrust (N) Total impulse
(per shot) (Ns)

System specific
impulse (inc. total
shots) (ms−1)

Compressed CO2
thruster

40.1 5.1 0.80 19

Explosive CaC2
thruster

34.1 21.5 0.30 88
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have amuchbetter resistance to autoignition andmayultimately be better fuel choices
for the design if consistency is a strong design consideration. In addition, hydrogen
and methane can be sourced directly from the environment, rather than a fuel reser-
voir, methane through the use of methanogenic bacteria, and hydrogen by direct
electrolysis. The latter process also generates pure O2 and so could better use the
available combustion volume. Either of these approaches would potentially created
a fully renewable energy source for a miniature robot, while the engine presented
here has a limited fuel capacity, although it is comparatively very compact.

While hydrogen and methane as fuels offer the potential for fully renewability,
acetylene has an different advantage in that it is also one of the most detonateable
fuels. If a narrow tube of fuel and air is ignited at one end, the flame front will
accelerate down the tube, and if the front is able to travel a sufficient distance, it will
transition to a travelling normal shockwave (deflagration to detonation transition).
This shockwave precompresses the reactants and results in much higher combustion
pressures, on the order of 20bar, which has the potential to enhance the maximum
power output of the device. By modifying the chamber geometry, the calculations of
[19] applied to combustion on a similar scale to the prototype presented here suggest
that a deflagration to detonation transition of the flame front would be achievable in
a high aspect ratio combustion chamber, if the fuel could be appropriately premixed.
This will be explored further in the future.

7 Conclusions

In this paper we have demonstrated the use of CaC2 as a fuel source to repeat-
ably generate explosions in a miniature robot. These explosions can be harnessed to
produce very high power to weight ratios, which are otherwise unachievable with
conventional miniature systems. The fabricated thruster is entirely self contained and
weighs only 34g, with sufficient fuel for 10 controlled explosions. The device scales
well, and an the power or fuel capacity of the thruster could be increased without
significantly increasing the total system mass.

The fuelling and ignition processes used for the thruster could also be used to
increase the performance of other systems, such as a pneumatic piston or soft robot.
The production of gas from a solid reactant offers a highly compact means of gas
storage, even more so when environmental water is used as a reactant. The solid
liquid reaction used is also an accurate means of metering gas production, as it is
easier to accurately dispense liquids than gases. If the produced is not ignited, a
similar solid reactant system could also be used in inflatable structure deployment.
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A Global Strategy for Tailsitter Hover
Control

Robin Ritz and Raffaello D’Andrea

1 Introduction

There is an increasing demand to apply hover-capable flying machines to long-range
and long-endurance missions. Traditional multicopters use rotors to produce lift and
overcome gravity, which is, compared to fixed-wing airplanes, inefficient in terms
of both required energy per distance flown and required energy per flight time, and
thus a limiting factor of the operating range and flight duration [1]. In order to
overcome this limitation, powered lift aircrafts [2] such as the so-called tailsitter
vehicle [3, 4] have been suggested. A tailsitter is able to take off and land vertically
on its tail with the nose and thrust direction pointing upwards. For fast forward
flight, the vehicle tilts to a near-horizontal attitude resulting in a more efficient lift
production with conventional wings. Compared to other powered lift aircraft types
(such as tiltrotors [5, 6] or tiltwings [7, 8]), the major advantage of a tailsitter is its
mechanical simplicity; no mechanism for changing the direction of the propulsive
system has to be added, saving weight and reducing susceptibility to malfunctions.
As a result of the availability of cheap, lightweight electronic components and the
numerous potential applications of such small hybrid vehicles,1 many researchers
and companies have recently started research programs exploring the capabilities of

1We refer hybrid vehicles to vehicles that provide both hover-capabilities and wings for aero-
dynamic lift production.
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these flying machines. For example, the company Transition Robotics is selling the
tailsitter vehicle Quadshot for the hobby and research market [9]. In August 2014,
the team of Google’s Project Wing tested a tailsitter prototype for a packet delivery
service vehicle.2 However, in March 2015 Google announced that the tailsitter wing
design approach was scrapped; the project leaders came to the conclusion that it is
still too difficult to control such a vehicle in a reliable and robust manner.3

Over the last decades, the research community has developed many successful
control strategies for small unmanned aerial vehicles including quadcopters and
conventional fixed-wing airplanes (see for example [10, 11] and references therein).
However, relatively little attention has been paid to small powered lift aircrafts such
as tailsitters, where the large flight envelope and the highly nonlinear dynamics
introduce additional challenges for control design. The problem of attitude control
for tailsitters or similar vehicles has been addressed, for example, in [12–17]. In
order to avoid singularities, typically a quaternion representation for the vehicle’s
attitude is used, combined with linear feedback on the quaternion error vector to
obtain the desired body rates. However, alternative approaches of representing and
controlling attitude exist, such as the resolved tilt-twist method leading to better
tracking performance when large attitude errors occur [15, 16]. As computational
units becomemore powerful and less expensive,model predictive control (MPC) [18]
has become a viable approach for controlling systems with fast dynamics such as
small flyingmachines; first results of anMPC-based controller for a tailsitter in hover
flight have been published in [19].

In this paper, we address the problem of designing a nonlinear hover controller
for a small flying wing tailsitter vehicle, which should be capable of recovering to
hover from any initial attitude. The challenges of this task lie in the fact that typi-
cally the vehicle’s actuators operate close to their saturation limits, and in the fact
that the rotation axis along the wing is weakly actuated and might be dominated by
aerodynamic torques. As mentioned above, most traditional tailsitter attitude control
methods are based on linear quaternion feedback or similar strategies, which pro-
vide under some assumptions global asymptotic stability. However, for large attitude
errors these methods have difficulties to properly account for the different magni-
tudes of attainable torques around the different rotation axes. Due to the nonlinear
nature of the attitude dynamics, these algebraic feedback laws typically do not result
in an optimal maneuver. In order to overcome this limitation, we propose a control
strategy which plans trajectories in such a way that the vehicle exploits its strongly
actuated axis (the axis actuated by the propellers) if it has to recover from large
attitude errors. The control law is obtained by solving an optimal control problem
that minimizes a quadratic cost with a particular structure. Since the computation is
not feasible in real-time, solutions for a set of initial attitudes are precomputed and
stored in a map. For each controller update, the optimal inputs are then read from
this lookup table, and fed to the system in an MPC-like manner. We do not prove

2http://www.bbc.com/news/technology-28964260/.
3http://blogs.wsj.com/digits/2015/03/17/google-working-on-new-drone-after-wing-design-
failed/.

http://www.bbc.com/news/technology-28964260/
http://blogs.wsj.com/digits/2015/03/17/google-working-on-new-drone-after-wing-design-failed/
http://blogs.wsj.com/digits/2015/03/17/google-working-on-new-drone-after-wing-design-failed/
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stability of the presented controller, however the performance of the control strategy
is analyzed in a simulation environment and the results indicate that the tailsitter is
able recover to hover from any initial attitude, given that the initial velocity does
not exceed a certain limit. Furthermore, the effectiveness of the control strategy is
demonstrated in the ETH Zurich Flying Machine Arena.

The remainder of the paper is structured as follows: In Sect. 2wepresent a dynamic
model for a small flyingwing tailsitter. Section3 introduces a nonlinear hover control
strategy for the tailsitter vehicle. Simulations and experimental results are presented
in Sect. 4, and we conclude in Sect. 5.

2 Flying Wing Tailsitter Model

In this section, we derive a model for the dynamics of a small flying wing tailsit-
ter vehicle. Due to the large operating range and complex aerodynamic forces and
torques acting on the vehicle, deriving an adequate dynamic model for a tailsitter is a
challenging task. Typically, the complex aerodynamic properties are obtained either
by CFD methods [17, 20], by measurement series covering all relevant operating
points [21], or by first-principles models combined with heuristics that capture some
of the unmodeled effects [22]. Since herein we focus on control design, we follow
a similar approach as proposed in [22] and derive a first-principles model of the
considered tailsitter vehicle.

The vehicle is actuated by two propellers, one in front of each wing, and two
flaps located at the wings’ trailing edges. An illustration of the tailsitter is shown
in Fig. 1. The control inputs are the propeller forces f prop,l and f prop,r , and the flap
angles δ f lap,l and δ f lap,r . All four control inputs are subject to saturations:

f prop,min ≤ f prop,l , f prop,r ≤ f prop,max ,

δ f lap,min ≤ δ f lap,l , δ f lap,r ≤ δ f lap,max .
(1)

We assume that the vehicle’s airspeed is small, such that the range of attainable pro-
peller forces [ f prop,min, f prop,max ] can be considered to be constant. The propellers
are of fixed-pitch type and the motors are not able to reverse direction mid-flight,
meaning that the propellers cannot produce negative thrust, i.e. f prop,min > 0.

We introduce a body-fixed coordinate frame B with origin at the vehicle’s center
of mass, as shown in Fig. 1. The z-axis of the body frame B is aligned with the
thrust direction, the x-axis points along the left wing, and the y-axis completes the
right-handed coordinate system. We denote unit vectors along the axes of the body
frame as �eBx , �eBy , and �eBz , respectively. The position of the vehicle’s center of mass
relative to an inertial coordinate frame I , expressed in this inertial frame I , is denoted
as I �p = (px , py, pz). (In order to simplify notation, vectors may be expressed as n-
tuples �x = (x1, x2, . . . , xn), with dimension and stacking clear from context.) The
tailsitter’s attitude is described by a unit quaternion �q = (q0, q1, q2, q3) that rep-
resents a rotation from the inertial frame I to the body-fixed frame B. For more



24 R. Ritz and R. D’Andrea

eBz

eBx

eBy

fprop,r
fprop,l

flap ,r

flap ,l

Fig. 1 Illustration of a flying wing tailsitter vehicle. The vehicle is actuated by two propellers that
produce forces along the body z-axis, and two flaps that produce aerodynamic forces by deflecting
the airflow over the wings

information on representing attitudes with unit quaternions, see for example [23]
and references therein. For the remainder of the paper, unless otherwise stated, we
will express all quantities in the body frame B. If a vector �x is expressed in the inertial
frame I , the notation I �x will be used. The translational velocity of the body frame B
relative to the inertial frame I is denoted as �v = (vx , vy, vz), and the rotational body
rates are denoted as �ω = (ωx , ωy, ωz). The position and attitude kinematics are

I �̇p = RT �v,
�̇q = 1

2
W T �ω,

(2)

where R denotes the rotation matrix from the inertial frame I to the body frame B,
andW is the quaternion rate matrix [23]. The vehicle is modeled as a rigid body with
mass M and rotational inertia J , and the dynamics are thus given by the Newton–
Euler equations:

M �̇v = �ftot − �ω × M�v,
J �̇ω = �mtot − �ω × J �ω,

(3)

where �ftot and �mtot denote the external force and torque vector, respectively, acting
on the vehicle. The external force is modeled as

�ftot = �fair + ( f prop,l + f prop,r )�eBz − Mg�eIz , (4)
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where �fair denotes the aerodynamic force, g is the gravitational acceleration, and �eBz
and �eIz are the unit vectors along the z-axis of the corresponding frame.

Similarly, the external torque acting on the vehicle is modeled as

�mtot = �mair + xprop( f prop,r − f prop,l)�eBy + κprop( f prop,r − f prop,l)�eBz , (5)

where �mair denotes the aerodynamic torque, xprop is the x-axis offset of the pro-
pellers, and κprop is the propellers’ torque-to-thrust ratio (the left propeller rotates
counter-clockwise, and the right propeller rotates clockwise). Note that we assume
that the offset of the propellers in the y-direction is negligible.

Typically, the aerodynamic force �fair and torque �mair are complex functions of the
vehicle state and control input. However, in order to keep the problem tractable and
applicable to theMPC-like control strategy thatwill be introduced in Sect. 3,we apply
the following first-principles aerodynamic model: For each wing the aerodynamic
force and torque is computed separately, assuming that the air velocity is uniform
over the wing, and assuming that there is no cross coupling between the left and right
wing. First, we compute the total velocity of the corresponding wing:

�vwing = �v − �pwing × �ω, (6)

where �pwing denotes the reference position of the wing relative to the body frame B.
The propellers of the tailsitter are mounted in front of the wings; consequently the air
is accelerated along the negative body z-axis if the propellers produce a positive thrust
force. For simplicity, we assume that the entire wing is in the propeller streamtube.
For low airspeeds, the z-component of the total airspeed including propeller-induced
speedup can be approximated using Momentum Theory [24]:

vwing,tot,z =
√

2 f prop
ρair Aprop

+ v2wing,z, (7)

where ρair denotes the density of air, and Aprop is the propeller area. We neglect that
the Momentum Theory approximation (7) becomes less accurate as vwing,z becomes
negative. The angle of attack αwing and the reference airspeed vwing,re f of the corre-
sponding wing are then defined as [25]

αwing = −atan2(vwing,y, vwing,tot,z), vwing,re f =
√
v2wing,y + v2wing,tot,z . (8)

The aerodynamic force is modeled as

�fwing = �cair (αwing, δ f lap)v
2
wing,re f , (9)

where �cair denotes a coefficient vector, and the arguments (αwing, δ f lap) are stated
explicitly in order to highlight that the coefficients are a function of angle of attack
and flap angle. When modeling the aerodynamic coefficients �cair , we make two
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simplifying assumptions; (1) the wing does not produce a force component along the
body x-axis, and (2) the flap deviates the airflow behind the wing by a small angle
proportional to the flap angle deviation δ f lap:

�cair (αwing, δ f lap) = (
cy(αwing) + cy,δδ f lap

) �eBy + cz(αwing)�eBz , (10)

where the function cy(αwing) corresponds to the lift coefficient of the wing, the
constant cy,δ describes first order effects of flap angle deviations on the lift coefficient,
and the function cz(αwing) corresponds to the drag coefficient of the wing. Similarly,
the aerodynamic torque is modeled as

�mwing = �dair (αwing, δ f lap)v
2
wing,re f , (11)

with �dair (αwing, δ f lap) = (
dx (αwing) + dx,δδ f lap

) �eBx + dy(αwing)�eBy
+ (

dz(αwing) + dz,δδ f lap
) �eBz ,

(12)

where the functions dx (αwing), dy(αwing), and dz(αwing) are wing characteristics, and
the constants dx,δ and dz,δ describe first order effects of flap angle deviations. This
completes the derivation of the first-principles model for the aerodynamic effects
acting on one of the tailsitter’s wings. The total aerodynamic forces and torques
yield

�fair = �fwing,le f t + �fwing,right ,

�mair = �mwing,le f t + �mwing,right .
(13)

Note that due to symmetry considerations the aerodynamic coefficients c(·) and d(·)
are identical for both wings, except for some sign changes where appropriate.

3 Control Strategy

In this section, we present a control strategy for the tailsitter modeled in Sect. 2.
First, a desired attitude and a desired thrust force is computed, and subsequently an
attitude controller computes desired body rates in order to track the desired attitude.
The desired body rates are then fed to an inner control loop that computes actuator
commands.

3.1 Desired Attitude and Thrust Force

As proposed in [26], a desired acceleration I �ades is computed based on position
error Δ �p and velocity error Δ�v. (The errors are expressed in the inertial frame I .)
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The control loop is shaped such that for each coordinate the system behaves like a
second-order system with some desired time constant and damping ratio. In order to
compensate formodeling errors and external disturbances such aswind, an additional
integral state �̇s = Δ �p is added. Thus, the desired acceleration is given by

I �ades = K s�s + K pΔ �p + K vΔ�v, (14)

where the control gains K s , K p, and K v are computed such that the desired closed-
loop properties are met. Using the substitution I �ftot = MI �ades , the desired thrust
vector can then be computed by rearranging (4):

I �fthrust,des = ( f prop,l + f prop,r )I �eBz = MI �ades + MgI �eIz −I �fair . (15)

Note that, in order to compute the desired thrust vector, the controller needs an
estimate of the current aerodynamic force I �fair , which could be an estimate or
simply the current nominal value. Since the thrust force acts along �eBz , we choose the
desired attitude such that the body z-axis is aligned with the desired thrust direction.
A desired attitude that aligns actual and desired thrust axis is given by

�qthrust,des = (cos (θdes/2), �ndes sin (θdes/2)) , (16)

where θdes is the desired tilt angle, and �ndes the desired tilt rotation direction:

θdes = arccos
(
I �eIz · I �eBz,des

)
, �ndes = I �eIz ×I �eBz,des

||I �eIz ×I �eBz,des ||
, (17)

where the desired body z-axis is given by

I �eBz,des = I �fthrust,des
||I �fthrust,des ||

. (18)

After this tilt alignment, we can rotate the vehicle around its z-axis without changing
the thrust direction, hence we can choose an arbitrary yaw angle ψdes . The desired
attitude yields

�qdes = �qyaw,des · �qthrust,des, (19)

where (·) denotes the quaternion multiplication and �qyaw,des is given by

�qdes,yaw = (cos (ψdes/2), 0, 0, sin (ψdes/2)) . (20)

The desired thrust force is given by the magnitude of the desired thrust vector:

fthrust,des = ||I �fthrust,des ||. (21)
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3.2 Attitude Control

As mentioned above, one of the challenges when designing a tailsitter attitude con-
troller is to copewith the limited torques that can be produced around the body x-axis,
since the corresponding lever arm is small and the flap saturation boundaries are rel-
atively tight. In addition, large undesired aerodynamic torques may act on the x-axis,
which further complicates the controller design. On the other hand, the attainable
torques around the y-axis are relatively high, since this torque is produced by the
propellers’ differential thrust. In the following, we propose a method for computing
desired body rates in order to control the vehicle’s attitude, while turning preferably
around the better actuated y-axis.

The attitude error is given by

�qerr = �qest · (�qdes)−1, (22)

where �qest denotes the current estimated attitude of the vehicle. For convenient nota-
tion, we will drop the error subscript in the following, i.e. we define �q = �qerr . We
assume that an inner control loop perfectly tracks the body rates �ω, such that we can
directly set the body rates without any delay or dynamics. As mentioned in Sect. 2,
the error quaternion kinematics are given by

�̇q = 1

2
W T �ω. (23)

The objective of the proposed attitude controller is to align the vehicle’s thrust axis
(i.e. the body z-axis) with the desires thrust direction. (The remaining degree of
freedom, i.e. the yaw angle of the vehicle, is controlled separately and not considered
here.) We define the tilt angle θ to be the angle between the desired and actual thrust
direction; it is given by

θ = arccos (q2
0 − q2

1 − q2
2 + q2

3 ). (24)

In order to control the tilt angle θ to zero, we choose the following cost function to
be minimized:

J =
∫ t f

t0

cθ θ
2 + (cx + cx,θ θ

2)ω2
x + cyω

2
y + czω

2
z dt, (25)

where c(·) indicates constant, positive weight parameters, and the different terms are
explained in the following: The first term cθ θ

2 quadratically penalizes the tilt angle
that should be controlled to zero. The second term (cx + cx,θ θ2)ω2

x penalizes the
control effort around the x-axis. As mentioned above, the attainable torques around
this axis are subject to tight bounds; therefore we want to avoid that large tilt errors
are corrected by turning around this axis. Thus, the weight on the control input ωx is
not constant, but contains a term that grows quadratically with the tilt angle θ , such
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that large errors are corrected by turning mainly around the other two axes. Finally,
the third and fourth term cyω2

y and czω
2
z , respectively, penalize the inputs around the

remaining two axes.
For a given initial attitude error �qini , the optimal control inputs �ω∗ solve the

optimization problem

minimize J

subject to �̇q = 1

2
W T �ω,

�q(t0) = �qini ,
�ω(t) ∈ R

3 ∀ t ∈ [t0, t f ].

(26)

In order to simplify this optimization problem, we leverage Pontryagin’s Minimum
Principle [27] to derive necessary conditions for optimality, which are then used for
computing candidate optimal solutions. The Hamiltonian of the above problem is
given by

H = cθ θ
2 + (cx + cx,θ θ

2)ω2
x + cyω

2
y + czω

2
z + 1

2
�λTW T �ω, (27)

where �λ = (λ0, λ1, λ2, λ3) denotes the costate vector. The costate equation
�̇λ = −∇�q H yields

λ̇0 = − d
dq0

H = (λ0k − λ1ωx − λ2ωy − λ3ωz)/2,

λ̇1 = − d
dq1

H = (−λ1k + λ0ωx − λ3ωy + λ2ωz)/2,

λ̇2 = − d
dq2

H = (−λ2k + λ3ωx + λ0ωy − λ1ωz)/2,

λ̇3 = − d
dq3

H = (λ3k − λ2ωx + λ1ωy + λ0ωz)/2,

(28)

with the shorthand notation

k = 8(cθ + cx,θω2
x )θ√

1 − (q2
0 − q2

1 − q2
2 + q2

3 )
2
. (29)

Since the final state �q(t f ) is free and costless, the costates satisfy the final condi-
tion �λ(t f ) = (0, 0, 0, 0). According to theMinimum Principle, the optimal inputs �ω∗
minimize the Hamilton over the set of attainable controls. We do not impose any
constraints on the body rates �ω, and the cost function is quadratic in �ω with positive
weights c(·). Thus, an expression for the optimal body rates �ω∗ can be obtained by
setting the gradient of the Hamiltonian with respect to �ω to zero:
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ω∗
x = −λ1q0 + λ0q1 + λ3q2 − λ2q3

4(cx + cx,θ θ2)
,

ω∗
y = −λ2q0 − λ3q1 + λ0q2 + λ1q3

4cy
,

ω∗
z = −λ3q0 + λ2q1 − λ1q2 + λ0q3

4cz
.

(30)

By substituting the expression for the optimal body rates (30) into the quaternion
kinematics (23), the optimization problem (26) can be written as a boundary value
problem (BVP):

�̇q = 1

2
W T �ω∗, �̇λ = −∇�q H,

�q(t0) = �qini , �λ(t f ) = �0.
(31)

Thus, we can obtain candidate optimal solutions to the optimization problem (26)
by numerically solving BVP (31).4

On an Intel i7-3520M processor, it typically takes between 10 and 30s to compute
a solution toBVP (31), which is not fast enough for real-time applications. Therefore,
we compute trajectories for a set of initial attitudes {�qini } and create a lookup table
for the candidate optimal body rates �ω∗ at the beginning of the trajectory. Since
in the cost function (25) the yaw angle is not penalized, we can arbitrarily rotate
the inertial reference frame I around its z-axis without changing the body rates �ω∗
of the corresponding solution to BVP (31). Consequently, we can always rotate the
reference frame I such that the quaternion error around the z-axis is zero, i.e. qini,3 =
0. Hence, the state space for which control inputs need to be computed is two-
dimensional. Each point in this reduced two-dimensional state space is defined by
a tilt angle θ ∈ [0, π ] and a tilt direction φ ∈ [0, 2π ], where a tilt rotation around
the x-axis corresponds to φ = 0, and a tilt rotation around the y-axis corresponds
to φ = π/2. Symmetry considerations indicate that it is sufficient to compute body
rates for φ ∈ [0, π/2], and map these solutions onto the full range φ ∈ [0, 2π ] using
appropriate coordinate transformations. We thus choose a uniformly sampled set
over the space {(θ, φ) | θ ∈ [0, π ], φ ∈ [0, π/2]}, which defines the set of initial
attitudes {�qini } for which solutions to BVP (31) are computed.

Figure2 shows the resulting candidate optimal body rates �ω∗ as function of tilt
angle θ and tilt direction φ, for a map that was computed as described above. For
each controller update, the desired body rates �ωdes for the current attitude error are
read from the precomputed maps using linear interpolation and subsequently sent
to the inner control loop. As we can see in Fig. 2, the maps for the desired body
rates �ωdes are relatively smooth. Hence, we could approximate the desired body
rates by fitting some particular functions with a small number of parameters into
the maps. For example in an onboard implementation where memory is limited, this
approach might be beneficial.

4Computations are executed with Matlab [28], using the function ‘bvp4c’.
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Fig. 2 Map of candidate optimal body rates �ω∗ for the x-axis (top left), y-axis (top right), and
z-axis (bottom left). The black dots indicate elements of {�qini } for which BVP (31) has been solved.
The bottom right drawing shows a selection of candidate optimal tilt trajectories. The top of the
sphere corresponds to θ = 0, and the bottom to θ = π . We can observe that the trajectories do not
correspond to the shortest rotation towards zero tilt, because the body rates around the different
axes have different weights in the cost function (25)

3.3 Body Rate Control

An inner body rate controller tracks the desired body rates �ωdes using rate gyroscope
measurements �ωmeas . First, the range of allowed propeller forces is adjusted to the
current flight situation, and then the four actuator commands are computed.

3.3.1 Propeller Force Boundaries

Asmentioned in Sect. 2, due to actuator saturations the attainable propeller forces are
constrained to the range f prop ∈ [ f prop,min, f prop,max ]. However, in order to ensure
that the flaps do not loose effectiveness,we pose two additional constraints on the pro-
peller forces: Firstly, since the torques produced by the flaps scale quadratically with
the reference airspeed vwing,re f (as defined in (8)), we choose a minimum required
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reference airspeed over the wings. For each wing, this defines an additional lower
bound on the propeller force f prop, which can be computed using (7) and (8) and
depends on the current velocity and body rates of the vehicle. Secondly, we choose
a maximum allowable angle of attack αwing (as defined in (8)). Doing so, we can
avoid that the flaps loose their effectiveness due to stall phenomena at large angles
of attack. Again, this defines an additional lower bound on the propeller force f prop
given by (7) and (8) and depending on the current state of the vehicle. Even though
these two additional constraints might narrow the range of allowed propeller forces
considerably, experimental results show that, to some extent, the benefits of effective
flaps outweigh this drawback.

3.3.2 Actuator Commands

The body rate controller is designed such that the elements of the body rate
error ( �ωmeas − �ωdes) follow three decoupled first order systems with desired time
constants �τω = (τω,x , τω,y, τω,z). The total desired torque acting on the vehicle is
obtained by rearranging the angular dynamics (3), which yields

�mdes = J( �ωdes − �ωmeas)/�τω + �ωmeas × J �ωmeas, (32)

where the division is executed element-wise. By inspection of (5) and (11), we find
that the total torque around the body y-axis can be written as

mtot,y = xprop( f prop,r − f prop,l) + dy(αwing,l)v
2
wing,re f,l − dy(αwing,r )v

2
wing,re f,r ,

(33)

and does not depend on the flap angles δ f lap,l and δ f lap,r . Note that both αwing

and vwing,re f depend on the corresponding propeller force f prop. The two propeller
forces f prop,r and f prop,l can thus be computed such that the two conditions

mtot,y = mdes,y, f prop,l + f prop,r = fthrust,des, (34)

are satisfied. However, due to actuator saturations, we might not be able to satisfy
both conditions of (34). In this case, we adapt the desired thrust fthrust,des such that
we can achieve the desired torquemdes,y ; intuition and experiments indicate that it is
more important to align the thrust axis, rather than keep the desired thrust value. The
flap angles δ f lap,l and δ f lap,r are then computed such that the remaining two desired
torques are achieved, i.e. such that

mtot,x = mdes,x , mtot,z = mdes,z . (35)

Again, if we cannot satisfy both conditions, we adapt mdes,z such that we can
achieve mdes,x which is crucial for aligning the thrust axis and thus considered to be
more important.
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Note that, as we can see from (9), the aerodynamic force �fair depends on the
actuator inputs, hence the actual aerodynamic force may differ from the nominal or
estimated value we have used in (15) to compute the desired thrust vector �fthrust,des .
However, we assume that the difference is negligible.

4 Results

In this section, we present simulation and experimental results of the proposed tail-
sitter hover control strategy.

4.1 Simulation Results

During controller design we made some significant assumptions, in order to keep
the problem tractable. We assume, for example, that the inner control loop perfectly
tracks the desired body rates even though the actuators saturate quickly, which might
have a significant effect on the behavior of the vehicle. Therefore, we verify the
reliability performance of the proposed controller by simulating its behavior for a
variety of initial conditions. In particular, we simulate the vehicle’s dynamics for a
set of 10‘000 random initial conditions with the following probability distribution:
The magnitude of the initial velocity vector �vini is uniformly distributed between 0
and 5m/s, and its direction is uniformly distributed among all possible directions.
Similarly, themagnitude of the initial body rates �ωini is uniformly distributed between
0 and 10 rad/s, and its direction is uniformly distributed among all directions. Further,
the initial attitude �qini is uniformly distributed over the whole attitude space, and the
initial position �pini is chosen to be the origin. For each of the 10‘000 simulations, we
draw a random sample for the initial state, and subsequently simulate the vehicle’s
dynamics forward in time. The task of the vehicle is to recover and to fly back
to the origin. We consider the maneuver to be successful, if this task is achieved
within reasonable thresholds. We found that for all 10‘000 simulations the recovery
is successful, indicating that for the chosen range of initial states, the proposed
control strategy is able to cope with the neglected effects. However simulations also
show that for larger initial velocities, due to the dominant aerodynamic forces and
torques, the vehicle might enter a tumbling motion pattern and is not always able to
stabilize. Thus, for these regions of the state space, the proposed hover controller is
not suitable.
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4.2 Experimental Results

The experiments are carried out in the ETH Zurich Flying Machine Arena [26]. The
vehicle consists of a Robbe Mini Wing RC styrofoam airframe, a PX4 FMU flight
computer [29], two MKS DS65K servos actuating the flaps, two Hacker A05–13S
brushless electric motors driving the propellers, two ZTW Spider 12A ESCs with
SimonK firmware [30], communication radios, and a LiPo battery. The testbed pro-
vides an infrared motion-capture system, which is used for estimating the tailsitter’s
current state. The outer control loop that computes desired body rates, as presented
in Sect. 3, is implemented offboard and runs on a desktop workstation. The desired
body rates are sent over wireless radios to the vehicle with a rate of 50Hz. Hence, the
inner body rate controller is implemented onboard, and it runs at a rate of 1000Hz.

In order to show the performance of the control strategy, we execute recovery
maneuvers from arbitrary initial states back to hover flight. Therefore, the vehicle
is manually thrown into the air, and at a predefined height of 2.5m the controller
is switched on. Figure3 shows the body rate and tilt trajectories of such a recovery
maneuver. Further, a video showing a series of throws and subsequent recoveries
back to hover can be found on http://www.youtube.com/watch?v=JModZfnVAv4.
The experiments indicate that for most of these manual throws the vehicle is able
to recover; the only observed reason for failure is the limited space of the Flying
Machine Arena, i.e. the vehicle bounces into the floor during the recovery maneuver.

Because of the relatively large drag coefficient perpendicular to the wings, a
hovering tailsitter is susceptible to horizontal wind gusts. In order to analyze the
performance of the proposed control strategy for such a situation, we simulate an
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Fig. 3 Body rate and tilt angle trajectories of an example recovery maneuver. The vehicle is thrown
into the air and the controller is switched on at the indicated points in time. Roughly 1s after the
controller has been switched on, the vehicle has recovered to near-hover flight

http://www.youtube.com/watch?v=JModZfnVAv4
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Fig. 4 Position and pitch angle trajectories when a wind gust hits the vehicle. Initially, the vehicle
is hovering in resting air and the body frame B is aligned with the inertial frame I . At the indicated
point in time a fan is switched on, which results in an airstream of about 2m/s along the y-axis.
The plot on the top shows that due to the integrator term of the position controller, the vehicle
compensates the external disturbance without a steady-state position error. In the bottom plot, θx
denotes the pitch angle around the body x-axis, and we can observe that the vehicle pitches in order
to counteract the external disturbance

external disturbance using a fan that creates an airstream with a velocity of about
2m/s. The direction of the airstream is alignedwith the body y-axis, i.e. perpendicular
to the wings. Figure4 shows the response of the vehicle to such a simulated wind
gust.

5 Conclusion

An approach for a tailsitter hover controller has been presented, and its performance
has been analyzed in simulation and verified in experiments. The experimental results
indicate that the proposed tailsitter hover control strategy performs well under exter-
nal aerodynamic disturbances, and is able to stabilize the vehicle from any initial
attitude, given that the initial velocity is below a certain limit.

Future work includes the extension of the control method such that it can be
applied to high-velocity maneuvers, for example by adding a high-level trajectory
planner. Further, wewould like to investigate if a proof of stability can be established.
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Autonomous Flights Through Image-Defined
Paths

Tien Do, Luis C. Carrillo-Arce and Stergios I. Roumeliotis

1 Introduction and Related Work

In order for a quadrotor to autonomously navigate within a known, GPS-denied area
(e.g., indoors), it must be able to find where it is, determine the path towards its goal,
and control itself to follow the desired trajectory. One way to solve this problem
would be to construct, typically offline, a metric 3D map of the environment that
the quadrotor will then use to (i) identify where it is (i.e., localize), and (ii) compute
a path towards its destination. Creating dense 3D maps that can be used for path
planning, however, is quite challenging, especially for large buildings, due to the
computational cost of the mapping process.

An alternative approach to this problem, is to represent a building using visual
data collected beforehand, and describe a path as a sequence of images that the
quadrotor needs to follow in order to reach its destination. The main advantages of
an image-space representation of a path within a building are scalability (no metric
global map needs to be constructed) and ease of implementation (the images can
be collected by a person walking throughout the building with, e.g., a cell phone).
On the other hand, though, controlling a quadrotor to follow a visual path becomes
significantly more challenging due to the lack of scale and geometric information in
the reference trajectory.
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Controlling a robot to reach a specific destination defined in the image space can be
achieved using visual servoing (VS) [7, 8].Most VS approaches can be classified into
two categories: (i) Position-based VS (PBVS), where the control input is computed
directly using a relative position, up to scale, and orientation (pose) estimate; and
(ii) Image-based VS (IBVS), where the control input is determined in the image
domain, while often it is assumed that the depth to the scene is, at least approximately,
constant [7]. Prior work on VS for quadrotors equipped with a downward-pointing
camera has addressed the problem of landing on a known target [6, 23] and hovering
over an arbitrary target [3]. Furthermore, for quadrotors equipped with a forward-
pointing camera, [5] classifies the environment into corridors, stairs, or “other” in
order to determine the appropriate turn, side-ways, or upward motion so that the
robot can continue exploration.

In the context of navigating along a visual path, VS techniques have been
employed for ground robots (e.g., [9, 12, 13, 24]), while some of these techniques
([9, 12]) have been applied to aerial vehicles [11, 25]. In particular, in [25] an exten-
sion of the “funnel”-lane concept of [9] to 3D is presented and applied to controlling
a quadrotor. Specifically, the geometric constraints based on the image coordinates
of the reference features are used for determining the funnel region within which
the robot should be moving in order to match the reference image. Then, the desired
motion of the quadrotor is computed as the convex combination of the heading/height
required for staying within the funnel region and the one the quadrotor had followed
during the training phase. As criterion for switching to the next reference image,
an error measure is defined based on the root mean square of the difference in the
feature’s pixel coordinates between the reference and the current image. In [11],
the VS method of [12] is extended to the case of a quadrotor following a visual
path comprising a sequence of keyframe images selected, during the experiment,
by a person. In contrast to 3-view-geometry-based approaches (e.g., [13, 17]), [11]
uses the PBVS algorithm described in [8] for controlling the quadrotor. This method
does not require triangulating points but instead, given sufficient baseline, it uses
epipolar geometry for estimating the relative pose between the current and the ref-
erence camera frames.

A key limitation of both [11, 25] is that they cannot deal with rotations in place
(often required for navigating through tight spaces), or, for the case of [11], with
translations through areas with only faraway features (e.g., featureless corridors).
Moreover, in both cases, the quadrotor followed rather short and fairly simple (in
terms of the motions required) paths comprising a short translation and a wide turn
in [25], or no turn in [11], where the quadrotor was moving back and forth between
two locations connected via a direct path.

In this work, our objective is to enable a quadrotor to autonomously navigate
inside a large-scale building by following a pre-recorded sequence of images that
correspond to long (∼75m) and challenging (in terms of the motions involved and
the type of scenes encountered) paths. To do so, our PBVS method concurrently
minimizes the relative heading and baseline between the current and the reference
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images. In particular, we match features between these two images and use the 2pt1

and the 5pt RANSACs’ estimates to determine the state of the system and control
the quadrotor.

The key advantages of the proposed PBVSalgorithm are as follows: (i)We employ
a geometry-based algorithm which computes and compares the 2pt versus the 5pt
RANSAC inliers for selecting the next reference image. In contrast, [11, 25] rely on
the features’ pixel coordinates, which are unreliable when dealing with features at
various depths; (ii) Our algorithm is capable of dealing with a wide range of condi-
tions, such as motion along lengthy corridors, open spaces, and rotations in place,
and in environments where the appearance-based feature matching may return unre-
liable results; (iii) Our approach does not require recording the images by manually
controlling the robot through the reference paths as is done in [11, 25]. Instead, one
can easily define desired paths by simply walking through the area of interest carry-
ing a cell phone or the quadrotor. Lastly and, in order to demonstrate the efficiency,
accuracy, and robustness of the proposed algorithm, we have implemented it on two
quadrotors: The Parrot Bebop [4] and the DJI F450, the latter carrying a cell phone.
During testing, the quadrotors operated inside challenging environments (specular
reflections, large lighting surfaces), comprising long paths, tight turns, and in the
presence of dynamic obstacles.

2 Quadrotors and Objective

Both quadrotors have attitude-stabilization controllers, which take as input informa-
tion from an observer that processes gyroscope and accelerometer measurements,
from the onboard inertial measurement unit (IMU), to estimate the roll and pitch
angles, yaw-rate, and thrust of the quadrotor. Additionally, each quadrotor carries
a downward-pointing camera to estimate optical flow, and an ultrasonic sensor to
measure the distance to the ground. Note that despite the availability of metric infor-
mation from the velocity estimated based on the optical flow and the distance to
the scene, we do not use it to triangulate features and create a local map as it can
be both unreliable2 and computationally expensive. Furthermore, both quadrotors
have access to (i) forward pointing wide field of view (WFOV) cameras (mounted in
the front of the Bebop, or as part of the cell phone carried by the DJI) for collecting
images and (ii) processors for executing in real time all image-processing and control

1The 2pt RANSAC estimates the relative orientation I1
I2
R between two images, I1 and I2, under

the assumption of very small baseline compared to the depth of the scene. A closed-form solution
for the 2pt minimal case is provided in Sect. 6.2, while the analytical solution for the least-squares
solver is presented in [21]. The 5pt RANSAC [26] estimates the relative orientation I1

I2
R and the

unit vector of translation I1 tI2 between two images I1 and I2.
2Under low-light conditions, the velocity measurements are reliable only for a fixed tilt angle of
the vehicle. Note that when in motion, the quadrotor changes its roll and pitch which causes image
blurriness (due to the increased exposure) and, hence, large errors in the optical-flow estimates.
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Fig. 1 The DJI F450 quadrotor (left) equipped with a NAZA controller, an optical-flow sensor,
ultrasonic sensors, and a cell phone. The Parrot Bebop quadrotor (right) equipped with a 180◦
WFOV camera, an optical-flow sensor, and an ARM-based processor

algorithms necessary by the proposed PBVS method. Finally, and to increase safety,
the DJI quadrotor carries 8 ultrasonic sensors spaced 45◦ apart and aligned with its
arms and legs (see Fig. 1).

As mentioned earlier, the objective of this work is to develop a robust algorithm3

that will allow the quadrotors to follow long and complex visual paths, defined as
sequences of pre-recorded images between the start and final desired locations.

3 Technical Approach

Our approach comprises two phases. In the first (offline) phase, a visual-graph-
based representation of the area of interest is constructed using images collected by
a person walking through it. Then, given a start and an end pair of images, a feasible
visual path is automatically extracted from the graph along with motion informa-
tion (path segments that include significant translational motion or only rotations in
place). In the second (online) phase, our PBVS algorithm controls the quadrotor to
successivelyminimize the relative rotation and baseline between the images captured
by its onboard camera and the corresponding reference images of the visual path.
Additionally, and in order to increase robustness, our navigation approach employs
a vocabulary tree (VT) [27] for relocalizing inside the previously-constructed visual
graph when losing track of the reference image path. Lastly, we include an obstacle
avoidance routine for the DJI so as to increase safety.

3Note that although both the embedded controller and the cell phone contain IMUs, which can be
used, in conjunction with the camera, to form a vision-aided inertial navigation system [18], in this
work, we intentionally focus on a “light”, in terms of processing, vision-only approach so as to
assess its performance and use it as a baseline for future comparisons.
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3.1 Offline Phase

3.1.1 Map Generation

A person carrying a cell phone, or a quadrotor, walks through the area of interest
collecting images at 30Hz. Subsequently, we extract FREAK image points [2] and
employ a VT to generate the visual map which is represented as a visual graph
(VG) whose nodes correspond to the recorded images. An edge between two images
signifies that these were matched by the VT and at least 30 point-correspondences
passed the5or 2ptRANSAC.Furthermore,weassignweights to these edges inversely
proportional to the number of common features (inliermatches) foundbetween linked
images. This choice is justified by the fact that the VG will be used to determine
paths that the quadrotor can reliably navigate through in the image space towards its
destination. This process is depicted in Fig. 2.

The VG is constructed in a matter of minutes even for large areas containing
tens of thousands of images. Moreover, it can be easily updated by adding/replacing
subsets of images corresponding to new/altered regions of a building.

3.1.2 Path Specification

The VG is used for computing paths between the quadrotor’s start and end loca-
tions, possibly via intermediate points. Specifically, consider the graph shown in

Is1

Ig

Is2

Is5

Is3

Is4

Fig. 2 Offline phase: The area of interest is described as a visual graph (VG) whose nodes corre-
spond to images, while edges link images containing a sufficient number of common features for
reliably visually-servoing between them. In the VG, Is1, Ig denote the start and goal images, respec-
tively, while Is2, . . . , Is5 signify intermediate goal locations along the quadrotor’s path specified by
the user
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Fig. 2. Assume that the quadrotor knows its current location (e.g., it is provided by
the user, automatically determined using the VT, or saved from the previous run)
corresponding to image node Is . Then, the user specifies a destination image Ig in
the VG and the reference path is determined automatically by employing Dijkstra’s
algorithm [10]. This process is easily extended to include intermediate locations
(e.g., Ig1 , Ig2 . . . Ign ), by simply resetting as the start of the next path segment the end
image of the previous one (e.g., Isi+1 = Igi , i = 1 . . . n).

Once the path is extracted from the VG, we prune images that are very close to
each other and only keep the ones that have substantial translational and/or rotational
motion between them. To do so, we use an iterative process that starts from the
reference image I r

1 = Is and moves along the path matching FREAK features using
both the 5pt and 2pt RANSAC algorithms until it finds the first image, Is+m , m ≥ 1,
that either has more 5pt than 2pt inliers, or the relative yaw angle between them
is greater than 10◦. In the first case, we declare that the quadrotor is in translation,
otherwise, in rotation and set Is+m , as the next reference image I r

2 . The resulting path
P = {I r

1 , I
r
2 , . . . , I

r
n} is provided to the quadrotor along with two additional pieces

of information: (i) We specify which images correspond to rotation-only motion and
provide the yaw angle between consecutive rotation-only images; (ii)We provide the
FREAK features extracted from each reference image along with their coordinates.
The former is useful in case the quadrotor gets lost (see Sect. 3.2.4), while the latter
is used by the quadrotor for efficiently finding and matching its next reference image
through the process described hereafter.

3.2 Online Phase

3.2.1 System State Determination

When there is sufficient baseline (as in [11]), and in order to minimize the relative
motion between It (the image taken by the quadrotor’s onboard camera at time-
step t) and a reference image I rk ∈ P , we use the 5pt RANSAC to estimate the

5 dof,
I rk
I t R̂, I rk t̂I t , desired motion. This estimate, however, is not reliable when the

baseline between It and I rk is short [8]. Furthermore, the appearance-based feature
matching between It and I rk (the 5pt RANSAC’s input), is not always reliable (e.g.,
due to adverse lighting conditions and/or occlusions).

To address these challenges, we model our system as a hybrid automaton H as
follows:

Definition 1: H = (L , x,E ), where:

• L is the set of discrete states including:

– �0: wide baseline (nominal condition)
– �1: short baseline (rotation in place is necessary or reference-image switching)
– �2: lost mode due to, e.g., motion overshoot or failure in the appearance-based
feature matching.
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It

Sf S5pt
e0 e1 e2

1

0

2

S5ptIr
k

Fig. 3 Online: Schematic diagram of the steps and transitions between the different states of the
automaton H

• x(t, k) is the abstract state vector with elements x(t, k) = [It , I rk , r(t, k)] where
r(t, k) is the desired motion for minimizing the relative pose between It and I rk .• E is the set of relations governing transitions between the states inL = {�0, �1, �2}.
Given H , and in order to complete P , the system must ideally iterate between

two steps until the last element of P is reached: (i) In case of state �0, we compute
the motion r and control the quadrotor so as to bring the system to state �1 (see
Sect. 3.2.2); (ii) When at �1, and if there is no significant rotation between It and
I rk , we switch I rk to the next reference image in P (see Sect. 3.2.3), and the system
returns to state �0. In case of external disturbances, the system may reach state �2. In
this case, a recovery procedure will be executed to attempt to bring the system back
to �0 or �1 (see Sect. 3.2.4).

In order to accurately classify the state of the system as �0, �1, or �2 based
on It and I rk , we use the process summarized in Fig. 3, and define the relations in
E = {e0, e1, e2} in the following 3 steps.

Step 1: We first extract and match (Hamming distance between binary descriptors
less than 60) FREAK features in It and I rk , and define as S f (It , I rk ) the set of all
feature correspondences. Note that if the condition for sufficient feature matches
e0 : |S f | ≥ 25, where |S f | is the cardinality of the set S f , is satisfied, then the system
proceeds to Step 2 of the current state, else it transitions to state �2 (see Fig. 3).

Step 2: Given the bearing vectors, I tb f and I rk b f , from both camera frames, It
and I rk , to each feature f , we employ the 5pt RANSAC to compute the geometric

constraint (
I rk
I t R̂, I rk t̂I t ) between It and I rk , as well as the set of features whose repro-

jection error [19] is within a threshold ε1 (the error tolerance for outlier rejection
[15]). At this point, we require that the condition e1 : |S5pt | ≥ 25 (i.e., the number
of 5pt inliers is no less than 25; see [14] for a probabilistic justification) is satisfied
in order to proceed to Step 3; else the system transitions to state �2 (see Fig. 3).

In Step 3, we distinguish between the states �0 and �1. Specifically, when the base-
line is short (i.e., I rk dI t � I t d f ,

I rk d f ⇔ I rk b f � I rk
I t R

I tb f ), the 5 degrees of freedom
(dof) epipolar constraint:

I rk bT
f 	I

r
k tI t ×
I rkI t R I tb f = 0 (1)
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degenerates into a 3 dof, rotation-only constraint that is satisfied by all the 5pt
inliers. Our algorithm uses this observation to determine if there is sufficient baseline
between the current, It , and reference, I rk , images. In particular, we employ the 2pt

RANSAC on the features f ∈ S5pt to compute the rotation
I rk
I t R̆ between two images

and determine S2pt = { f ∈ S5pt | 1 − I rk bT
f
I rk
I t R̆

I tb f < ε2}, which is the subset of 5pt
inliers that are also 2pt inliers. Lastly, and in order to compensate for the noise in the
measurements and the randomness of RANSAC, instead of requiring |S2pt | = |S5pt |,
we employ the condition e2 : |S2pt |

|S5pt | > 0.94 to declare small baseline (i.e., state �1).
Depending on the state of our system (�0, �1, or �2), in what follows, we describe

the process for controlling the quadrotor.

3.2.2 Wide Baseline (�0)

Improving the Motion Estimate

In practice, when the quadrotor navigates through long corridors or open spaces,
S f may contain features at various depths, some of which, typically the faraway
ones, may negatively affect the motion estimate. Note that such features, satisfy the
2pt RANSAC. To remove them, we define as S′

5pt = S5pt \ S2pt , run again the 5pt
RANSAC on the features f ∈ S′

5pt , and use the winning hypothesis to initialize an
iterative batch-least squares algorithm [22] to improve the accuracy of the estimated
desired motion between It and I rk .

At this point, we note that although the desired motion between It and I rk may
comprise 5 dof (3 for the relative roll, pitch, yaw and 2 for the unit vector, t, of
translation), given the kinematic and actuation constraints of the quadrotor (e.g., it
cannot achieve non-zero roll or pitch angle while staying still), our controller seeks
to match the desired motion only along 3 dof: The tx , ty projection of the desired unit
vector, t, of translation on the horizontal plane,4 and the desired (relative) yaw angle
I rk ψ̂I t . Moreover, and in order to maintain an almost constant-velocity flight, we scale
tx and ty by v0 (the maximum velocity that the optical-flow sensor can measure) and
provide our controller with the following desired motion vector:

r =
⎡
⎢⎣
vd
x

vd
y

ψ̂

⎤
⎥⎦ =

⎡
⎢⎣
tx v0
ty v0
I rk ψ̂I t

⎤
⎥⎦ (2)

Note that this desired motion vector will need to be appropriately modified in the
presence of obstacles (see Sect. 3.2.5).

4Note that since all images were recorded at about the same height, the z component of the desired
motion estimate is rather small after the first reference image and we subsequently ignore it. Instead,
we use the distance-to-the-ground measurements to maintain a constant-altitude flight.
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Controller

In order to determine the control input,uk(t) (roll, pitch, yaw-rate, and thrust), thatwe
must provide to the quadrotor’s attitude controller so as to achieve the desiredvelocity,
we employ the vehicle’s kinematic equations, linearized about the equilibrium (near
hover condition - see [14]):

[
v̇x (t)
v̇y(t)

]
= g

[
θ(t)

−φ(t)

]
(3)

z̈(t) = 1

m
τ(t) − g (4)

where g is the gravity, m is the quadrotor’s mass, and φ(t), θ(t), and τ(t) are the
roll, pitch, and thrust of the quadrotor in ego-centric coordinates, respectively.

To compute the velocity error, we use the estimates, v̂x , v̂y , from the optical-flow
sensor, to form: [

evx (t)
evy (t)

]
=

[
vdx (t) − v̂x (t)
vdy(t) − v̂y(t)

]
(5)

Furthermore, the height error, ez , is defined as the difference between the desired
altitude and the estimated height ẑ from the downward-pointing ultrasonic sensor:

ez(t) = zd(t) − ẑ(t) (6)

Lastly, based on (4), (5), (6) and ψ̂ in (2), we form a PID controller that computes
the desired control input to the system as:

uk(t) =

⎡
⎢⎢⎣

θd(t)
φd(t)
τ d(t)
ψ̇d(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

kp,vx evx (t) + ki,vx
∫
evx (t)dt

−kp,vy evy (t) − ki,vy
∫
evy (t)dt

kp,zez(t) + ki,z
∫
ez(t)dt + kd,z ėz(t)

−kp,ψ ψ̂

⎤
⎥⎥⎦ (7)

The gains kp, ki , and kd that ensure high response, zero tracking error, and robustness
were found as described in [16].

Figure4, describes the 3-control-loop implementation of our algorithm on the DJI
F450 quadrotor. The outer loop runs at 7.5Hz and determines the desired 2D velocity,
vx , vy , and the yaw ψ̂ (see Sect. 3.2.2). The desired velocity and height control loop
(middle loop) runs at 50Hz and provides the roll, pitch, and thrust setpoints to the
attitude controller (see [14] for more details).

3.2.3 Short Baseline (�1)

In case of short baseline, we detect if there is any rotational motion needed to min-
imize the relative yaw, I rk ψI t , between It , and I r

k . To do so, we first improve the
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Fig. 4 System block diagram. The double-line blocks denote components of our algorithm
described in Sects. 3.2.1 (H ) and 3.2.2 (Controller)

rotation matrix estimate,
I rk
I t R̆, by employing the least-squares method of [21] on the

features f ∈ S2pt using as initial estimate, the one from the minimal solver of the 2pt
RANSAC. After extracting the yaw component, if |I rk ψ̆I t | > τ3,5 we send the desired
rotation-in-place motion rT = [0 0 I rk ψ̆I t ]T to the controller to minimize the relative
yaw between It , and I r

k ; else we switch to the next reference image in the path P .
Note that when we have direct access to the attitude estimator, as in the case

of the Bebop, we can leverage the yaw angle (computed off-line - see Sect. 3.1.2)
between the first and last rotation-only reference images to speed up the execution
of this path segment. Specifically, the precomputed relative yaw angle is provided
to the controller to perform a “blind” rotation in place. Once this is complete, the
quadrotor queries the VT to confirm that the last rotation-only reference image has
been reached or determine the remaining rotation between the current image and the
last rotation-only reference image.

3.2.4 Lost Mode (�2)

When the quadrotor loses track of the current reference image, we refer to the last
reference image where it computed good matches as I r

lost . There are four possible
scenarios that can cause the quadrotor to get lost:

• The robot enters a featureless region.
• The robot enters a region where the result from the FREAK feature matching
between It and I r

k is unreliable.

5This threshold depends on the onboard camera’s fov and is selected so as to ensure a significant
overlap (more than 80%) between the current camera image and the next reference image.



Autonomous Flights Through … 49

• The quadrotor significantly deviates from its current path, in order to avoid an
obstacle.

• Dynamic obstacles (e.g., people) obstruct the quadrotor’s view or path.

Our recovery method is as follows: While hovering, the quadrotor queries the
VT with It and successively evaluates among the returned images to find the one
that has at least 35 features in common with It that pass the 5pt RANSAC. If the
above search fails for the top 10 images, the quadrotor switches to a “blind” motion
strategy following the same type of motion as before it was lost (i.e., translation or
rotation based on I r

lost ) for 0.5 s and then attempts again to retrieve a good reference
image I r

best. This iterative process is repeated for 10 times before declaring that the
quadrotor is lost, in which case, it autonomously lands.

3.2.5 Obstacle Detection and Avoidance

Toavoid collisionswhile following the referencepath,we combine thedesiredmotion
from the PBVS algorithm with a “repulsive” velocity defined using the ultrasonic
sensors. Specifically. we denote as ρ = 1 m the radius of the safety region centered
around the quadrotor, ok(t) the measurement of the kth ultrasonic sensor, and ξ k the
2D unit vector of direction of this ultrasonic sensor relative to the quadrotor. Let
γ be a constant relative-distance-to-velocity gain, we then construct a 2D repulsive
velocity vector as:

vkrepulsive(t) =
{
0 if ok(t) ≥ ρ

−γ ∗ (ρ − ok(t)) ∗ ξ k if ok(t) < ρ

and set as (Fig. 5): vavoidance(t) = vdesired(t) + ∑8
k=1 v

k
repulsive(t)

Fig. 5 Schematic of the
velocity determination for
obstacle avoidance

v
v

v

ρ
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4 Experimental Results

We performed experiments with two quadrotors (the Parrot Bebop and the DJI F450)
in two different scenarios: Firstly, inside a motion-capture room to evaluate the
accuracy of our approach using ground truth from a VICON motion-capture system
[28]. Then, in a large indoor area to evaluate the algorithm’s performance under
challenging conditions.

4.1 System Setup

The DJI F450 quadrotor is equipped with a NAZA attitude controller, a PX4Flow
[20] for height and velocity measurements, 8 MaxBotix ultrasonic range finders,
and Google’s Tango smartphone. The phone has a built-in 180◦ fisheye camera and
a quad-core ARM processor. Note that we do not use the built-in estimator of this
device. The quadrotor also carries: (i) An Arduino microcontroller to generate the
signals required to operate the quadrotor and switch betweenmanual and autonomous
mode, (ii) An ODroid-U3 ARM-based computer used for allowing the cell phone
and the Arduino to communicate, and (iii) A wireless router for debugging during
test flights. It should be pointed out that the ODroid-U3 and the router are only used
for debugging purposes; all computations are performed on the smartphone.

TheBebop, on the other hand, carries aMEMS IMU, a downward-pointingAptina
MT9V117 camera used for optical flow, an ultrasonic sensor for measuring the dis-
tance to the ground, and a forward-pointing Aptina MT9V002 camera which we use
for visual navigation. All processing is carried onboard Bebop’s ARM Cortex A9
800MHz dual-core processor.

4.2 Short Experiment with Ground Truth

In this experiment, we recorded an image sequence describing a rectangular path
(approximately 2 × 2.5m) within the motion-capture room while recording the
ground truth for the phone’s camera motion. The path was created such that the
poses of the initial and the last frame coincide. Then, we ran our PBVS algorithm
three times on the image sequence while recording the quadrotor’s pose with the
VICON. Figure6 (left) shows a subset of the reference camera images along the
path, while Fig. 6 (right) depicts the reference trajectory, the location of the refer-
ence images of Fig. 6 (left), and the path followed by the quadrotor. As evident, the
error between the actual and the reference trajectories is typically within ±0.5m.
Similar performance was achieved when using the Bebop quadrotor.
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4.3 Long Experiments

These experiments took place in theWalter Library’s basementwhich is a challenging
environment with numerous specular reflections on the floor, where the quadrotors
had to follow a 75m long path comprising translational motion segments through
open spaces aswell as rotations in place in order to navigate through narrowpassages.
Some of these maneuvers were in front of areas where most of the visible scene was
behind a coffee-shop glass front whose reflections posed a significant challenge to the
motion-estimation algorithm. Figure7 shows the blueprint of the experimental area
depicting the reference visual path (red bold line), and snapshots of two quadrotors
in flight.

During the experiment, the Bebop was able to complete the reference trajectory
in 240s, at an average speed of 40cm/s, despite getting lost and recovering its path

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

x[m]

y[
m

]

Reference Trajectory
Reference Frames Sample
Quadrotor Trajectory

Fig. 6 Short experiment with ground truth: (left) Sample of camera frames used as reference
images; (right) Comparison between the reference trajectory and the actual quadrotor trajectory

Fig. 7 Long experiment: Blueprint of the experimental area, reference path for the DJI F450 (1-
4-5-6-7-8-1) and the Parrot Bebop (1-4-5b-6b-7-8-1), and snapshots of both quadrotors along their
paths (1–8)
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twice. On the other hand, it took the F450 quadrotor 450s (average speed of 20cm/s)
to complete approximately the same path after getting lost 3 times. The difference in
the performance of the two quadrotors is mainly due to the lower maximum-velocity
sensing capabilities of the PX4Flow sensor onboard the F450 but also because of the
agility and safety (no sonars were required) that the smaller size Bebop quadrotor
provided. The videos for the Bebop and F450 experiments are available at [1].

5 Conclusion and Future Work

In this paper, we presented a visual-servoing algorithm that allows quadrotors to
autonomously navigate within a previously-mapped area. In our work, the map is
constructed offline from images collected by a user walking though the area of
interest and carrying a cell phone or a quadrotor. Specifically, and in order to increase
efficiency, the visual map is represented as a graph of images linked with edges
whose weights (cost to traverse) are inversely proportional to the number of features
common to them. Once the visual graph is constructed, and given as input the start
and goal location of the quadrotor, it automatically determines the desired path as a
sequence of reference images. This information is provided to the quadrotor, which
estimates in real time themotion thatminimizes the difference between its current and
reference images, and controls its roll, pitch, yaw-rate, and thrust for achieving that.

Besides the ease of path-specification, a key advantage of our approach is that
by employing a mixture of 2 and 5pt RANSAC for determining the type of motion
required (rotational, translational with close-by or faraway scene), and for selecting,
on the fly, the next reference image, it is able to navigate through areas comprising
featureless corridors, as well as narrow passages. Moreover, it is able to cope with
static and moving obstacles and, in many cases, recover its path after losing track
of its reference image. The accuracy of the proposed algorithm was assessed using
motion-capture data within a small area, while its robustness to lighting conditions
and in-place rotations was demonstrated by autonomously navigating along a 75m
path through a large building. Lastly, and as part of our ongoingwork,we are currently
extending our algorithm to combine visual and inertial measurements [18] that will
improve the accuracy of the velocity estimates, and, thus, allow us to further increase
the quadrotors’ operational speed.

6 Appendix

6.1 Singular Condition of the 5pt RANSAC Minimal Solver

Consider a feature f appearing both in It and I r
k which satisfies the following

geometric constraint:
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I rk d f
I rk b f = I t d f

I rk
I t R

I tb f + I rk dI t
I rk tI t (8)

Note that when sufficient baseline exists between the current and reference images,
(8) can be projected on the normal to the epipolar plane to yield the epipolar constraint

I rk bT
f 	I

r
k tI t ×
I rkI t R I tb f = 0 (9)

By employing five pairs of features that satisfy (9), we can estimate the desired 5 dof
motion using the 5pt RANSAC algorithm [26].

On the other hand, consider the case when the relative position between It and I r
k

is significantly smaller compared to either distance to the feature f . Without loss of

generality, we assume that I rk dI t � I t d f ⇒ I rk dI t
I t d f

� 0 and employ the law of cosines
in the triangle defined by the focal points of the two cameras and f :

I rk d2f + I t d2f − 2I
r
k d f

I t d f cos(γ ) = I rk d2I t ⇒
(

I rk d f
I t d f

)2

+ 1 − 2
I rk d f
I t d f

cos(γ ) =
(

I rk dI t

I t d f

)2

� 0 ⇒
(

I rk d f
I t d f

− 1

)2

+ 2
I rk d f
I t d f

(1 − cos(γ )) � 0

which implies that I
r
k d f � I t d f = d.Dividingboth sides of (8)withd and considering

that I rk dIt � d, yields
I rk b f � I rk

I t R
I tb f (10)

Therefore, given two pairs of inliers, the rotation matrix
I rk
I t R in (10) can be found in

closed form (see Sect. 6.2).

6.2 2pt RANSAC Minimal Solver

Consider bearing measurements I1b f1 ,
I1b f2 ,

I2b f1 ,
I2b f2 to two features from two

images, and assume that the motion between them is purely rotational, thus

I2b fi = R(
I2
I1
q̄)I1b fi , i = 1, 2

where I2
I1
q̄ is the unit quaternion of rotation.

If (I2b f1 −I1 b f1) × (I2b f2 − I1b f2) �= 0, then the closed-form solution is:

I2
I1
q̄ = γ

[
(I2b f1 −I1 b f1) × (I2b f2 − I1b f2)

(I2b f2 −I1 b f2)
T (I2b f1 + I1b f1)

]
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else
I2
I1
q̄ = η

[
(I2b f1 ×I2 b f2) × (I1b f1 ×I1 b f2)

(I2b f1 ×I2 b f2)
T (I2b f1 ×I2 b f2 +I1 b f1 ×I1 b f2)

]

where γ, η are the normalization factors that ensure unit length.
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Altitude Estimation and Control
of an Insect-Scale Robot with an Onboard
Proximity Sensor

E. Farrell Helbling, Sawyer B. Fuller and Robert J. Wood

1 Introduction

Insect-scale MAVs (50–500mg) are envisioned for many applications, including
hazardous environment exploration and assisted agriculture. However, flight at this
scale poses a control challenge for stability, as rotational acceleration increases with
a decrease in the vehicle’s characteristic length, scaling as l−1 [15]. The vehicle’s
flight dynamics are also unstable, requiring the flight controller to performcontinuous
corrective maneuvers [1]. Therefore, in addition to meeting the stringent mass and
power requirements for vehicles at this scale, onboard sensors must also provide low
latency, high bandwidth information to the active controller.

The Harvard RoboBee (see Fig. 1) is the first MAV under 100mg to lift its own
weight and demonstrate controlled flight under external power [16]; however, an
external, camera-basedmotion capture system (ViconT040System,OxfordUK)was
used to estimate the position and orientation of the robot. For the RoboBee to operate
in unstructured environments, it must be equipped with sensors that can estimate the
vehicle’s state to stabilize the dynamics and sense its external environment. Insects
are a key source of inspiration for flight control, they rely on a multitude of sensory
organs that provide estimates of relevant state variables to use in combination with
reflexive or high-level control architectures to adjust flight accordingly [20].

Vision has been shown to be particularly important for navigation at small scales;
GPS is too imprecise, with an accuracy of 1–10m, and currently available emis-
sive sensors such as radar, scanning laser rangefinders, and sonar do not meet the
weight requirements (∼40mg) of the vehicle [4]. MAVs have adopted vision sensors
for navigation at scales one to two orders of magnitude larger than the RoboBee,
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Fig. 1 The Harvard RoboBee is an 80mg flapping-wing MAV that has demonstrated controlled
flight using external motion capture cameras and reflective markers on the base and nose of the
robot. Here we incorporate an infrared (IR) time-of-flight (ToF) sensor mounted on the base of the
robot and use it to detect and control distance from the ground during flight. Inset: VL6180x (ST
Microelectronics) mounted on a custom flex circuit. The sensor is 5mm in length

including [3, 7]. Other researchers have demonstrated high bandwidth, low latency,
and lightweight biomimetic optical sensors with the goal of stabilizing many aspects
of the RoboBee’s flight, including altitude on fixed guide wires [9], and orientation
after takeoff [11].

In addition to these vision-based sensors, inertial measurement units (IMUs) – a
system consisting of gyroscopes, accelerometers, and magnetometers – have long
been used for flight control and stabilization of larger aircraft. Demand for miniatur-
ization by the consumer electronics industry has resulted in sensors that nowmeet the
mass (∼10–100mg) and power (∼10mW) requirements of the RoboBee and have
been integrated onto the vehicle. These sensors demonstrated low-latency feedback
and sufficient noise rejection, controlling motion about the pitch and yaw axes [12],
as well as providing flight stabilization at takeoff and hovering [10]. In addition to
stabilizing the attitude of the vehicle, the hovering controller from [6] requires esti-
mates of rotation rate about the body axes, the absolute orientation of the vehicle, the
lateral velocity and position, as well as the altitude to hover with asymptotic stability.

In addition to facilitating altitude regulation, an altitude estimate, when combined
with other sensors, can be used to estimate other aspects of the vehicle’s motion.
Future research into autonomous, visually-guided flight at this scale will require
accurate altitude estimation.Anonboard, downward-facing optic flowsensor coupled
with an absolute altitude estimate can provide the vehicle’s forward velocity, as in
[13] and demonstrated by landing honeybees in nature [20].

Here we consider a millimeter-scale infrared (IR) time-of-flight (ToF) sensor to
measure the absolute position of the vehicle from the ground. We demonstrate that
the sensor meets the mass and power requirements of the vehicle while providing
feedback at a sufficient rate (∼50Hz) to control the altitude of the vehicle during
hovering flight.

This paper describes the altitude dynamics of the RoboBee and estimates the
minimum feedback rate necessary to stabilize this degree of freedom (Sect. 2);
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discusses the sensors that meet the mass, power, and frequency requirements as
well as describes the integration and calibration of the ToF sensor onboard the vehi-
cle (Sect. 3); and demonstrates controlled flight of the vehicle with onboard altitude
estimates from the sensor at multiple setpoints (Sect. 4).

2 Altitude Dynamics

The RoboBee used in these experiments was first presented in [17]. Piezoelectric
actuators drive each of the wings, and the system has been shown to produce lift
and body torques to take off, land, hover and perform aggressive maneuvers [6]. The
hovering controller is composed of three sub-controllers – the lateral controller, the
attitude controller, and the altitude controller. In this work, we eliminate the need for
an altitude estimate from Vicon by providing it instead from an onboard sensor (see
Fig. 2).

The altitude controller assumes that the robot is always in the upright orientation –
an assumption that ismaintainedby the attitude controller. This requires that the thrust
vector is always aligned with the z−axis, along the same axis as the gravitational
force. Assuming that the robot maintains an attitude that is nearly upright, the con-
troller can be designed around a linearization of its dynamics at hover, neglecting
second-order effects arising from perturbations from zero attitude.

z

mg

FT

x y

z

laser

ToF Range
       Sensor

z

Fig. 2 Model of the altitude dynamics of the RoboBee and diagram of the flight apparatus. The
altitude controller assumes upright orientation, reducing the model to a single dimension, z. The
thrust force, FT , generated by the flapping wings acts along the body z−axis, with the gravitational
force of the body acting at the center of mass. The robot moves with velocity, ż, along the z−axis.
The sensor (mounted below the robot) estimates the distance of the robot from the ground, ẑ, with
Vicon cameras estimating the lateral position and attitude during flight. The robot is tethered for
power and control signals, as well as sensor communications
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PID Controller RoboBee Dynamics Sensor Dynamics Filter

F(s)=
ki+ kps+ kds2

s
G(s)=

1
ms(s+b)

H(s)= 1
s+1e−tds

d zz

Fig. 3 The closed-loop dynamic model of the robot and sensor for perturbations away from the
hovering setpoint. The PID controller (gains kp , ki , kd ) computes a thrust force FT that minimizes
error between the desired setpoint zd and the measured altitude ẑ. This thrust force acts as an input
to the dynamics of the robot (Eq.1), forcing the robot to a new altitude. The sensor reads this new
altitude with some time delay td and this response is filtered with a low pass filter with cutoff
frequency fc = 20Hz

An understanding of the vehicle dynamics along the body z−axis is required to
determine the maximum latency (sensor time delay) permissible for altitude control.
The altitude dynamics can be described by a linear, second-order system:

z̈ = FT

m
− bż − g , (1)

where FT is the thrust force, m is the mass of the robot (m = 110 × 10−6 kg), b is
the damping constant (b = 1.2 s−1 [5]), and g is the gravitational acceleration.

To determine the maximum latency in sensor estimates, we computed the closed
loop poles of the system and determined the maximum settling time. The altitude
controller is a proportional-integral-derivative (PID) controller that reduces error
between a desired setpoint and the measured height of the robot. A feedforward term
in the controller balances the gravitational force, and thus the input is the thrust force.
The sensor latency is modeled using a second-order Padé approximation of pure time
delay, and the raw sensor data is processed with a low-pass filter ( fc = 20Hz). We
simulated multiple time delays in the range td = 0.01 – 0.5 s (see Fig. 3).

As we are focused on determining the relationship between sensor latency and
the settling time of the system, we used the Ziegler–Nichols method [2] to determine
the controller gains of the system in order to respond to the changes in latency in a
consistent manner.

Figure4 displays the settling time of the systemplotted against various time delays
of sensor estimates for the feedback system shown in Fig. 3. As expected, as the time
delay of the sensor increases, the settling time also increases. It is interesting to note
that the rate of increase in settling time decreases with sensor latency, suggesting
that sensor latency will decrease system performance but does not lead to instability
with proper tuning of the controller. With this relationship, we are able to determine
the minimum sensor time delay for maneuvers that require specific settling times
and analyze the tradeoffs between system performance and power and computation
costs. For our current applications, a 2.5 s settling time is adequate and therefore
sensor latency less than 0.5 s is reasonable.
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Fig. 4 The system settling
time with respect to sensor
latency. Modeling the
closed-loop system in Fig. 3,
we calculated the closed loop
poles of the system to
determine settling time with
various sensor dynamics.
The controller gains at each
trial were computed with the
Ziegler–Nichols method and
the phase margin is
φm = 60◦ for all trials
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3 Sensor Selection and Integration

The current vehicle has severe restrictions on payload mass and onboard power
consumption. While [17] measured lift force sufficient to carry an additional 70mg
payload, themaximumpayload carried by the robot during hovering flightwas 40mg,
to allow for additional control authority in [10].

While the vehicle does not currently carry an onboard power supply, minimizing
the power consumed by sensing is a major consideration for future applications.
The vehicle consumes 19mW of power during flight [16], consistent with similarly
sized insects [8]. We are allotting 10mW towards sensing and computation, based
on power requirements of current high performance sensors.

Table 1 Altitude sensors for Centimeter-Scale Flapping-Wing MAVs

Sensors Mass (mg) Power
(mW)

Frequency Remarks

Accelerometer [10] 24 1 1kHz Integration drift (2m in 1s)

Time-of-flight [21] 20 6 50Hz VCSEL light source
requires regulator

Optical flow [9] 15 15 40Hz Computationally expensive

Pressure [18] 40 3 125Hz Insufficient resolution
(20cm)

Sonar [19] 80 10 40Hz Does not meet mass
constraints

IR range [14] 16 6 10Hz Dependent on reflective
material
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In Table1, we have tabulated a set of candidate sensors that meet the requirements
listed above – accelerometers, IR ToF, optic flow, pressure, sonar, and IR range
detectors – that are currently available. Our evaluation is as follows: accelerometers
lose accuracy over time due to the drift in sensor estimate after integration; additional
velocity or distance sensors would need to be integrated onboard the vehicle to
compensate, increasing the sensor payload of the vehicle. Optic flow sensors have
demonstrated relative altitude control on theRoboBee [9]. Because these sensors only
provide the angular velocity, which depends on both distance and velocity relative to
an object, an additional sensor measuring absolute altitude or lateral velocity would
need to be added to eliminate steady-state error [13]. Similarly scaled vehicles such as
the Delfly [7] have demonstrated controlled altitude with absolute pressure sensors.
The small vertical motion available (30cm) in the flight arena is smaller than the
precision of available pressure sensors which have a resolution of approximately
20cm [18]. Sonar shows promise for altitude estimation, but does not yet meet the
mass requirements for this robot. The IR range detector measures the amount of
reflected light in the receiver. This sensor meets the mass and power requirements,
but has a low feedback rate and is highly dependent on the material off of which the
IR light is reflecting.We also found that the sensor signal can saturate in the presence
of ambient light. The ToF sensor, while needing an external voltage regulator, has low
mass, sufficient bandwidth, and low latency for altitude control in these experiments.

3.1 Time-of-Flight Sensor

As a first step in altitude control, we consider an IR ToF range detector (VL6180x,
STMicroelectronics). Time-of-Flight sensors compute distance by measuring the
time between the transmission and reception of an IR signal generated by the sensor.
This distinguishes them from the more common IR range detectors that measure the
amount of reflected light in the receiver. This was an important consideration given
that the vehicle’s other degrees of freedom are currently sensed using Vicon motion
capture cameras that emit IR light.

3.1.1 Integration

To minimize component weight, we made a custom flex circuit using a copper-
clad polyimide film (18µm copper, 12.7µm kapton) with a capacitor on the power
line to help regulate the charge close to the sensor (see Fig. 1 inset). Five 51-gauge
copper wires (approximately 0.5m long) provided power to the sensor and connect
the data and clock lines for I2C communication. During operation, the sensor drew
approximately 20mA of current at regular intervals to pulse the IRVCSEL (Vertical-
Cavity Surface-Emitting Laser) light source [21]. This amount of current traveling
through the wire (approximately 80Ω/m) caused the voltage at the sensor to drop
below operating conditions. We connected a fifth wire to the input voltage line which
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served as a feedback line to an off board linear voltage regulator (NCP3337, ON
Semiconductor). This provided a smooth input voltage to the sensor. The weight of
the entire structure was 27mg. We mounted the sensor on the base of the robot, with
the transmitter and receiver directed at the ground (see Fig. 1). This position is close
to the center of mass, thus preventing significant moments about any of the body
axes. Because the sensor is light-based, there are no interactions between the robot’s
wing beat frequency and the sensor readings.

An ArduinoMega (ATMega256, Atmel Corporation) communicates with the sen-
sor over I2C at approximately 60Hz and sends the range response to a computer
running xPC Target (Mathworks) through a serial (RS232) connection at 115kbps.
This communication scheme introduces about 20ms of latency, 15ms of which are
dedicated to the sensor’s ranging computation and 5ms to communication. This pro-
duces a feedback rate of approximately 50Hz, a tenth of the speed of the Vicon
system that is currently being used to control the vehicle’s altitude, but nominally
sufficient according to the calculations in Sect. 2.

3.1.2 Calibration

We calibrated the sensor measurements by manually adjusting the height of the sen-
sor while attached to the robot in the flight arena. We tracked the vehicle’s altitude
using theVicon systemwhile simultaneously recording the sensor’s output.Wemade
the decision to calibrate the sensor against the current Vicon estimates, as this Vicon
system has shown sufficient accuracy for altitude control in previous experiments
[6, 17]. Figure5 displays sensor output (scaled to meters) recorded against the ref-
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Fig. 5 Sensor Calibration. a Sensor measurements (gray dots) were taken simultaneously with
Vicon measurements (ground truth). A best fit line (teal) was computed: ẑ = 0.96z + 0.030mm,
where the offset is primarily due to the internal calibration of the sensor, which cannot detect
distances less than 10mm, and the calibration of theVicon arena.bSensormeasurements (gray dots)
plotted on top of the Vicon measurement (blue line) with respect to time. The sensor measurements
were filtered using a second-order low-pass Butterworth filter, fc = 16Hz (grey line). This filter
introduced an 80ms latency between Vicon and the sensor measurement
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erence height for a number of these trials. A line of best fit was calculated for this
collection of measurements, ẑ = Az + B, where A = 0.96 and B = 0.030mm. The
slope of the line indicates that the sensor is accurately reading changes in altitude at
the millimeter scale. The offset compensates for both the sensor’s internal offset (the
sensor is unable to detect distances less than 10mm), as well as the calibration of
the Vicon system. The estimates also become unreliable close to the surface as well
as above 14cm, providing an operating range for accurate altitude estimation. The
error in the sensor estimates increases with height at a roughly constant 3% rate.

Using this linear fit, the sensormeasurements were plotted alongside the reference
height over a period of approximately six seconds to characterize any drift the sensor
may exhibit as well as to determine the effect of the latency on the estimated height.
As expected, the estimated measurement aligns with the reference height over all
time without any noticeable drift in the sensor. With this data, we also estimate
that the sensor measurements have td = 10ms of latency compared to the Vicon
measurements. This latency increases to approximately td = 80ms when the sensor
measurements are filtered with a second-order low-pass Butterworth filter ( fc =
16Hz), dictating a settling time of approximately 2 s, based on the results in Fig. 4.

4 Flight Experiments

The robot is not equipped with a power source, computational capability, or a full
sensor suite, and is flown inside an controlled flight arena with a volume of approx-
imately 0.3m × 0.3m × 0.3m. Six motion capture cameras track the position and
orientation of the robot during flight. The control computation is done on the xPC
Target at a rate of 5kHz. The xPC Target commands the power signal through a
digital-to-analog converter and high voltage amplifiers. Power is supplied through a
tether of four 54-gauge copper wires.

Flight testing begins with open-loop tuning to determine the torque biases about
pitch and roll of the robot. To tune the robot, we begin by applying no net torque
to the vehicle and observe the trajectory of the vehicle after takeoff. We then apply
trim values to oppose the observed torques. This process is repeated until the robot’s
takeoff is vertically upright.

For all flights mentioned in this section, the robot is attached to a three-filament
kevlar thread and suspended above the surface to prevent wear on both the wings and
wing hinges during crash landings. These filaments (approximately 30cm in length)
have negligible mass (0.2mg) compared to that of the robot with the onboard sensor.
In addition, we found that the filaments produce negligible torques on the robot
during flight. A 10cm thread cannot support its own weight (20µg) when extended
horizontally, indicating that the bundle cannot exert more than 0.02µNm of torque
on the robot – small compared to the 0.35µNm of torque produced around the pitch
and roll axes during hovering flight.

The altitude controller used during these flight experiments is described in detail in
Sect. 2. The hovering flight experiments were done inmultiple steps – first the vehicle
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was commanded to hover using Vicon estimates for altitude to tune the controller
gains and provide a baseline flight performance for our results. Altitude was then
controlled with estimates from the onboard sensor – four flights were commanded
at an altitude of 8cm to demonstrate repeatability and one flight at an altitude of
10cm to test the range of the sensor. The attitude and lateral controllers used Vicon
estimates of position and orientation for all flights. These are the first demonstrations
of controlled altitude with onboard sensing in free flight.

4.1 Vicon Estimates

Once we determined the robot’s torque biases, we had to determine the controller
gains in subsequent closed loop experiments. To first ensure that the robot had suf-
ficient control authority to hover stably about a setpoint, Vicon was used to pro-
vide the estimated altitude measurement. The additional 27mg at the base of the
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Fig. 6 Closed Loop Flight Experiments. a The robot is commanded to reach the setpoint altitude of
8cm (red line) with the sensor providing altitude feedback. The sensor measurement (dashed) and
the Vicon reference altitude (solid) are plotted. b The mean and standard deviation of four hovering
flight experiments with altitude estimation provided by the sensor are plotted (blue). For reference,
the baseline hovering flight with altitude estimation from Vicon is plotted (black)
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robot requires larger thrust forces, and therefore larger flapping amplitudes, to lift
off the ground. The black line in Fig. 6 gives an example altitude trajectory of the
vehicle during a hovering flight. The vehicle reaches and maintains the altitude set-
point during the 6 s flight (RMS error between the trajectory and the setpoint is
7mm).

4.2 Sensor Estimates

Having determined that the loaded robot has the control authority to stably hover
around a set point, the next step was to determine if the sensor feedback rate was
sufficient to control altitude during free-flight. In these flight experiments, the fil-
tered sensor measurements provided input to the altitude controller, while Vicon
estimates provided the lateral position and orientation of the robot to stabilize the
attitude dynamics during flight. Figure6a provides an example of a hovering flight
with feedback from the ToF sensor. The robot takes off and reaches the setpoint in
approximately three seconds. The sensor output tracks the Vicon measurement for
the majority of the flight. The largest difference is the sharp downward peak between
two and three seconds. This error is most likely due to one of the tethers obstruct-
ing the sensor’s view of the ground. Three additional trials were performed at this
desired setpoint. The mean and standard deviation of these flights can be seen in
Fig. 6b alongside the Vicon baseline flight. In these trials, the robot is able to reach
the setpoint and sustain hovering flight with an average RMS error of 13.75mm from
the setpoint. We then selected a second altitude setpoint to demonstrate the sensor’s
ability to provide accurate feedback at other altitudes (see Fig. 7). A sample flight
sequence is shown in Fig. 8, where the robot reaches the desired setpoint between
1–2s and maintains that altitude for the remainder of the flight.

Fig. 7 Sensor Feedback for
Hovering Flight at 10cm
altitude. The flight is plotted
in time, with the setpoint
shown in red, sensor data
(dashed line), and the Vicon
data (solid line)

0.12

0.1

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6

Time (s)

H
ei

gh
t (

m
)



Altitude Estimation and Control … 67

Fig. 8 Sample Flight Sequence. The robot begins at the start altitude of approximately 3cm, begins
flying to the desired altitude at 1 s, reaches the setpoint and maintains that altitude for the remainder
of the flight, as demonstrated by the images at 3 and 5s

Fig. 9 Sensor Calibration
Verification. The sensor
measurements for all flight
experiments are plotted
against the Vicon ground
truth estimate. The linear
trend with unity slope held
for all flights, with outliers
accounting for less than 5%
of all measurements
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4.3 Discussion

Closed loop flights with sensor estimates in the feedback loop controlled the altitude
of the robot during hovering flight with altitude error of less than 1.5cm, or within a
half body length of the robot. These experiments also demonstrated that controlled
hovering with sensor estimates in the feedback loop had twice the RMS error of the
flights with Vicon feedback. To investigate this error, we verified the sensor measure-
ments against the reference height from Vicon (see Fig. 9). The sensor performed as
expected across all flights, with less than 5% of the measurements deviating from
the linear trend. Outliers where the sensor measurement was lower than the expected
value can be explained by an occluded view of the ground from the tether, and areas
where the sensor measurement were higher are due to the attitude of the vehicle
moving away from the vertical axis. Practically, the robot does not tilt away from the
vertical axis more than 15◦. At an altitude of approximately 10cm, this second-order
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effect will cause deviations in sensor measurement of 4mm larger than the true value.
In the future, accurate attitude estimation may not be available and reliance on these
estimates for correction may be impractical. However, given the limited number of
outliers, this effect is negligible and the source of error is not sensor measurement.

Previous studies [11] have shown that the power tether can produce large torques
on the robot during flight, making the vehicle more difficult to control during hover.
The addition of a second power tether for sensor communication only increases this
effect. Additional tuning will be necessary to compensate for these effects.

5 Conclusions

Altitude sensing is a necessary component for vision-based navigation. In this work,
we determined a relationship between sensor latency and settling time for the closed-
loop altitude dynamics of this vehicle, elucidating the feedback requirements for
various altitude maneuvers. With this information, we selected a sensor that met the
mass, power, and latency constraints of the vehicle to perform altitude estimation
in free flight. The closed loop flights with sensor estimates in the feedback loop are
the first demonstrations of controlled altitude with onboard estimation for an insect-
scale robot in free flight. These flights, coupled with the results from the calibration
experiments, demonstrate that the sensor is able to accurately measure altitude, but
further work is needed in tuning the controller gains to lower the average error about
the desired setpoint.

The low mass of the sensor allows for additional payload, which can be used for
combinations of sensors. Future work into sensory fusion, including the integration
of an IMU to estimate attitude (as demonstrated in [10]) will enable the RoboBee to
perform short hovering flights with only onboard sensory information. Additionally,
autonomous visual navigation can be achieved with the integration of an onboard
optic flow sensor in combination with an attitude estimate from the IMU and an
absolute distance measure from the proximity sensor. These experiments will be the
first demonstrations of sensor autonomy on an at-scale robotic insect. This work has
provided an important step towards this goal.

This work can also be applied to other MAVs, especially those with stringent
payload, power or computational requirements. Given the short range of this sensor,
this sensor is impractical for altitude control over a large variation in height. However,
a ToF sensor could provide a precise measure of proximity and be combined with
a pressure sensor to provide a coarse altitude estimate. We can envision this sensor
being used for close range object detection or obstacle avoidance.
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Tensile Web Construction and Perching
with Nano Aerial Vehicles

Adam Braithwaite, Talib Alhinai, Maximilian Haas-Heger,
Edward McFarlane and Mirko Kovač

1 Introduction

Multi-rotor micro aerial vehicles (MAVs) are a subject of intense interest within both
the robotics community and society at large, with industrial interest also expand-
ing rapidly. These vehicles have been proposed for a myriad of applications, from
airborne surveillance and mapping to large-scale construction projects. The funda-
mental nature of rotary aircraft lends them the ability to maintain a relatively simple
hover and excel at low-velocity, high accuracymanoeuvring. However, such vehicles
also exhibit significant drawbacks; they have relatively poor flight endurance, and
are highly susceptible to aerodynamic effects and interference from the environment
when in close proximity to external surfaces, and thus struggle to maintain static
flight in closely confined spaces. In this publication, we address and implement a
method to mitigate flight time limitations for rotary MAVs by constructing a struc-
ture within the immediate environment and subsequently perching upon the same
structure (Fig. 1).

As a means prolonging the endurance of rotary-craft MAVs, where typical flight
times are in the order of 10–20min [1], several research groups have investigated
perching as a viable power management solution. Some of the approaches pro-
posed to perch to vertical surfaces and ceilings include using magnetic adhesion
[2], micro spines [3–5], electrical adhesion [6, 7], adhesive pads [8, 9], and hot-melt
adhesives [10].

A separate set of works has been presented on construction systems utilising
aerial robots, usually making use of pre-fabricated components and connectors.
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Aerial Robotics Laboratory Department of Aeronautics,
Imperial College London, London, UK
e-mail: talib.al-hinai13@imperial.ac.uk

M. Kovač
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(a) (b)

(c)

Fig. 1 a and b Nano quadrotors with a mass of 26g each carrying construction and perching
payloads respectively. The constructor payload consists of a spool of string intended for creation
and utilization of a tensile web structure. The percher payload consists of a hook at the end of a
connecting string intended to latch on to an overhanging support element. c Physical realisation of
our web structure, created by NAVs, with a quadrotor perched for an extended duration

For example, [11] demonstrates the assembly of a beam-based structure by flying
robots, relying on magnetic connectors to join the various construction components.
Another project describes a method by which a mid-sized quadrotor MAV assem-
bles a rope structure between two previously placed rigid, parallel elements [12].
Various other approaches to aerial robotic construction with soft components have
also been demonstrated [13, 14]; we recently presented a flying robot equipped
with a mechanism to deposit polyurethane foam to create or connect structures in
flight [15].

In this paper, we present construction and perching mechanisms to enable multi-
rotor MAVs across a wide range of scales to maintain and control their relative
altitude whilst perched upon an external structure, requiring no active attitude control
and thus the use of only a single motor. To maximize the range of applicability of
such a scheme in tightly constrained environments, we decide to focus on sub-
miniature multi-rotor MAVs or nano aerial vehicles (NAVs), hereby defining an
NAV as a robot with a total mass of no more than 30g and a span of less than 10cm.
Employment of such a system is envisaged in complex environments in scenarios
requiring long-term position maintenance, such as monitoring inaccessible areas of
remote rainforests for environmental variations or structural health monitoring of
bridge structures. Similarly, such a system may be employed to inspect and monitor
for damage around industrial sites otherwise considered difficult to access, such
as around and within pipework intrinsic to petrochemical refinery installations. To
facilitate such monitoring, additional sensors (light, temperature, or a video camera)
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may be mounted to these NAVs and activated when successfully perched in the
required area.

Although our contribution is conceptually similar to [12]; it differs in three distinct
ways. Firstly, our approach to construction is collective. We demonstrate how multi-
ple NAVs can cooperate to complete certain construction tasks. Second, we employ
time-stamped trajectories that adapt with respect to the position of physical supports
in the environment. Thirdly, we demonstrate a string-based perching mechanism for
low-power altitude control. In particular, our approach distinguishes itself in terms
of leveraging aerial construction as means of allowing a robot to extend control over
an environment with an example shown of an NAV constructing a structure and sub-
sequently using the said structure with the purpose of perching for long-duration
monitoring.

2 Equipment and Testing Methodology

The flight arena in the Aerial Robotics Laboratory at Imperial College London is a
protected area of 5.5m by 10.5m, with a maximum effective flight altitude of 6.2m.
The arena is equipped with 16 Vicon T40-S cameras, each with a sensor resolution
of 4 megapixels and system update rate of 400Hz. The system is capable of tracking
retroreflective markers or near-IR LEDs to sub-millimetre accuracy throughout the
available flight space, providing high accuracy ground-truth localization for as many
individual objects as required.

In addition to this equipment, we also simulate the fixed anchor points we may
expect to encounter in a natural environment, such as tree branches or a forest canopy.
To create a representative parallel we add two artificial coniferous trees to the arena,
each mounted on a fixed wooden base to provide tree-like surfaces 1–2m above the
arena floor.

To maximise the range of applicability of this construction scheme, we require
aerial robots of a sufficiently small size to enable access to all but themost constricted
areas. Many research-grade MAVs have overall spans of 0.5m or above [16], but we
desire a dramatically smaller platform on which to build. In addition to increasing
the range of accessible environments, reducing the scale of the robots also tends to
reduce the cost and thus allow the deployment of larger swarms with similar capital
expenditure, increasing the robustness and failure tolerance of such a scheme [17].

Following a comprehensive review of the state of the art and market availability,
we selected a commercially available system appearing to suit the needs of this task.
The Crazyflie nano-quadrotor [18] has an overall span of 9cm, a 32 bit ARM Cortex
M3microprocessor for flight control, a high-quality inertial measurement unit (IMU)
consisting of a 3-axis accelerometer, gyroscope and magnetometer, and a barometer
to together provide 10 degree of freedom state measurement. As with virtually any
method of pressure measurement operating in non-static flow across small altitude
fluctuations, accuracy is relatively poor and thus altitude data is derived entirely from
the Vicon measurements. All other sensors are used to provide state estimations of
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each NAV and thus provide closed-loop attitude control. Each NAV weighs 18.8g
with a 170mAh lithium polymer (LiPo) battery, providing around 7min of effective
hover time when no additional payload is added.

3 Web Construction

Two distinct payloads are proposed for the NAVs involved in this construction. The
first should enable amethodof thread attachment to the external environment, amech-
anism by which the thread may be deployed simply by the motion of the quadrotor
(but retainedwhilst hovering) and amethod of completing the structure and detaching
to return to base. The second payload is attached to one or more quadrotors aiming
to perch on the structure created, and must therefore provide a method of suspending
the NAV in a state from which flight can be consistently recovered by the control
scheme employed. A mechanism to control the height of the quadrotor below the
structure is also required to extend the capability of such suspended NAVs, but this
must exhibit the minimum possible energy consumption to demonstrate significant
advantages over simple hovering.

We use the term web to describe the tensile structures we aim to create, consisting
of multiple interlinked non-rigid elements. When assembling and perching on a web,
we are especially interested in the three main properties: (1) Accuracy of the NAV
trajectories and hence accuracy of placement and geometric characteristics of the
web produced. (2) Structural properties of the web, including maximum loading in a
vertical plane to characterise the ability of the structure to support oneormore perched
NAVs below. (3) The ability of the perchingNAVs to autonomously approach,mount,
dismount and leave the web structure without causing material detriment to the long-
term integrity of the web.

We will next consider how to best implement and optimize two modular payloads
enabling NAVs to specialize in different tasks. We will use the term constructor and
percher to refer to the packages designed to enable the NAVs to construct the web
structure and dock to a component tensile element of the structure when completed,
respectively.

3.1 Construction

To enable assembly of the web, we define our target process to be the robust deploy-
ment of multiple discrete tensile elements between pre-existing structures. The con-
structor payloads aim to enable deployment of the webmaterial through only applied
tensile force carried by the material itself; that is, the deployment mechanisms on
the modules themselves are entirely passive. We therefore require the initial force
for deployment to be greater then the force required to overcome the static friction
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Tree Tree

Trajectory of first   
NAV constructor 

Trajectory of second 
NAV constructor 

Fig. 2 Web construction about two arbitrary tree structures. The flexible structural elements are
first secured to the anchor point by means of a lightweight hook, before the NAV winds the thread
around the tree for as many complete rotations required to support the desired loading. The NAVs
then complete a linking node in the centre before returning to secure the web

between the spool and the supporting central rod and hence begin to unspool the
thread from the construction module, approximately 23mN.

To model unstructured anchor points to simulate those present in a natural envi-
ronment, we employ two artificial trees mounted on supports to reach a peak height
of around 2m (Fig. 2). The foliage of these trees is arranged in a relatively unstruc-
tured pattern (with no convenient protruding sections for attachment) to best emulate
coniferouswoodland in the realworld. To enable reliable connectionwith these struc-
tures, we choose to design a small hook to embed itself within the foliage of the tree
and provide initial resistance to small forces. This connection may then be further
reinforced via trajectory winding methods discussed later in this paper. The precise
configuration of attachment mechanism employed is heavily influenced by the cur-
rent experimental set-up (that is, the use of these particular tree analogues), but the
method may be optimized or altered to suit differing environments, such as small
magnets for metallic objects or larger hooks for less dense foliage - we therefore
present all methods and mechanisms other than the particular hook design without
loss of generality. Our hooks feature 4 prongs in a radial configuration with a total
diameter of 14mmwith a tooth inclination of 50◦. Web material choice was based on
weight, strength and roughness/static friction.We require sufficient roughness to sus-
tain a sufficient reaction force by static friction against the tree foliage to oppose that
exerted downwards when other NAVs perch upon the structure. Silk thread, 0.35mm
diameter, suited this criteria with 8m of thread weighing under 1g and providing a
high enough coefficient of friction to resist an applied load of 85g in the web under
testing, sufficient to support three perched NAVs.

For stability and ease of control, we desire the centre of gravity to be coincident
with the centre of force applied to the NAV - for these symmetric quadrotors in
unrestrained flight, this means directly below the centre of the body. The battery is
positioned below the centre of the NAVwith the construction pack extended directly
below this. It carries a spool capable of holding 8m of silk threadingwith a separately
rotating arm assisting in deployment and controlling the release point tominimize the
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magnitude of out-of-plane forces on the thread (Fn,Fb in the normal and binormal
directions respectively). Assuming these forces are small compared to the in-plane
component, Ft , the torque, τ , or moment induced on the quadrotor by the tension
force in the thread is linearly related to the distance, r, to the quadrotor centre of
mass.

Although the pitch and rollmoments exerted on theNAVshould be relatively time-
invariant if a constant force is applied to the thread, the torque about the vertical body
axis will vary as string is removed from the reel and thus the effective separation
between the detachment point and the centre of mass changes. As a result, we specify
heading direction as unconstrained, allowing any orientation in flight and therefore
meaning the controller is relatively uninfluenced by this variable load. The empty
mass of the constructor payload is 0.89g, with a maximum capacity of 8m of silk
string giving a loaded mass of approximately 2g.

3.2 Perching

The percher payload allows NAVs to dock to the web and maintain active vertical
control by spooling and despooling the connected thread. The docking procedure is
accomplished by an NAV following a trajectory perpendicular to the web approx-
imately 5cm above the intended point of attachment, with the connection thread
suspended a short distance below. The NAV moves across the web from one side,
and once crossing slowly decreases the motor thrust whilst maintaining slow forward
flight to avoid any interference between the thread and propellers. A hook at the end of
the connecting thread then catches the web and creates a robust attachment between
the web structure and the perched NAV (Fig. 3). To avoid the entanglement of the
thread with the propellers, we maintain a π /4 yaw offset from the direction of the
thread on which to be perched - provided the tension is maintained, the ensures that
the thread must pass between two arms and the ∼2cm gap between the propellers.

Fig. 3 NAV with perching
payload attaching to tensile
structure, suspending below
to enable passive
maintenance of position, and
displaying one method of
dismounting from the
structure and retaking active
flight, particularly suited to
constrained environments
with limited horizontal space
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To resume flight, we may either de-spool the remaining thread from the percher
module thus detaching from the end of the thread, or effectively perform the docking
procedure in reverse. This second method is functionally preferable as the system is
then capable of re-perching on the web in future, but the mechanism chosen in any
particular scenario is dependent upon environmental constraints. The first method to
dismount requires sufficient vertical space to fully extend the thread, but negligible
horizontal space, whilst the second method requires less vertical space but a greater
horizontal travel distance perpendicular to the web to ensure the connecting thread
is continually taut.

The percher module incorporates a brushed DC motor to enable active altitude
control whilst suspended from the thread - given the excellent power/weight ratio
of the Crazyflie motors, we elect to use one more of these for this purpose. The
motor torque required to sustain ascent of the NAV whilst perched increases linearly
with the effective diameter of the thread spool. Considering a maximum permitted
NAV mass of 25g (set by the flight payload limit), we prescribe a maximum spool
diameter of 6mm, allowing approximately 2m of thread. We require the motor exert
sufficient force to exceed both the static friction and the force required to lift the NAV,
approximately 0.3N, and so employ a gearmechanism to increase the effective torque
by a factor of 5. The rotational speed is controlled by pulse width modulation of the
motor, at 100Hz, varying speed by altering the duty cycle.

Damping of vertical motion along the connecting thread is achieved by by a
combination of static friction and active, motor-enabled braking. The static friction
of the system is sufficient to maintain the altitude of the NAV whilst stationary,
allowing station keeping with minimal system current draw used during standby
(< 10mA). For comparison, active hovering requires more than 2A from the 4 flight
motors, at minimum payload weights. Dynamic manoeuvres whilst perched require
active braking. Active braking is achieved by our motor controller, applying up to
100mA to rapidly damp motion when required. Power and control to the modules is
provided through an expansion header interface attached to the Crazyflie NAV.

4 Trajectory Planning and Control

4.1 Dynamic Model

Using a Cartesian co-ordinate system, we define the quadrotor body frame as B and
the world frame as W . We choose to dissociate the yaw rotation (ψ) from the local
pitch and roll angles (φ and θ respectively) and thus decompose our rotationmatrix in
SO(3) into two separate components, W RS and S RB . The frame S is an intermediate
state, accounting for the yaw rotation of B relative to W but not pitch or roll.
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W RS =
⎡
⎣
cosψ −sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦ (1)

S RB =
⎡
⎣

cosθ sinφsinθ cosφsinθ

0 cosφ −sinφ

−sinθ sinφcosθ cosφcosθ

⎤
⎦ (2)

W RB = W RS
S RB (3)

Wedenote the angular velocity about the bodyaxes [xB , yB, zB]T as [pB, qB, rB]T .
The rotational velocity relative to the world frame, henceforth denoted vBW for
brevity, may now be expressed as a function of the body angular velocity and these
two rotation matrices. Note that the angular velocity in the body frame is considered
analogous to the derivatives of the body frame roll, pitch and yaw angles prior to
transformation.

vBW = W RB

⎡
⎣
pB
qB
rB

⎤
⎦ (4)

The angular acceleration of the body relative to the world frame is then computed
via Euler’s rigid body equations, where I is the body inertia matrix aligned with
body co-ordinates and centred at the body centre of mass and L is the length of the
moment arm, in practise the distance between each motor and the body centre of
mass. The force Fi and moment Mi are modelled as functions of the square of motor
angular velocity (ω2).

I v̇BW =
⎡
⎣

L(F2 − F4)

L(F3 − F1)

M1 − M2 + M3 − M4

⎤
⎦ −

⎡
⎣
pB
qB
rB

⎤
⎦ × I

⎡
⎣
pB
qB
rB

⎤
⎦ (5)

Now considering the linear dynamics, we denote the position vector of the body
centre of mass relative to the world frame as r. From a free body approach, the
forces acting on the system are gravity, acting vertically downwards in the world
frame, and the lift contribution from each propeller acting vertically upwards in the
body frame. Applying an appropriate sequence of rotations as discussed above and
applying Newton’s equations of motion gives a model of the linear dynamics of the
quadrotor as a function of W RB , the body mass m and the force contribution from
each propeller, Fi .

mr̈ =
⎡
⎣

0
0

−mg

⎤
⎦ + W RB

⎡
⎣

0
0

ΣFi

⎤
⎦ (6)
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Whilst the quadrotor is deploying the thread as it is held in tension against the
previous node, wemust consider the effect of this tensile force upon the flight dynam-
ics of the NAV. Relative to the rotational centre of the quadrotor, this will result in
both a linear force in an arbitrary direction and potential moments in all rotational
degrees of freedom. These moments are determined by the angles subtended by the
string relative to the quadrotor in three-dimensional space, and the position of the
thread guide hole in the arm of the construction pack with respect to the centre of the
vehicle. We denote the angle of the incoming thread as φt , θt and ψt in the body roll,
pitch and yaw axes respectively, assuming a linear link between the current position
of the quadrotor and the centre of the previous node - for linking nodes, this is the
target intercept of both thread elements, and for attachment to each tree we assume
the thread to extend from the centre point of the circular winding trajectory used to
create the attachment. Both assumptions here are materially valid provided we keep
the thread as taut as possible throughout the process, and the winding radius about
each tree is relatively small; in practise, we find that the thread will leave the tree
from within around 5cm of the target centre point. By denoting ηa as the angle of the
arm relative to the positive longitudinal body axis of the NAV, |F | as the magnitude
of the string tension and LP as the construction pack arm length, the contribution to
pitching moments induced by the tension in the thread in body axes (Mφ, Mθ , Mψ )
can be expressed as:

M =
⎛
⎝
Mφ

Mθ

Mψ

⎞
⎠ = |F |LP R

⎛
⎝
sinηa
cosηa
1

⎞
⎠ (7)

R =
⎡
⎣
cφt cθt − sφt sψt sθt −cφt sψt cψt sθt + cθt sφt sψt

cθt sψt + cψt sφt sθt cφt cψt sψt sθt − cψt cθt sφt

−cφt sθt sφt cφt cθt

⎤
⎦ (8)

where c and s denote cos and sin, respectively. Although this offers a reasonable
estimation, the precise temporal magnitudes and directions of these loads in reality
are difficult to model accurately, as they depend on numerous factors not considered
here including roughness of the particular section of thread, and thus added forces
from friction, and any movement of the element attachment to the anchor point at
the previous node, therefore changing the computed relative angles of thread and
quadrotor. In practise, we assume that |F | is reasonably constant throughout the
thread extrusion process, measured at 23mN (±2mN) in static testing, and therefore
take this as a constant value throughout all web construction segments of the flight.
We derive the incident thread angles by assuming a linear link between the centre of
the target attachment point and the centre of the NAV, and assume an attachment is
made between the thread and the anchor point when the NAV passes within 0.2m of
the horizontal centre of the target.
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4.2 Attitude Control

The desired orientation matrix, W RB is generated from a row of direction vectors in
the body frame, the values of each being derived from the orientation of the desired
acceleration vector (r̈t ) provided by a higher-level position controller.

W RB = [xB, yB, zB] (9)

We first observe that the thrust force generated by the quadrotor always acts ver-
tically upwards in the body frame, and so we must stipulate that the third component
of the body axes zB must be aligned with the desired acceleration vector. This there-
fore generates the first of our 4 required control inputs - the desired force vector -
u1 = mr̈t · zB − Ft where zB is a unit vector in the zB direction and Ft the force
vector generated by the tension in the string. The error in the r̈t direction is therefore
purely in zB , and we can hence define the unit vector of the error as e3 = [0, 0, 1]T
so that the desired rotation matrix W Rt

B must align this vector with the target ztB .

W Rt
Be3 = ztB (10)

Given the specified yaw angle from the position control, ψt , we may easily com-
pute the desired orientation of the xS and yS unit vectors in the frame S (as discussed
earlier, this frame incorporates yaw components but not pitch and roll) via a standard
2D rotation.

[
xtS
ytS

]
=

[
cosψt sinψt

−sinψt cosψt

] [
xtW
ytW

]
(11)

The desired orientation of yB , yB,t is now given by the unit vector in the normal
direction to ztB and x

t
C , andfinally the desired orientation of xB computed as a function

of the other two vectors to complete the Cartesian set.

ytB = ztB × xtC
||ztB × xtC || (12)

xtB = ytB × ztB (13)

The orientation error is defined as er , and given as a function of the target and
current orientationmatrices.We also define a corresponding error in the body angular
velocity ev to permit the implementation of a PD-style feedback controller.

er = 1

2
(W RtT

B
W RB − W RT

B
W Rt

B)∨ (14)

ev = B RW (vtBW − vBW ) (15)
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Note that ∨ represents an inverted hat-map, or vee-map, which transforms the sys-
tem from SO(3) to a vector er ∈ R

3. We then derive the desired moments about each
body frame axis (our remaining three control inputs) using PD feedback on these
errors, for i = 2 : 4. At this stage, our estimated induced moments from the dis-
pensing thread are subtracted from the control inputs to compensate for the external
forces acting on the NAV.

ui = kper,i + kdev,i − Mi (16)

An initial offset to achieve theoretical hover must be added to the speed target
for each motor, and is easily calculated for a free-flying NAV by a simple force
balance: equating the quadrotor weight mg projected along the zB axis, and the total
force generated by all rotors rotating at an equal and constant speed to balance the
expression. This offset is denoted as u1,0 below:

u1,0 =
√
mgzW · zB

4kF
(17)

⎡
⎢⎢⎣

ωt
1

ωt
2

ωt
3

ωt
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
k1 0 −k1L k2
k1 k1L 0 −k2
k1 0 k1L k2
k1 −k1L 0 −k2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u1,0 + u1

u2
u3
u4

⎤
⎥⎥⎦ (18)

A transformationmatrix dependent upon the geometry of the quadrotor arms - this
case assumes four, equally spaced arms numbered anti-clockwise with the first rotor
on the positive xB axis - then maps the control inputs appropriately. The constants
k1 and k2 match the control outputs to physical forces and moments exerted by the
particular motor/propeller combination on these NAVs, linearised about the hover
point.

4.3 Position Control

When constructing tensile structures using ropes or wires we distinguish between
two types of node. Nodes placed on pre-existing environmental elements (such as
the trees employed here) act as supports to the structure and hence are referred
to as supporting nodes. Nodes created by two or more quadrotors interlinking their
respective web elements as to connect two tensile structures are referred to as linking
nodes. The methodology used to create a node depends on which type of node is to
be created; we devise trajectory elements for each.

The purpose of a supporting node is to serve as a rigid, load-bearing anchor to
the tensile structure. It must therefore sustain tensile forces arising due to both the
weight of the structure itself and any payload attached. To create a node capable of
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Fig. 4 Linking node created by intersection of trajectories of two NAVs each carrying a trailing
structural element. The tensile components intersect and are subsequently pulled tight and anchored
by both NAVs to create a complete tensile structure capable of supporting loads

withstanding these tensile forces, we consider the friction effect between the web
component and the supporting body. By creating multiple turns around an object,
the frictional force may be increased to a sufficient level to support the desired
structure. To model the required number of turns for any given element, we consider
the expected forces in each element of the web and then refer to the Capstan equation
[19]. For tension applied to the two ends of a string, T1 and T2, static coefficient of
friction μ, and total angle swept by all turns of the string θ , the equation dictates that
the string will remain static if the following condition is satisfied:

T2 < T1e
μ|θ | (19)

The first manoeuvre required to create such a node is a close pass of the tree to
attach the construction hook andprovide an initial attachment between the tree and the
web. Multiple encirclements of the anchor point then follow to deposit the required
length of string for the tensile forces expected, as determined by Eq.19. The angle
θ is directly related to the number of encirclements and hence the tensile strength of
the support increases exponentially with the number of revolutions performed.

A linking node (Fig. 4) connects two structural elements, each attached to their
respective supporting nodes. To achieve this, twoNAVs approach each other on offset
trajectories until they reach thepoint ofminimumseparationbetween them.They then
fly opposing semicircles in the horizontal plane so as to switch positions and create a
link between their respectiveweb elements. The altitude of both quadrotors is linearly
increased by a total of 0.5m throughout this manoeuvre to avoid the collision of any
vehicle with the string deposited by the other. Both NAVs return to their respective
original positions horizontally aligned with the supporting nodes will to pull the
thread components taut. The tension inherent in the resulting linked structure will
equal the tension required to unroll additional thread from the construction module,
which is then formed into a further supporting node to complete this element of
the structure. Linking nodes between more than two elements may be created by
employing more than two quadrotors in the manoeuvre described - one for each
element.

We employ aPID-based feedback controller to act on all linear degrees of freedom.
By tuning two sets of gains, one exhibiting stiff behaviour for optimal trajectory
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Fig. 5 System architecture for our NAV construction team.We utilise the ROS package to interface
with theViconmotion capture systemand allNAVs through a single radio dongle, running individual
trajectory controllers, timers and error checkers for each NAV before passing output commands
through the Crazyflie API

accuracy, and one softer system permitting rejection of disturbances of up to 4 body
lengths, we optimise each section of the trajectory individually. The stiff controller
is employed in all free-flight and attachment manoeuvres, as well as at the apex of
linking nodes when tensile elements are temporarily allowed to slacken; this ensures
accurate and robust attachment when creating nodes, where significant deviations
from the desired path would cause the manoeuvre to fail. The softer controller is
used for all flight involving the active maintenance of tension in structural elements,
to permit the NAV to recover from any significant disturbance generated by the
structural forces exerted upon it, whilst maintaining flight stability. This scheme
works in tandem with the deviation threshold limit described below to complete the
entire flight control package, as outlined in Fig. 5.

4.4 Trajectory Definition

We devise trajectories to create a bridging structure between two trees by placing a
supporting node on each tree and a linking node equidistant between them. Thus,
two NAVs are required to each place a supporting node, co-operatively create one
linking node and then return to form two further supports and complete the structure.
The desired trajectories for each quadrotor are defined parametrically in time by
independent three-dimensional functions for each NAV in the team. These trajectory
functions are defined in abstract scales and overall horizontal rotations, and thus
provided the location of each tree is known, may be scaled to any configuration and
separation; limited only to distances permissible by the length of thread carried on
each NAV.
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rT =
⎛
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⎞
⎠ (20)

Collaborative construction between multiple NAVs requires careful synchronisa-
tion of the trajectories to achieve reliable creation of linking nodes. Therefore, we
synchronise the time in each NAV controller with a common timer. This ensures
all quadrotors reach critical points along their trajectories - for example, points of
interaction with other vehicles - at the correct time and simultaneously. Furthermore,
we implement a system that detects and acts upon any significant deviation an NAV
might have from its flight path. This deviation is calculated in every time step of
the control scheme, neglecting errors tangential to the trajectory. If, at an instant in
time, we define the position of any given quadrotor as r and the closest point on its
trajectory as rT , then the effective deviation e is given by

e = ((rT − r)·n̂)n̂ + ((rT − r)·b̂)b̂ (21)

where n̂ and b̂ are unit vectors in the trajectory normal and binormal directions
respectively. Two callback functions in themain program thread on the central control
PC are connected to two functions within the control threads of each individual
NAV. A deviation magnitude above 0.2m triggers the first function and hence the
corresponding callback. The time at which the deviation threshold was breached is
passed as an argument. The internal timer in the control thread of each NAV in the
team is paused, thus retaining the time at which the deviation thresholdwas breached;
this effectively pauses every trajectory. If the deviation magnitude of a previously
off-course quadrotor falls below 0.1m, it is deemed to have returned to its flight path
and the second function is triggered. As an argument, the callback receives the time
elapsed since deviation. The timers governing each quadrotor restart with an offset
equal to the time elapsed whilst paused; all NAVs therefore resume construction in
a synchronised manner and the team continues the build.

5 Results and Discussion

5.1 Trajectory Accuracy

The trajectory, as observed by the Vicon system, of one NAV throughout the con-
struction is shown in Fig. 6, while the construction sequence is shown in Fig. 7. We
note that performance and accuracy of the trajectories can vary significantly in the
event the thread snags the foliage during anchoring, hence presenting the need for
a deviation condition. Deviations from the desired flight path of up to 0.2m during
construction stages are attributed to the intentional softness of the position controller
during these phases of flight. As intended, stability is maintained throughout the
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Fig. 6 Trajectory of the x-y positions of one NAV in the process of creating a two-element tensile
structure. a String is attached to tree branch. We engage the force compensation once our distance
threshold is reached, but a delay in hook attachment and thread tensioning likely creates the notice-
able deviation at this stage. b Supporting node being constructed by the NAV. c Free flight away
from the anchor point. Our assumption that the force vector is from the centre of the anchor point
likely causes the deviation here - where in actuality the force vector is exerted from some point
along a branch. d Two NAVs form linking node. Good estimation of external forces occurs here,
and the node location shifts along as NAVs fly away. Errors at single mission-critical points are less
than 0.05m

construction process despite significant tensile forces in the structural elements and
the accuracy in directions of interest is maintained within 0.05m during all mission-
critical manoeuvres, including initial connection of the supporting nodes in all three
spacial axes and the trajectory altitude about the apex of the linking node.

5.2 Structural Properties of the Web

The web was constructed with two 8m strands of silk thread that were individually
deployed by a pair of constructor NAVs. The complete construction of the structure
described here took approximately 120s,well within the capability of these platforms
even allowing for up to 90s of travel in each direction before building commences.
The constructed structure spans 2.1m, the equivalent of twenty-threeNAVs in length.
The sequence of the construction strategy is detailed in Fig. 7.

In terms of structural integrity, the web was able to resist an applied load of 85g
under testing, sufficient to support three perched NAVs. We identify the minimum
number of loops required around the anchor points as two for the previous load to hold
true. However, we note that the uneven surface of the foliage poses a significantly
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Fig. 7 Two element web construction. Each tensile element is anchored to an environmental feature
(a), before winding around the anchor point several times (b) to create a supporting node. Each
element is then pulled towards the centre to create a linking node (c), before each drone returns to
its original anchor point to secure the web (d). The percher drone then approaches and connects
to the web, deactivating all rotors and passively maintaining position (e) before regaining active
control and detaching from the web to return to base (f)

reduced contact area to that assumed in the Capstan equation, and thus we add three
morewindings as a safetymargin. These additional loops are a function of the surface
properties of the desired anchor point.

5.3 Perching and Energy Consumption

Thrust measurement of a single NAVmotor achieved a peak thrust of 73.8mN during
free flight with no significant environmental interactions such as ground or ceiling
effect. To assess available hover time, we commanded a single drone to maintain
an altitude of 2m and a fixed horizontal hover position and heading until it was
incapable of maintaining this hover due to the draining battery; across 10 trials,
we achieved an average of 420s (±30s), with a 170mAh single-cell 3.7V lithium-
polymer source when no payload was added.When loaded with our construction and
perching payloads, the available hover time was reduced to 350 (±30s) and 310s
(±31s) respectively.

When perched, we measure the current draw of the NAV whilst maintaining
a constant altitude at 9.7mA, rising to 100mA when actively ascending along the
suspending thread.We successfully demonstrate flights of perching NAVs consisting
of an 80s hover to simulate travel, 1h of perching on a web constructed by two other
NAVs (Fig. 7), and a further 80 s hover after dismounting before the battery cell is
unable to supply sufficient power to maintain further flight. A similar example is also
demonstrated in the video attachment to this paper, albeit with a much shorter time



Tensile Web Construction and Perching with Nano Aerial Vehicles 87

while perched on the web. Assuming identical travel before reaching the target hover
position, this represents an overall jump for hover duration from260s for an unloaded
NAV maintaining active flight to over 3600s whilst perched on the assembled aerial
structure - an increase of nearly 1300%, aptly demonstrating the potential to prolong
the effective mission time of inspection or monitoring tasks using the principles we
propose.

6 Conclusions

In this paper,wedemonstrate the feasibility and range of application of a collaborative
aerial construction scheme using sub-10cm multi-rotor NAVs and multiple element
tensile structures. We discuss the methods of securely mounting the web structure to
the environment as supporting nodes and assemblingmultiple components as linking
nodes. A mechanism by which an NAVmay perch on the assembled structure is then
discussed, implemented and assessed, leading to a dramatic increase in overall flight
endurance compared to active hovering.

We plan to extend the work presented here to encompass more complex struc-
tures, with more anchor points and greater loading capacity to allow higher numbers
of perched NAVs. We also expect to investigate applications for this technology,
including the mounting of environmental sensors on perched NAVs and applicabil-
ity in non-natural environments.
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Analytical SLAM Without Linearization

Feng Tan, Winfried Lohmiller and Jean-Jacques Slotine

1 Introduction

Simultaneous localization and mapping (SLAM) is a key problem in mobile robot-
ics research. The Extended Kalman Filtering SLAM (EKF SLAM) approach is the
earliest and perhaps the most influential SLAM algorithm. It linearizes a nonlin-
ear SLAM model so that Kalman Filter can be used to achieve local approximate
estimations. However, this linearization process on the originally nonlinear model
introduces accumulating errors which causes the algorithm to be inconsistent and
divergent [1, 2]. Such inconsistency will be particularly prominent in large-scale
estimations, resulting in over-optimistic results. Moreover, the quadratic growth of
the size of the covariance matrix with the number of landmarks makes the algorithm
inscalable to large datasets.

This paper proposes an innovative approach to the SLAM problem by intro-
ducing virtual measurements into the system. Completely free of linearization, this
approach yields simpler algorithms and guaranteed convergence rates. The virtual
measurements open up the possibility of exploiting LTV Kalman-filter and con-
traction analysis tools in combination in SLAM problem, and information from
landmarks or features can be recursively incorporated.

The proposed algorithm is global and exact, which affords several advantages over
the existing ones. First, contraction analysis is used for convergence and consistency
analysis of the algorithm. As a result, exponential and global convergence rates
are guaranteed. Second, conditioned on the local inertial coordinates of the robot,
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the algorithm decouples the covariances on each pairs of landmarks, which shrinks
the covariance matrix and allows large database applications. Third, the algorithm
is simple and straightforward mathematically; it exploits purely linear kinematics
constraints that are intuitive and effective. Finally, the algorithm is fast because it
decouples the covariances between landmarks and treat each of them independently.
Only computations in small scalewill be involved to predict and update the landmarks
states. We prove the capability of our algorithm in providing accurate estimations
in both 2D and 3D settings by applying the proposed framework to four different
combinations of sensor information, ranging from traditional bearing measurements
and radial measurements to novel ones such as optical flows and time-to-contact
measurements.

In the remainder of this paper, we first provide a brief survey on existing SLAM
methods in Sect. 2. Basic tools in contraction theory are provided in Sect. 3. Our algo-
rithm with four application cases utilizing different combinations of sensor informa-
tion is introduced in Sect. 4. Simulation results are presented in Sect. 5. We conclude
and discuss the results in Sect. 6.

2 A Brief Survey of Existing SLAM Results

In this section we provide a brief introduction on the problem of simultaneous local-
ization and mapping (SLAM). We will review the three most popular categories of
SLAM methods: the extended Kalman filter SLAM, the particle SLAM and graph-
based SLAM, each with strength and weakness analysis. Then we introduce the
azimuth model that is used in this paper along with the kinematics models describ-
ing the locomotion of a mobile robot and the landmarks.

Simultaneous localization and mapping (SLAM) is one of the most important
problems in robotics research, especially in the mobile robotics field. SLAM is con-
cerned about accomplishing two tasks simultaneously: mapping an unknown envi-
ronment with one or multiple mobile robots and localizing the mobile robot/robots.
One common model of the environment consists of multiple landmarks such as
objects, corners, visual features, salient points, etc. represented by points. And a
coordinate vector is used to describe the location of each landmark in 2D or 3D
space.

There are three main categories of methods for SLAM: the EKF SLAM, the parti-
cle filters related SLAM and the graph-based SLAM. The EKF SLAM
[3–6] uses the extended Kalman filter [7, 8], which linearizes and approximates
the originally nonlinear problem using the Jacobian of the model to get the sys-
tem state vector and covariance matrix to be estimated and updated based on the
environment measurements.

The graph-based SLAM [9–15] uses graph relationships to model the constraints
on states of the landmarks and then uses nonlinear sparse optimization to solve
the problem. The SLAM problem is modeled by a sparse graph, where the nodes
represent the landmarks and each instant state, and edge or soft constraint between
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the nodes corresponds to either a motion or a measurement event. Based on high
efficiency optimization methods that are mainly offline and the sparsity of the graph,
graphical SLAM methods have the ability to scale to deal with much larger-scale
maps.

The particle method for SLAM relies on particle filters [16], which enables easy
representation for multimodal distributions since it is a non-parametric representa-
tion. The method uses particles representing guesses of true values of the states to
approximate the posterior distributions. The first application of such method is intro-
duced in [17]. The FastSLAM introduced in [18, 19] may be the most important and
famous particle filter SLAM method.

However, each of these three methods has weaknesses and limitations:
For the EKF SLAM, the size of the system covariance matrix grows quadratically

with the number of features or landmarks, thus heavy computation needs to be carried
out in dense landmark environment. Such issue makes it unsuitable for processing
large maps. Also, the linearization can cause inconsistency and divergence of the
algorithm [1, 2].

For the graph-based SLAM, because performing the advanced optimizationmeth-
ods can be expensive, they are mostly not online. Moreover, the initialization can
have a strong impact on the result.

Lastly, for the particle method for SLAM, a rigorous evaluation in the number of
particles required is lacking; the number is often set manually relying on experience
or trial and error. Second, the number of particles required increases exponentially
with the dimension of the state space. Third, nested loops and extensive re-visits can
lead to particles depletion, and make the algorithm fail to achieve a consistent map.

Our method generally falls into the category of Kalman filtering SLAM. By
exploiting contraction analysis tools and virtual measurements, our algorithm in
effect builds a stable linear time varying Kalman filter. Therefore, compared to the
EKF SLAMmethods, we do not suffer from errors brought by linearization process,
and long term consistency is guaranteed. Also, because the Kalman filter is condi-
tioned on the local coordinate attached to the robot, covariances between different
landmarks are fully decoupled, which enables applications of the algorithm on large
scale problems.

The Azimuth Model of the SLAM Problem

The model we use in this paper measures the azimuth angle in an inertial reference
coordinate fixed to the center of the robot (Fig. 1), as in [20]. The robot is a point of
mass with attitude and orientation.

The actual location of a lighthouse is described as x = (x1, x2)T for 2D and
(x1, x2, x3) for 3D. The measured azimuth angle is θ = arctan( x1x2 ). In 3D there is
also the pitch measurement to the landmark φ = arctan( x3√

x21+x22
). Robot’s transla-

tional velocity is u = (u1, u2)T for 2D and (u1, u2, u3)T for 3D. Ω is the angu-

lar velocity matrix of the robot: in 2D case, Ω =
[
0 −ωz

ωz 0

]
and in 3D case,
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Fig. 1 Azimuth model

Ω =
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦. Note here that in either case the matrix Ω is skew-

symmetric. The range measurement from the robot to the landmark is r =
√
x21 + x22

for 2D and r =
√
x21 + x22 + x23 for 3D. In our model, both u and Ω are assumed to

be measured accurately, which is true in a lot of applications. So for any landmark
in the inertial coordinate fixed to the robot, the relative motion is:

ẋ = −u − Ωx.

3 Basic Tools in Contraction Theory

Contraction theory [21] is a relatively recent dynamic analysis and design tool, which
is an exact differential analysis of convergence of complex systems based on the
knowledge of the system’s linearization (Jacobian) at all points. Contraction theory
converts a nonlinear stability problem into an LTV (linear time-varying) first-order
stability problem by considering the convergence behavior of neighboring trajecto-
ries. While Lyapunov theory may be viewed as a “virtual mechanics” approach to
stability analysis, contraction is motivated by a “virtual fluids” point of view. His-
torically, basic convergence results on contracting systems can be traced back to the
numerical analysis literature [22–24].
Theorem [21] Given the system equations ẋ = f(x, t), where f is a differentiable
nonlinear complex function of xwithin Cn . If there exists a uniformly positive definite
metricM such that Λ is negative definite or

Ṁ + M
∂f
∂x

+ ∂f
∂x

T

M ≤ −βMM
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with constant βM > 0, then all system trajectories converge exponentially to a single
trajectory, which means contracting, with convergence rate βM .

Depending on the application, the metric can be found trivially (identity or rescal-
ing of states), or obtained from physics (say, based on the inertia tensor in a mechan-
ical system as e.g. in [25, 26]). For a summary of all features of contraction theory
the reader can refer to [21].

4 Landmark Navigation and LTV Kalman Filter SLAM

In this section we illustrate the use of both LTV Kalman filter and contraction tools
on the problem of navigation with visual measurements, an application often referred
to as the landmark (or lighthouse) problem, and a key component of simultaneous
localization and mapping (SLAM).

The main issues for EKF SLAM lies in the linearization and the inscalability
caused by quadratic nature of the covariance matrix. If we can avoid these two issues,
we could greatly improve EKF SLAM and provide exact optimal solutions to the
SLAM problem. Moreover, this solution is suitable for large database applications
as well.

Our approach to solve the SLAM problem in general follows the paradigms of
LTV Kalman filter. And contraction analysis adds to the solution stability assur-
ance because of the exponential convergence rate. In summary, our algorithm is a
combination of both LTV Kalman filter and contraction analysis.

We present the results of an exact LTV Kalman observer based on the Riccati
dynamics, which describes the Hessian of a Hamiltonian p.d.e. [20]. A rotation term
similar to that of [27] in the context of perspective vision systems is also included.

4.1 LTV Kalman Filter SLAM Using Virtual Measurements

A standard extended Kalman Filter design [28] would start with the available non-
linear measurements, for example in 2D (Fig. 1),

θ = arctan(
x1
x2

) and/or r =
√
x21 + x22

and then linearize these measurements using the estimated Jacobian, leading to a
locally stable observer. Intuitively, the starting point of our algorithm is the simple
remark that the above relations can be equivalently written as

hx = 0 h∗x = r
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where

h = (cosθ,−sinθ) h∗ = (sinθ, cosθ)

We exploit these exact linear time-varying expressions to achieve a globally stable
observer design, and extend this idea in a variety of SLAM contexts.

Specifically, let us introduce the virtual, implicit measurement

y = Hx + v(t)

where observationmatrixH is a combination ofmeasurement vectors h and h∗. Since
in the azimuth model, one has
In 2D

x = (x1, x2)
T = (r sin θ, r cos θ)T

In 3D
x = (x1, x2)

T = (r cosφ sin θ, r cosφ cos θ, r sin φ)T

this yields, for 2D scenarios, h = (cosθ,−sinθ), h∗ = (sinθ, cosθ) as above, and
for 3D scenarios:

h =
(

cos θ −sinθ 0
− sin φ sin θ − sin φ cos θ cosφ

)

h∗ = (cosφsinθ, cosφcosθ, sinφ)

All our propositions in the following cases have the same continuous LTVKalman
filter structure. The filter consists of two differential equations, one for the state
estimate and one for the covariance:

˙̂x = −u − Ω x̂ + K(y − Hx̂)

Ṗ = Q − PHTR−1HP − ΩP − PΩT

where the Kalman gain is given by

K = PHTR−1

and the other terms are defined as:

Q = cov(u + Ω x̂) y = Hx + v(t) v(t) ∼ N(0,R)

where y is the measurement or observation vector, which includes both actual and
virtual measurements, and H is the observation matrix. v(t) is a zero-mean white
noise vector with the covarianceR. In each of our case presented in the later section,
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the LTV Kalman filter structure won’t be repetitively introduced, while we will
explain the specific virtual measurement y and corresponding observation model H
in each case.

Case I: Bearing Information Only

This original version of bearing-only SLAM was originally presented in [20]. Phys-
ically, the virtual measurement error term hx̂ corresponds to rewriting an angular
error as a tangential position error between estimated and true landmark. The sys-
tem contracts in the tangential direction if R−1 > 0, and it is indifferent along the
unmeasured radial direction.

Case II: Radial Contraction with Independent θ̇ Information

In this case we utilize θ̇ as additional information. θ̇ is the relative angular velocity
from the robot to the landmark and we also have φ̇ in the 3D case. Independent θ̇

measurement could be achieved either computationally based on θ or through optical
flow algorithms on visual sensors. We propose here that θ̇ gives us an additional
dimension of information that help the LTV Kalman filter with radial contraction.
The additional constraint or observation we get is based on the relationship that

radial distance × angular veloci ty = tangential veloci ty

where in our case h∗x̂ is the length of vector x̂ projected on the direction along
azimuth direction to represent the estimated range. So if the estimation is precise,
θ̇h∗x̂ + hΩ x̂ should equal to −hu, which is the relative velocity projected along the
tangential direction.

In this case, y1 = hx = 0 is the constraint on bearing measurement and y2 =
(θ̇h∗ + hΩ)x = −hu in 2D or y2 = (

[
θ̇h∗
φ̇h∗

]
+ hΩ)x = −hu in 3D is the constraint

about bearing velocity, radial distance and the tangential velocity.
So the virtual measurement is consisted of two parts:
virtual measurement:

y =
[
y1
y2

]
=

[
0

−hu

]

observation model: (2D) H =
[

h
θ̇h∗ + hΩ

]
(3D) H =

⎡
⎣ h[

θ̇h∗
φ̇h∗

]
+ hΩ

⎤
⎦ .

Case III: With Time to Contact Measurement τ

In this case we utilize the “time to contact” measurement as additional informa-
tion. Time-to-contact [29] measurement provides an estimation of time to reach the
lighthouse, which could suggest the radial distance to the lighthouse based on local
velocity information. This is one popular measurement for sailing and also utilized
by animals and insects. For a robot, the “time to contact” measurement could be
potentially achieved by optical flows algorithms or some novel sensors specifically
developed for that.
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τ = |α
α̇

| ≈ |r
ṙ
|

As shown in Fig. 1, we can get the measurement τ = | α
α̇
|, where α is an small angle

measured between two feature points, edges on a single distant landmark for exam-
ple. In our case, we use the angle between two edges of the cylinder landmark so
that α ≈ arctan( dr ), where d is the diameter of the cylinder landmark and r is the
distance from the robot to the landmark. One thing to notice is that the time-to-
contact measurement is an approximation. Also when uh ≈ 0, τ would be reaching
infinity, which reduces the reliability of the algorithm near that region. Thus in this
case besides the bearing constraint y1 = hx = 0, we propose a novel constraint y3
utilizing the “time to contact” τ .

As we know r = h∗x so that

ṙ = −h∗u − h∗Ωx + ḣ∗x

Since h∗ is the unit vector with the same direction of x, both h∗Ωx and ḣ∗x equal to
0, so simply ṙ = −h∗u, and

τ = |r
ṙ
| = h∗x

|−h∗u|
which means: |τh∗u| ≈ h∗x so we can have y3 = |τh∗u|

y =
[
y1
y3

]
=

[
0

|τh∗u|
]

H =
[
h
h∗

]

So that y = Hx + v, and it is applicable to both 2D and 3D cases.

Case IV: With Radial Measurement

If we have both bearing measurement θ and φ and radial measurement r , the new
constraint would be y4 = r = h∗x.

So that for both 2D and 3D the virtual measurement is:

y =
[
y1
y4

]
=

[
0
r

]
H =

[
h
h∗

]

The landmark positions that we estimate here are based on the azimuth model in
the inertial coordinate system fixed to the robot. So the positions of the landmarks
are actually relative positions to the robot rather than global locations. And what
we are doing here is mainly mapping the local surrounding landmarks, so instead
of generally naming the states x, recognizing them by xil is more appropriate, with
corresponding measurements θi and ri , each with independent covariance matrix Pi .

˙̂xil = −u − Ω x̂il + K(y − Hilx̂il)

Ṗi = Q − PiHT
ilR

−1HilPi − ΩPi − PiΩ
T .
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Transform to Global Coordinates

When we try to transform the local observations to global coordinates recovering
both the map and the location of the vehicle, we need to consider the robot heading
β. We use the local estimations xil ’s in the first stage as inputs to the second stage.
Remember that we have the coordinates transformation for each landmark xi (global)
and the vehicle position xv as:

xi − xv =
[

cosβ sinβ
−sinβ cosβ

] [
xil1
xil2

]

which we can transform and hence use xβ =
[
cosβ
sinβ

]
as new states related to the

heading of the vehicle, where xTβxβ = 1. So that once again we have linear constraint
as

xi − xv =
[
xil1 xil2
xil2 −xil1

] [
cosβ
sinβ

]
= Hixβ

So we can use an LTV Kalman-like system updated as:

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...

xn
xv
xβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
u[

0 −ω

ω 0

]
xβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ PHT R−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0 −I −H1

0 I · · · 0 −I −H2
...

...
...

...
...

...

0 0 · · · I −I −Hn

0 0 · · · 0 0 xTβ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...

xn
xv
xβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Covariance updates

Ṗ = Q − PHTR−1HP − ΩP − PΩT

where the skew-symmetric matrix

Ω =
⎡
⎣0 0

0
[
0 −ω

ω 0

]⎤
⎦

Here only the xTβxβ = 1 is nonlinear. All the remaining constraints of the system
are all time varying linear constraints. Note that in this stage of transforming local
estimations to global coordinates, we are actually utilizing a full state Kalman filter
with results from the first stage as virtual inputs. Computationally, the LTV Kalman
filter at this stage takes as much computation as the traditional EKF methods. The
differences are: first, our LTV Kalman filter is mostly linear except for the part
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xTβxβ = 1, and it is exact; second, our LTV Kalman filter can solve problems where
radial measurements are not available.

Remark I: Nonlinearity in Vehicle Kinematics

When traditional EKF SLAM methods are applied to ground vehicles, another non-
linearity arises from the vehicle kinematics. This is easily incorporated in our model.
For the most general case, the vehicle motion can be modeled as

ẋv1 = ucosβ ẋv2 = usinβ β̇ = u

L
tanθs = ω

where u is the linear velocity, L is the distance between the front and rear axles and
θs is the steering angle. Since in our case, we use cosβ and sinβ as states to estimate
instead of β, our LTV Kalman filter can be based on the linear form:

d

dt

⎡
⎢⎢⎣

xv1
xv2
cosβ
sinβ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 0 u 0
0 0 0 u
0 0 0 −ω

0 0 ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xv1
xv2
cosβ
sinβ

⎤
⎥⎥⎦

Remark II: Reduced Order Observer

When transforming to global coordinates, we used a full order Kalman filter in
the previous section. However, since Sect. 4.1 already provides the positions of the
landmarks relative to the vehicle, one could potentially reduce computational cost
by developing reduced observers to estimate only the vehicle’s position and pose,
and estimate global location of the landmarks based on the vehicle’s trajectory.

4.2 Contraction Analysis for the LTV Kalman Filter

Since all our four cases follow the same LTVKalman filter structure, we can analyze
the contraction property in general for all four cases at the same time. The LTV
Kalman filter system we proposed previously contracts according to Sect. 3, with
metricMi = Pi

−1, as analyzed in [20]:

∂fiT

∂xi
Mi + Mi

∂fi
∂xi

+ Ṁi = −MiQiMi − HT
ilR

−1Hil

Theabove leads to theglobal exponentialKalmanobserver of landmarks(lighthouses)
around a vehicle. Hence for any initial value, our estimation will converge to the tra-
jectory of the true landmarks positions exponentially. It gives stability proof to the
proposed LTV Kalman filter and boundedness of M is given with the observability
gramian. However, LTV Kalman cannot compute the convergence rates explicitly,
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because the convergence rate is given by the eigenvalues of −MiQiMi − HT
ilR

−1Hil

which is related to M.
This system is contracting with metric M = P−1 at the second stage also. Since

the second stage only use the results of the first stage as pure inputs, and both
stages are contracting, according to the hierarchical combination of the contraction
analysis [21], the whole system consisted of two stages is contracting. Since the true
locations of landmarks and path of the vehicle are particular solutions to the system,
all trajectories of the state vectors would converge exponentially to the truth.

4.3 Noise Analysis

The basic assumption for the Kalman filter is that the noise signal v(t) = y − Hx is
a zero-mean Gaussian noise. Since the actual measurements that we obtain from a
robot are θ , φ,θ̇ ,φ̇,r , and τ , we need to check that the mean error remains zero after
incorporating them into the virtual measurements.

Consider the bearing angle θ wemeasure comes with a zero-mean white Gaussian
noise w ∼ N (0, σ 2

θ ), and φ with zero-mean Gaussian noise N (0, σ 2
φ ) then

E[cos(z)] = E[cos(θ + w)] = e− σ2
θ
2 cos(θ)

E[sin(z)] = E[sin(θ + w)] = e− σ2
θ
2 sin(θ)

For our virtual measurement y = hx where h = [cos(θ),−sin(θ ], the error
v = 0 − hx = −(x1cos(θ) − x2sin(θ)), so that the mean of the error

E[v] = −e− σ2
θ
2 (x1cos(θ) − x2sin(θ)) = 0

which means there is no bias in this case.

In the 3D case h =
(

cos θ −sinθ 0
− sin φ sin θ − sin φ cos θ cosφ

)

E[v] = −
⎛
⎝ e− σ2

θ
2 (x1cos(θ) − x2sin(θ))

e− σ2
θ
2 − σ2

φ

2 (−x1sin(φ)sin(θ) − x2sin(φ)cos(θ)) + e− σ2
φ

2 cos(φ)x3

⎞
⎠

E[v] =
⎛
⎝ 0

−
(
e− σ2

φ

2 − e− σ2
θ

+σ2
φ

2

)
cos(φ)x3

⎞
⎠

So there would be a bias in the second term.
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A bias in the mean error is generally caused by the product of to trigonometric
functions about φ or θ , which only happens in the 3D cases. It would bring in an

extra scale factor of e− σ2
θ
2 , which unbalances the original equation.

Following the same logic and process, we get that in Case II(3D)

E[v] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

(e− σ2
φ
2 − e− σ2

θ
+σ2

φ
2 )(−x1sin(φ)sin(θ) − x2sin(φ)cos(θ))

θ̇(e− σ2
φ
2 − e− σ2

θ
+σ2

φ
2 )(x1cos(φ)sin(θ) + x2cos(φ)cos(θ))

(e− σ2
φ
2 − e− σ2

θ
+σ2

φ
2 )cos(φ)(φ̇(x1sin(θ) + x2cos(θ)) − u1sin(θ) − u2cos(θ))

⎞
⎟⎟⎟⎟⎟⎟⎠

In Case III(3D),

E[v] =

⎛
⎜⎜⎝

0

(e− σ2
φ
2 − e− σ2

θ
+σ2

φ
2 )(−x1sin(φ)sin(θ) − x2sin(φ)cos(θ))

(e− σ2
φ
2 − e− σ2

θ
+σ2

φ
2 )cos(φ)(x1sin(θ) + x2cos(θ) + |τ(u1sin(θ) + u2cos(θ))|

⎞
⎟⎟⎠

In Case IV(3D),

E[v] =

⎛
⎜⎜⎝

0

(e− σ2
φ

2 − e− σ2
θ

+σ2
φ

2 )(−x1sin(φ)sin(θ) − x2sin(φ)cos(θ))

(e− σ2
φ

2 − e− σ2
θ

+σ2
φ

2 )(x1cos(φ)sin(θ) + x2cos(φ)cos(θ))

⎞
⎟⎟⎠

We can see that in each case, the mean errors only shift in the 3D cases, and with

a scale coefficient of e− σ2
φ

2 − e− σ2
θ

+σ2
φ

2 . When the variances σθ and σφ are small, that
coefficient is almost zero. Even when we increase in simulations the actual variances
of the bearing measurements to 10◦ (which is unrealistic based on the performances
of current instruments), the mean shift is still in on the scale of 10−2m, and thus
remains negligible. So we would suggest numerically that the noise distribution of
the actual measurements does not matter to compute (and subtract) the mean.

5 Experiments

Experiments for 2D Landmarks Estimation

We experiment the 2D version of our cases with simulations in Matlab. As shown
in [30], in the simulations, we have three lighthouses with different locations. The
diameter of each landmark is d = 2m. We have run simulations on all four cases.
The noise signals that we use in the simulations are: standard variance for zero-mean
Gaussian noise of θ is 2◦; standard variance for noise of θ̇ is 5 ◦/s; standard variance
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Fig. 2 Case II, III, IV and the original Case I for 2D estimation

for measurement noise of r is 2m; and standard variance for noise of α is 0.5◦.
In [30], the red lines indicate the trajectories of estimations of the Case I(original),
which are used as references for all other three. The green lines are the trajectory
of Case II, III, and IV. The blue lines are the movement trajectory of the vehicle.
As shown in the diagram, trajectories of estimations from Case II, III, and IV are
smoother and more directed than the original Case I. This is because the trajectory
exploits additional information. In particular, for Case III and IV, since the “time-to-
contact” measurement and radial distance measurement both contains information
on the radial direction, they converge to the true position directly, without waiting
for the vehicle movement to bring in extra information.

Next, we analyze the estimation errors ||x − x̂|| for all three lighthouses in Fig. 2.
The figure shows that the errors decay faster in Case II, III, IV. The difference is that
Case II needs to wait for the movement of the vehicle to provide more information
about θ̇ , yet Case III and IV contract much faster with exponential rates because
of radial related measurements. Compared to Case IV, Case III is less smooth, as
expected, because the “time-to-contact” measurement itself is an approximation and
may be disturbed when ṙ is close to zero.
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Fig. 4 On the left is the path and landmarks estimation of our algorithm and on the right is the
result from Unscented Fast SLAM. The thick blue path is the GPS data and the solid red path is the
estimated path; the black asterisks are the estimated positions of the landmark

Experiments for 3D Landmarks Estimation

We also have simulation results for Case I and Case II in 3D settings. Here we also
have three lighthouses with different locations. The results shown in Fig. 3 suggest
that our algorithm is capable of estimating landmarks positions accurately in 3Dspace
with bearing angle for both yaw and pitch. Animations of all simulation results are
provided at [30].
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Experiment for Victoria Park Landmarks Estimation

We applied our algorithm to Sydney Victoria Park dataset, a popular dataset in the
SLAM community. The vehicle path around the park is about 30min, covering over
3.5km. Landmarks in the park are mostly trees. Estimation results are compared
with intermittent GPS information as ground truth to validate the states of the filters
as shown in Fig. 4. Our estimated track compares favorably to benchmark result
of [31], which highlights the consistency of our algorithm in large scale applications.
Simulation result of the Victoria Park dataset is provided at [32].

6 Concluding Remarks

In this paper, we propose using the combination of LTVKalman filter and contraction
tools to solve the problem of simultaneous mapping and localization (SLAM). By
exploiting the virtual measurements, the LTV Kalman observer does not suffer from
errors brought by the linearization process in the EKF SLAM. And conditioned on
the robot position, the covariances between landmarks are fully decoupled, which
makes the algorithm possible to be scaled to solve large datasets. Contraction analy-
sis provides proof on stability of the algorithm and the contracting rates. The series
of application cases using proposed algorithms utilize different kinds of sensor infor-
mation that range from traditional bearing measurements and radial measurements
to novel ones like optical flows and time-to-contact measurements. They can solve
SLAM problems in both 2D and 3D scenarios. Note that

• the multi-dimensional landmark navigation task corresponds to feature-based
SLAM, where features are extracted and followed in a stream. These features
as e.g. tree or a stone can be regarded as a landmark.

• bounding of P is an analytic computation of the observability gramian in [28].
• the novelty of the propositions is that by exploiting the virtual measurements, the
algorithm corresponds to an exact and global linear observer design.

• all landmark observers are fully decoupled for the local estimation. In SLAM
the state-covariance or the information matrix may be sparse, but are not fully
decoupled. However if we want to estimate a smooth surface (e.g. a wall) then we
can add in smoothing terms to couple them as suggested in [20].

• our algorithm is particularly effective when distance measurements are not avail-
able, with good quality vision sensors becoming available at very low cost com-
pared to range sensors like lidars.

• it may also be interesting to consider whether similar representations may also be
used in biological navigation, e.g. in the context of place cells or grid cells [33].
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Exploiting Photometric Information
for Planning Under Uncertainty

Gabriele Costante, Jeffrey Delmerico, Manuel Werlberger,
Paolo Valigi and Davide Scaramuzza

1 Introduction

We consider the problem of planning an optimal trajectory between two spatial loca-
tions in an initially unknown environment with an autonomous, vision-controlled,
micro aerial vehicle (MAV). In many previous works, optimal trajectories are those
with the shortest or lowest effort path to the goal position. To improve the perfor-
mance of vision-based control, and consequently all of the other perception functions
that rely on the robot’s pose estimate, we instead consider optimal trajectories to be
those that minimize the uncertainty in this pose estimate. Because we compute the
robot pose uncertainty as a function of the photometric information of the scene, we
call this approach Perception-aware Path Planning.

Despite the impressive results achieved in visual SLAM applications [1, 2], most
of vision-controlled MAVs navigate towards a goal location using a predefined set
of viewpoints or by remote control, without responding to environmental conditions
[3, 4]. Recently, several works have tackled the problem of autonomously planning
an optimal trajectory towards a goal location [5, 6], and others have extended this
to uncertainty-aware planning that tries to provide high localization accuracy [7, 8].
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Fig. 1 Online perception-aware path planning:An initial plan is computedwithout prior knowledge
about the environment (a). The plan is then updated as new obstacles (b) or new textured areas (c)
are discovered. Although the new trajectory is longer than the one in b, it contains more photometric
information and, thus, is optimal with respect to the visual localization uncertainty

However, these approaches discard the photometric information (i.e, texture) of the
scene and plan the trajectory in advance, which requires prior knowledge of the full
3D map of the environment. We propose a system that instead selects where to look,
in order to capture the maximum visual formation from the scene to ensure pose
estimates with low uncertainty.

Additionally, we consider the scenario where the robot has no prior knowledge of
the environment, and it explores to generate a map and navigate to a goal. Without
an a priori map, we update the planned path as new images are collected by the
camera while the robot explores the surroundings (see Fig. 1). In particular, we uti-
lize the photometric information in the newly observed regions of the environment
to determine the optimal path with respect to pose uncertainty. To the best of our
knowledge, this is among the first works that propose to plan a perception-aware
trajectory on-the-fly, while perceiving the environment with only a camera sensor.

We evaluate the proposed methods with several different experiments designed to
illustrate the feasibility of our approach for an autonomousMAV, and to demonstrate
the improvement in pose uncertainty when planning with perception awareness.

1.1 Related Work

When the minimization of the localization uncertainty is considered in the planning
process, the problem is often referred to as “PlanningunderUncertainty” or “Planning
in Information Space”. Probabilistic planning with the inability to directly observe
all the state information is often based on Partially Observable Markov Decision
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Processes (POMDPs) or solved as a graph-search problem. The major drawback
of these approaches is their exponential growth in computational complexity. Sim
and Roy [9] selected trajectories that maximize the map reconstruction accuracy
in SLAM applications. They proposed to use a breadth-first search over possible
robot positions to predict a sequence of EKF estimates and select the one that lead
to the maximum information gain. Recently, sampling-based methods have been
introduced to plan trajectories in complex configuration spaces. Optimal Rapidly-
exploring Random Trees (RRT*s) [10] have been widely used in path planning
problems and their extension toRapidly-exploringRandomBelief Trees (RRBTs) [7]
takes pose uncertainty into account and avoids collisions.

Selecting sequences of viewpoints that optimize for a certain task (e.g, pose esti-
mation or map uncertainty minimization) is referred to as active perception [11, 12].
While previous papers on active perception relied on using range sensors (e.g, [8]),
Davison and Murray [13] were among the first to use vision sensors (a stereo cam-
era setup) to select where the camera should look to reduce the pose drift during
visual SLAM. More recently, Sadat et al. [14] and Achtelik et al. [15] investigated
optimal path planning by leveraging visual cues. The former ensures good local-
ization accuracy by extending RRTs* to select feature-rich trajectories, while the
latter uses RRBT to compute the propagation of the pose uncertainty by minimizing
the reprojection error of 3D map points. Kim and Eustice [16] proposed a Percep-
tion Driven Navigation (PDN) framework: the robot follows a pre-planned path and
computes information gain at the viewpoints along it, but revisits already-explored,
highly-salient areas to regain localization accuracy if its pose uncertainty increases.

It should be noted that all approaches mentioned so far [13–16] rely on sparse
2D features to compute highly-informative trajectories. By contrast, in this paper
we rely on direct methods [17]. Contrarily to feature-based approaches—which only
use small patches around corners—direct methods use all information in the image,
including edges. They have been shown to outperform feature-based methods in
terms of robustness and accuracy in sparsely-texture scenes [1, 2, 18].

Several works have addressed the problem of online planning. Efficient replan-
ning was addressed in Ferguson et al. [19] by updating the trajectory whenever a
new obstacle is spotted. For RRT*, Boardman et al. [20] proposed to dynamically
update an initial planned trajectory by computing a new RRT* tree rooted by the
robot’s current location and reusing branches from the initially-grown tree. Otte and
Frazzoli [21] further address the problem of online planning in dynamic environ-
ments by modifying the original search graph whenever changes in the environment
are observed. Among MAVs, Grzonka et al. [5] considered a quadrotor equipped
with an on-board laser scanner, and scanned the environment, adapting the trajectory
as new objects were spotted. Similarly, Nieuwenhuisen et al. [6] also used a 3D laser
scanner on an autonomous quadrotor to build and update an obstacle map and replan
collision-free trajectories. Similar approaches based on different sensors, such as
cameras or depth sensors, were proposed in [22]. However, the previous approaches
[5, 6, 22] rely on configurations that include other sensors (e.g, IMU, Laser Scanner)
in addition to cameras. Furthermore, planning is performed without considering the
visual perception and, in particular, the photometric information.



110 G. Costante et al.

1.2 Contribution

In contrast to the previous works, in this paper we propose a novel method to update
the optimal trajectory that leverages the photometric information (i.e, texture) and the
3D structure of newly-explored areas on the fly (i.e, online), avoiding full replanning.
In order to use that information for minimizing pose uncertainty, we perform path
planning in four degrees of freedom (x, y, z, and yaw). Furthermore we proposed a
novel textured volumetric map representation that allows us to efficiently synthesize
views to compute the photometric information in the scene and plan accordingly. To
the best of our knowledge, this is among the first works to propose a fully autonomous
robotic system that performs onboard localization and online perception-aware plan-
ning. The main contributions of this paper are:

1. We propose to leverage the photometric appearance of the scene, in addition
to the 3D structure, to select trajectories with minimum pose uncertainty. The
photometric information is evaluated by using direct methods. As direct methods
use all the information in the image, they provide a more robust and effective way
to exploit visual information compared to feature-based strategies.

2. Perception-aware planning is performed online as the robot explores the sur-
roundings, without prior knowledge of the full map of the environment.

3. A novel textured volumetricmap formulation is proposed to efficiently synthesize
views for perception-aware planning.

4. We demonstrate the effectiveness of our approach with experiments in both real-
world and simulated environment with aMAV only equipped with vision sensors.

2 Perception-Aware Pose Uncertainty Propagation

The visual localization system relies on the availability of texture in the scene to
reduce the pose estimation uncertainty. As a consequence, selecting the trajectory
that is optimal with respect to the localization accuracy requires evaluation of the
pose-uncertainty propagation along a candidate path and the uncertainty reduction
associated with the photometric information in the scene.

2.1 Pose Propagation

We represent the pose of the robot as a 6 Degree of Freedom (DoF) transformation
matrix T, member of the special Euclidean group inR3, which is defined as follows:

SE(3) :=
{
T =

[
C r
0T 1

] ∣∣∣∣C ∈ SO(3), r ∈ R
3

}
, (1)

where SO(3) is the special orthogonal group in R
3 (the set of spatial rotations, i.e,

CCT = 1, detC = 1) and 1 is the 3 × 3 identity matrix. The Lie Algebra associated
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to the SE(3) Lie Group is indicated as se(3). To represent the uncertainty of the robot
pose, we define a random variable for SE(3) members according to:

T := exp(ξ∧)T̄, (2)

where T̄ is a noise-free value that represents the pose and ξ ∈ R
6 is a small pertur-

bation that we assume to be normally distributedN (ξ|0,Σ). We make use of the ∧
operator to map ξ to a member of the Lie algebra se(3) (see [23]).

We refer to Tk,w as the robot pose at time k relative to the world frame w and to
Tk+1,k as the transformation between the pose at time k and k + 1.

Assuming no correlation between the current pose and the transformation between
k and k + 1, we can represent Tk,w and Tk+1,k with their means and covariances
{T̄k,w,Σk,w} and {T̄k+1,k,Σk+1,k}, respectively. Combining them, we get

Tk+1,w = Tk,w Tk+1,k . (3)

To compute the mean and the covariance of the compound pose, we use the results
from [23]. The mean and the covariance, approximated to fourth order, are:

T̄k+1,w = T̄k,w T̄k+1,k , Σk+1,w � Σk,w + T Σk+1,kT � + F (4)

where T is Ad(T̄k,w), the adjoint operator for SE(3), andF encodes the fourth-order
terms. Using Eq. (4), we propagate the uncertainty along a given trajectory.

2.2 Measurement Update

In contrast to previously published approaches, which mostly rely on sparse image
features, we use direct methods, in the form of dense image-to-model alignment, for
the measurement update. Integrating the intensity and depth of every pixel in the
image enables us to consider photometric information when planning the trajectory.

2.2.1 Preliminary Notation

At each time step of the robot navigation, we can compute a dense surface model
S ∈ R

3 × R
+ (3D position and grayscale intensity) of the explored part of the scene.

The rendered synthetic image is denoted with Is : Ωs ⊂ R
2 → R

+, where Ωs is the
image domain and u = (u, v)T ∈ Ωs are pixel coordinates. Furthermore, we refer
to the depthmap Ds , associated to an image Is , as the matrix containing the distance
at every pixel to the surface of the scene: Ds : Ωs → R

+; u �→ du where du is the
depth associated to u. A 3D point p = (x, y, z)T in the camera reference frame is
mapped to the corresponding pixel in the image u through the camera projection
model π : R3 → R

2, u = π(p). On the other hand, we can recover the 3D point
associated to the pixel u using the inverse projection function π−1 and the depth du:
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pu = π−1(u, du). (5)

Note that the projection function π is determined by the intrinsic camera parameters
that are known from calibration. Finally, a rigid body transformation T ∈ SE(3)
rotates and translates a point q to:

q′(T) := (1 | 0)T (qT , 1)T . (6)

2.2.2 Dense Image-to-Model Alignment

To refine the current pose estimate, we use dense image-to-model alignment
[18, 24] (see Fig. 2). This approach computes the pose Tk,w of the synthetic image Is
by minimizing the photometric error between the observed image and the synthetic
one. Once converged, it also provides the uncertainty of the alignment by evaluating
the Fisher Information Matrix, which we use to select informative trajectories.

The photometric error ru for a pixel u is the difference of the intensity value at
pixel u in the real image acquired at time step k and the intensity value in the synthetic
image rendered at the estimated position T̂k,w:

ru = Ik(u) − Is(π(p′
u(T̂k,w))) (7)

The error is assumed to be normally distributed ru ∼ N (0,σ2
i ), where σi is the

standard deviation of the image noise.
Due to the nonlinearity of the problem, we assume that we have an initial guess of

the pose T̂k,w and iteratively compute update steps T̂k,w ← exp(ξ∧)T̂k,w, ξ
∧ ∈ se(3)

that minimize the error. The update step minimizes the least-squares problem:

Fig. 2 Illustration of the dense image-to-model alignment used in the measurement update. Given
an estimate of the pose T̂k,w , we can synthesize an image and depthmap {Ik ,Dk} from the 3D
model S
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ξ = argmin
ξ

∑
u∈Ωs

1

2σ2
i

[
Ik(u′) − Is(π(p′

u(T̂k,w)))
]2

, (8)

with pu given by (5), p′
u as in (6), and u′ = π

(
p′
u(exp(ξ

∧))
)
.

Addressing the least-squares problem (8) we can compute the optimal ξ using the
Gauss-Newton method and solving the normal equations JT Jξ = −JT r, where J
and r are the stacked Jacobian and image residuals of all pixels u ∈ Ωs , respectively.

At the convergence of the optimization, the quantity

Λk = 1

σ2
i

JT J (9)

is the Fisher Information Matrix and its inverse is the covariance matrix Σ Ik of
the measurement update. According to [23], we find the covariance matrix after the
measurement update at time k by computing

Σk,w ←
(
Λ−1

k + J −TΣk,wJ −1
)−1

, (10)

where the “left-Jacobian” J is a function of how much the measurement update
modified the estimate. Given the informationmatrix in (9), we define the photometric
information gain as tr(Λk).

3 Online Perception-Aware Path Planning

The framework described in Sect. 2 is able to predict the propagation of the pose
uncertainty along a given trajectory by integrating the photometric information when
available. However, to select the best sequence of camera viewpoints we need to
evaluate all the possible trajectories. As we do not assume to have any given prior
knowledge about the scene, the photometric information of the environment, as well
as its 3D geometry, are unknown. Hence, the plan that is considered optimal in the
beginning, will be adapted as new information is gathered by the robot.

In this section, we describe how we enhance the RRT* [10] with the perception-
aware nature that takes benefit from the photometric information to select the trajec-
tory that is optimal with respect to the localization accuracy.

The RRT* incrementally grows a tree in the state space by randomly sampling
and connecting points through collision-free edges. Optimality is guaranteed through
the rewire procedure, which checks for better connections when adding a new point
to the tree. The tree is composed of a set of vertices V that represent points in
the state space. Each vertex v = {xv,Σv,Λv, cv, pv} ∈ V is described via its state
xv = Tv,w (i.e, the pose relative to the vertex v with respect to the reference frame
w), cv being the accumulated cost of the trajectory up to v and a unique parent vertex
pv . In addition, we add the pose covariance Σv and the photometric information Λv
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(relative to the camera view associated to the pose xv) to the vertex v in order to
update the pose covariance according to the photometric information.

To select the best path among all possible trajectories Ti ∈ P , we minimize:

J (Ti ) =
Ni∑
j=1

α Dist(xvij
, xvij−1

) + (1 − α) tr(xvij
.Σ) , (11)

Algorithm 1 Perception-aware RRT*
01: Init: xv0 = xinit; pv0 = root; Σv0 = Σ0; cv0 ; V = {v0}; Number of iterations T
02: for t = 1, . . . , T do
03: xnew = SampleUnexplored()
04: vnst = Nearest(xnew)

05: if ObstacleFree(vnew, vnst)
06: Σt = PropagateAndUpdate(xvnst , Σvnst , xvnew , Λvnew )

07: Jmin = cvnst + (1 − α) tr(Σt) + αDist(xvnst , xvnew )

08: vmin = vnst
09: V = V ∪ v(xnew)

10: Vneighbors = Near(V, vnew)

11: for all vnear ∈ Vneighborsdo
12: if CollisionFree(vnear, vnew)
13: Σt = PropagateAndUpdate(xvnear , Σvnear , xvnew , Λvnew )

14: if cvnear + (1 − α) tr(Σt) + αDist(xvnear , xvnew ) < Jmin
15: Jmin = cvnear + (1 − α) tr(Σt) + αDist(xvnear , xvnew )

16: Σvnew = Σt, cvnew = Jmin, vmin = vnear
17: end if
18: end if
19: ConnectVertices(vmin, vnew)
20: end for
21: RewireTree()
22: end if
23: end for

where the trajectory is represented by a sequence of Ni waypoints vi
j , Dist(·, ·)

computes the distance between two vertices and α defines the trade-off between this
distance and the photometric information gain. Note that we jointly optimize for
position and yaw orientation w.r.t. information gain, so the optimal poses are not just
the RRT* poses with optimized orientation. We choose the trace to include the visual
information into the cost function following the considerations in [25]. In particular,
theminimization of the trace of the pose covariancematrix (A-optimality) guarantees
that themajority of the state space dimensions are be considered (in contrast to the D-
optimality), but does not require us to compute all the eigenvalues (E-optimality). The
fundamental steps of the perception-aware RRT* are summarized in Algorithm 1. At
each iteration, it samples a new state from the state space and connects it to the nearest
vertex (lines 3–19). Next, the function Near() checks on the vertices within a ball,
centered at the sampled state (see [10]), and propagate the pose covariance from these
vertices to the newly sampled one. The one that minimizes the cost function (11)
gets selected. Finally, we update the tree connections through the rewire procedure.
Note that although the optimization is performed on the trace, the full covariance is
propagated along each trajectory for evaluation.
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Fig. 3 Online update steps during exploration: Figures a–c depict the subtree invalidation and
rewiring update when an obstacle is spotted, while d–f show how the tree is rewired when new
photometric information is available from the scene

Given an initially optimal path, we can now start exploring the environment.
When new parts of the scene are revealed, the current trajectory might become
non-optimal or even infeasible in case of obstacles. One possibility would be to
recompute the tree from scratch after every map update but this would be costly and
computationally intractable to have the system integrated into an MAV application.
For this reason, we propose to update the planning tree on-the-fly by only processing
vertices and edges affected by new information. This online update is illustrated
in Fig. 3 and its fundamental steps are depicted in Algorithm 2. Consider an initial
planning tree as in Fig. 3a, that is grown from a starting point (indicated by a green
circle) to a desired end point location (the red circle). Whenever a new obstacle is
spotted, the respective edge and the affected subtree get invalidated and regrown
(lines 04–06) as in Fig. 3b. Note that the SampleUnexplored() function is now
bounded within the subspace corresponding to the invalidated subtree, which results
in a drastically reduced number of iterations compared to fully regrowing the RRT*
tree from scratch. The second scenario in Fig. 3d–f demonstrates the case of gaining
areas with distinctive photometric information. As newly discovered areas provide
photometric information, as shown in Fig. 3e, the neighboring vertices are updated
by the RewireTree() procedure (lines 07–10 in Algorithm 2). Potentially better
connections are considered to form a new path with lower costs (Fig. 3f).

Algorithm 2 Online perception-aware RRT*
01: while 1 do
02: UpdateCollisionMap()
03: UpdatePhotometricInformationMap()
04: Vcolliding = NewCollidingVertices()
05: InvalidateSubTree(Vcolliding)
06: Run PerceptionAwareRRT* 1
07: Vinf = UpdatedVertices()
08: for all vinf ∈ Vinfdo
09: Λv = Λnew

v
10: RewireTree()
11: end for
12: end while
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4 Textured Volumetric Mapping

We implement an extension to the popular OctoMap [26] 3D mapping framework
that records texture information within the volumetric map, allowing novel views to
be synthesized for perception-aware path planning (see Fig. 4).

We utilize this stored texture to synthesize views of the known map from hypo-
thetical positions for the camera. For each synthetic view, we synthesize an image of
what it would look like to observe the environment from that pose—at least up to the
currently observed state of the map—and use these synthetic images in the computa-
tion of information gain during planning. As an extension to an OctoMap that stores
an estimate of occupancy probability for each voxel, we maintain an estimate of the
texture for each face of each voxel as an intensity value, averaged over all of the
observations of that face. We chose this approach because of its compactness—we
must only store the current estimate and the number of cumulative observations—and
because it is not depth dependent for either updating or querying. It is also directly
extensible to a hierarchical representation, such that texture values at higher levels of
the octree can be computed from the faces of their child voxels. While our approach
to rendering images from a volumetric map is similar to the one in [27], we chose to
store texture for the faces, and not just for the volume, because the space represented
by a voxel does not necessarily have the same appearance when observed from dif-
ferent sides. Storing more descriptive representations of texture (e.g. Harris corner
scores) for the faces would be beneficial, but these metrics are often dependent on
the range at which they are observed, presenting a barrier for maintaining a general
estimate. The average intensity representation is efficient to update with new obser-
vations, efficient to query for the current estimate, and adds only minimal overhead
to the computation required for mapping.

Our update method proceeds as follows. Given an input point cloud, occupancy is
updated as in [26], where ray casting from the sensor origin is used to update each leaf
voxel along the ray, until the observed point, and each leaf voxel is updated at most
once for occupancy. To update the texture, for each point pki in the k

th point cloudCk ,
we determine the face f that its ray intersects in the leaf voxel n containing pki . At
leaf voxel n, we maintain the current intensity estimate t f and number of cumulative
observations m f for each face f ∈ 1 . . . 6 of the voxel cube (see Fig. 4a). After the
insertion of k point clouds, these quantities are:

mk
f =

k∑
j=1

∣∣∣p j
i ∈ n

∣∣∣ , t kf =
∑k

j=1 tp j
i

∈ f

m f
(12)

This can be updated efficiently for each new point cloud input:

mk+1
f = mk

f + ∣∣pk+1
i ∈ n

∣∣ , t k+1
f = mk

f t
k
f + tpki

mk+1
f

(13)
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Fig. 4 Textured volumetric mapping: texture information is stored for each face of each voxel in
the OctoMap. Each face maintains a mean intensity value for all of the sensor observations that
have intersected with it when adding data to the map (a). A visualization of a Textured Octomap
is shown in b, where an office scene was observed with a handheld stereo camera. In c, we have
synthesized some images from the map, at poses that the camera has not yet observed

The inclusion of texture in the OctoMap requires an additional computational over-
head of only 15% for both insertion and querying.

Storing texture in a volumetricmap allows us to hypothesize about the photometric
information that our robot could obtain if it moved to a particular pose. We do this
by synthesizing images of the map from a hypothetical pose, casting rays through
each pixel in the image into the map (See Fig. 4c). When these rays intersect with
the face of an occupied voxel, we record the texture of the face and the depth to that
voxel in intensity and depth images. These synthetic images are generated for each
sampled pose when the planner generates or rewires the tree.

5 System Overview

We consider an MAV that explores an unknown environment by relying only on its
camera to perform localization, dense scene reconstruction and optimal trajectory
planning. We have integrated the online perception-aware planner with two different
mapping systems (seeFig. 5): amonocular dense reconstruction system that generates
a point cloud map, and a volumetric system that uses stereo camera input.

In themonocular system, the localization of the quadrotor runs onboard, providing
the egomotion estimation to perform navigation and stabilization. To achieve real-
time performance, the dense map reconstruction and the online perception-aware
path planning runs off-board on an Intel i7 laptop with a GPU, in real-time.
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Fig. 5 Block diagram of the online perception-aware planning system

At each time step k, the quadrotor receives a new image to perform egomotion
estimation. We use the Semi-direct monocular Visual Odometry (SVO) proposed in
[2], which allows us to estimate the quadrotor motion in real-time. The computed
pose Tk,w and the relative image are then fed into the dense map reconstruction
module (REMODE [28], a probabilistic, pixelwise depth estimate to compute dense
depthmaps). Afterwards, the dense map provided by the reconstruction module is
sent to the path planning pipeline and is used to update both the collision map (using
Octomap [26]) and the photometric information map. The last one is then used to
updateΛv for each vertex affected by the map update. Finally, we update the optimal
trajectory following the procedure described in Algorithm 2.

For the textured volumetric map system, we take input from a stereo camera,
perform egomotion estimation with SVO as above, and compute a dense depth map
with OpenCV’s Block Matcher. The estimated camera pose from SVO and the point
cloud produced from the depth map are used to update the Textured OctoMap as
in Sect. 4. This volumetric map serves as a collision map, when it is queried for
occupancy, and is used to synthesize views and compute photometric information
gain during planning, when it is queried for texture. This pipeline runs in real time
onboard an MAV’s embedded single board computer (an Odroid XU3 Lite) using
a map with 5cm resolution, and with the input images downsampled by a factor
of 4 to 188 × 120, and throttled down to 1Hz. However, we evaluate this system
in simulation, and for the experiments in Sect. 6.2, we run the simulation, visual
pipeline, planner, and control software all on a laptop with an Intel i7.

6 Experiments

6.1 Real World Experiments

We motivate our approach by discussing how the photometric information distribu-
tion changes over time when exploring an unknown environment. Figure 6 shows the
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Fig. 6 Computed photometric information gain at different exploration stages (b, c and d) for
the scene in a. Warm (yellowish) colors refer to camera viewpoints exhibiting a higher amount of
texture, while the cool (bluish) ones indicate less informative areas

map for the photometric information gain at different exploration stages. In Fig. 6b
the almost unexplored scene has very little valuable information to compute a reliable
plan. Standard planners, which calculate trajectories only once without performing
online updates, compute sub-optimal plans or even collidewith undiscovered objects.
Hence, an online approach is needed to re-plan as new photometric information is
gathered (see Fig. 6c, d).

To evaluate the proposed online perception-aware path planning, we ran experi-
ments on an indoor environment with different configurations. We set up two scenar-
ios with different object arrangements to vary the texture and the 3D structure of the
scene. In the first scenario, the monocular camera on theMAV is downward-looking,
while in the last onewe choose a front-lookingmonocular configurationwith an angle
of 45 degrees with respect to the ground plane.Wemade experiments with two differ-
ent camera setups to investigate the influence of the camera viewpoint on the optimal
trajectory computation. Intuitively, the front-looking configuration provides more
information since also areas far from the quadrotor are observed. Conversely, with
the downward-looking configuration, the pose estimation algorithm is more reliable,
but less information is captured from the scene. Finally, in all the experiments we
set α = 0.1 to increase the importance of the pose uncertainty minimization.

In all the scenarios,weput highly-textured carpets andboxes along thewalls,while
the floor in the center of the room is left without texture (i.e, with a uniform color). In
the first scenario, we also put an obstacle in the center of the room. At the beginning
of the exploration, the planner shows similar behavior in all the experiments (see
Fig. 7a, d). The information about the scene is very low, thus, our approach computes a
simple straight trajectory to the goal. As the robot explores the environment, the plan
is updated by preferring areas with high photometric information (cf. Fig. 7b, c).
In the second scenario, a front-looking camera provides photometric information
about areas distant from the current MAV pose. As a consequence, we obtain an
optimal plan earlier with respect to the first experiment (see Fig. 7e, f).
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Fig. 7 Experimental results in two real scenarios (rows). The first column shows the initially
computed trajectories, only having little information of the environment available. The second and
third column demonstrate the update of the plan as new information is gathered by updating the
scene

6.2 Simulated Experiments

We demonstrate the proposed system in a simulated environment, using the compo-
nents described in Sect. 5. Two trials were performed in environments simulated with
Gazebo, one designed to explicitly test perception (labyrinth) and one designed to
simulate a real world environment (kitchen). The labyrinth scenario is designed with
flat and highly-textured walls to test the capability of our perception-aware planner to
choose the MAV orientations that maximize the amount of photometric information.
The quadrotor starts in one of the two long corridors in the scene (see Fig. 8a) and is
asked to reach the goal location that is located at 25m from the start location. In the
kitchen world (see Fig. 8d), the MAV begins at a position that is separated by two
walls from the goal location, which is 12.5m away. We compare the performance of
the standard RRT* planner and our perception-aware planner in Figs. 8 and 9.

6.3 Discussion

The qualitative results shown for the real world (Fig. 7) and simulated (Fig. 8) exper-
iments show that the perception aware planner does indeed choose trajectories that
allow the MAV to observe more photometric information. Quantitatively, this results
in a dramatic improvement in the uncertainty of the vehicle’s pose estimate. The
results in Fig. 9 show that the pose uncertainty, measured as the trace of the covari-
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(a) (b)

RRT*

(c)

Perception-aware

(d) (e)

RRT*

(f)

Perception-aware

Fig. 8 Exploration trial in the labyrinth (a) and in the kitchen (d) simulated environments. The
trajectories computed by the RRT* planner are shown in b for the labyrinth scenario and in e
for the kitchen, while the ones computed with the perception aware planner are shown in c and f,
respectively. TheTexturedOctoMaps are visualizedwith a color corresponding to themean intensity
over all of the observed faces, with red representing high intensity, and purple representing low
intensity. The pose covariance at each waypoint is shown as an ellipse, with the most recent update
in orange, and the rest of the plan in blue

ance matrix and visualized as ellipses in Fig. 8, is up to an order of magnitude smaller
when the planner considers the texture of the environment.

In both of the simulated experiments, the RRT* and perception aware planners
both reached the goal location in all trials. On average, for the labyrinth it took 718.3
and 715.2 s, respectively, and for kitchen it took 578.3 and 580.4 s, respectively. The
results are shown in Fig. 8b, c for the labyrinth tests and in Fig. 8e, f for the kitchen
ones. The most important distinction in this performance comparison is the pose
uncertainty across the trajectory. The two planners produce similar trajectories in
terms of waypoint positions, but the covariances for the RRT* trajectory are much
larger due to the desired yaw angles that are chosen for the waypoints. The proposed
perception aware planner specifically optimizes the waypoint position and yaw angle
(i.e. where to look) in order to minimize this pose uncertainty. As a consequence,
the plan computed with our strategy has low pose uncertainty values, while the
RRT* trajectory, which does not consider the visual information, leads to very low
localization accuracy, which can make the navigation infeasible due to the high risk
of collisions.
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Fig. 9 Quantitative results for our experiments showing the evolution of theMAV’s pose covariance
during the planned trajectory. a shows results of the real world experiments. b and c show the
simulated kitchen and labyrinth trials, respectively. The plans for each trial result in different length
trajectories, so the length of each trajectory is normalized to one. For each simulated experiment, we
conducted 15 trials, normalized the trajectories, and inferred Gaussian distributions at each point in
a set of equally-spaced samples along a normalized trajectory. In b and c, each solid line represents
the mean over all of the trials, and the colored band is the 95% confidence interval

7 Conclusions

We have proposed a novel approach for performing online path planning that lever-
ages the photometric information in the environment to plan a path that minimizes
the pose uncertainty of a camera-equipped MAV that is performing vision-based
egomotion estimation. These advances include a perception-aware path planner and
a textured volumetric map. This planning framework has been evaluated with real
and simulated experiments, and both the qualitative and quantitative results support
the conclusion that taking photometric information into account when planning sig-
nificantly reduces a vision-controlled MAV’s pose uncertainty. Utilizing perception
awareness will enable more robust vision-controlled flight in arbitrary environments.
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Optimal-State-Constraint EKF
for Visual-Inertial Navigation

Guoquan Huang, Kevin Eckenhoff and John Leonard

1 Introduction

It is prerequisite for a robot (mobile sensing platform) to be able to determine its
position and orientation (pose) in 3D for a variety of applications ranging from explo-
ration of uncharted territory to augment reality for gaming. Over the past decades, an
inertial navigation system (INS) using an inertial measurement unit (IMU) is among
the most popular approaches to estimate the 6 degrees-of-freedom (d.o.f.) robot’s
poses, especially in GPS-denied environments such as underwater, indoor, in urban
canyon, and on other planets. While simple integration of IMU measurements that
are corrupted by noise and bias, often results in estimates unreliable in a long term,
a camera that is small, light-weight, and energy-efficient, provides rich information
about the perceived environment and serves as an idea aiding source for INS, i.e.,
visual-inertial navigation system (VINS). This problem is challenging in part because
of the lack of global information to reduce the motion drift accumulated over time,
which is exacerbated if low-cost sensors are used.

To date, various algorithms are available for VINS problems including visual-
inertial SLAM [16] and visual-inertial odometry (VIO) [17], such as the extended
Kalman filter (EKF) [16, 23], the unscented Kalman filter (UKF) [3], and the
batch or incremental smoothers [13, 28], among which the EKF-based approach
remains arguably the most popular because of its efficiency. For example, as a
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state-of-the-art solution of VINS on mobile devices, Google’s Project Tango [4]
uses the EKF to tightly fuse the visual and inertial measurements by processing
them in a single estimation thread. Although it works well in a relatively small-scale
environment over a short period of time, yet it is not robust enough for widespread
long-term deployments in critical applications such as search and rescue. This is due
to the fact that any engineered sensor system has only finite resources available (e.g.,
processing power and memory storage). If sensor measurements are not optimally
utilized, for example, due to stringent resources, the standard EKF can easily become
vulnerable to errors and produce inconsistent estimates [6, 7, 10, 17].

In this paper, we develop a novel optimal-state-constraint (OSC)-EKF algorithm
which essentially introduces a new methodology of efficiently processing visual
information during VINS. As in [22], the proposed OSC-EKF performs tightly-
coupled visual-inertial sensor fusion over a slidingwindow that consists of the current
navigation state and the past cloned poses only (i.e., without including features in the
state vector). This results in the complexity independent of the size of the environment
(the total number of the features available in the environment, say M), while being
dependent on the number of features observed in the current sliding window which
is typically much smaller than M . The key idea of the proposed approach is to design
a measurement model that utilizes all the feature measurements available within the
current sliding window to impose probabilistically optimal constraints among the
poses, while without estimating these features as part of the state vector. To that end,
during each slidingwindow,we perform structure andmotion using only the available
camera measurements (which can be solved efficiently by leveraging many open-
source optimized solvers), and subsequently marginalize out the structure (features).
This results in the optimal motion constraints that will be used by the EKF to update
the state estimates. The proposed approach is preliminarily validated in real-world
experiments. Note that this methodology can also be generalized to other sensing
modalities such as lidar and acoustic sensors.

The remainder of the paper is organized as follows: After an overview of related
work in the next section, the standard EKF-basedVINS is briefly described in Sect. 3.
In Sect. 4, we present in detail the proposed OSC-EKF algorithm, which derives an
optimal-state-constraint measurement model bymarginalizing out the structure from
the structure-and-motion process. In Sect. 5, the proposed OSC-EKF is validated in
real-world experiments. Finally, Sect. 6 outlines the main conclusions of this work,
as well as possible future research directions.

2 Related Work

Fusing visual and inertialmeasurements provides a popularmeans for robots navigat-
ing in 3D, in part because of the complementary sensing modalities and the reduced
cost and size of the sensors as well as the increased computing power (e.g., see [2, 3,
6, 7, 11, 13–17, 19, 23, 26, 28, 31, 32] and references therein). Such visual-inertial
navigation can be broadly categorized into loosely- and tightly-coupled approaches.
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The former processes the IMUmeasurements and images separately in the front end
to generate motion constraints, which subsequently are fused in the back end (e.g.,
[13, 32]). However, although this type of methods have advantage of computational
efficiency, the decoupling results in information loss [17]. The latter seamlessly fuses
the visual and inertial measurements by processing them in a single estimation thread
(e.g., [6, 7, 10, 14, 15, 17]). As mentioned earlier, the proposed OSC-EKF also falls
into the latter category.

As system observability plays an important role in developing VINS algorithms,
the VINS observability/identifiability was studied by examining the system’s indis-
tinguishable trajectories [5, 14]. Similarly, Martinelli [19] employed the concept
of continuous symmetries to show that in VINS, the IMU biases, 3D velocity, and
absolute roll and pitch angles are observable. Moreover, in analogy to robot local-
ization in 2D [8, 9], consistency of EKF-based VINS has been investigated from
the perspective of observability [6, 7, 17]. In particular, Li and Mourikis [17] stud-
ied the impact of filter inconsistency due to the VINS observability properties, and
leveraged the first-estimates-Jacobianmethodology [9] to mitigate the inconsistency.
Hesch et al. [6, 7] employed the observability-based methodology proposed in our
prior work [8] and introduced the observability-constrained VINS, which ensures
correct observability of the EKF linearized system. In our recent work [10], besides
imposing the sameobservability constraints,we further enforce the propagation Jaco-
bian to satisfy the semigroup property and thus to be a valid state transition matrix,
which results in an alternative way of computing propagation Jacobians. Note that
the same observability-based constraints may be used in the proposed approach to
improve VINS consistency, which, however, is not the focus of this work. Instead,
we here primarily focus on deriving a new optimal-state-constraint measurement
model to better utilize measurement information, which can be used for any VINS
formulation (see Sect. 4).

Recently the incremental light bundle adjustment (iLBA) [11, 12] extracts motion
constraints from camera’s feature measurements based on three-view geometry in
the front end (without including features in the state vector as well), while in the
back end, performing incremental smoothing for factor-graph based formulation of
robot navigation. However, the proposed approach can utilize any number of views
(N ≥ 2) and derive optimal ego-motion constraints (up to scale) about the camera
poses within the current sliding window and thus can be considered as generalized
N-view constraints.

3 Visual-Inertial Navigation

In this section, we describe the IMU propagation and camera measurement models
within the standard EKF framework, which govern the VINS. In order to lay the
groundwork for the proposed approach, we here consider the SLAM scenario where
only a single feature is included in the state vector, while the results can be readily
extended to the case of multiple features.
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3.1 IMU Propagation Model

The EKF uses the IMU (gyroscope and accelerometer) measurements for state prop-
agation, and the state vector consists of the IMU states xI and the feature position
Gp f

1:

x = [
xTI

GpT
f

]T = [
I
G q̄

T bT
g

GvT bT
a

GpT GpT
f

]T
(1)

where I
G q̄ is the unit quaternion that represents the rotation from the global frame

of reference {G} to the IMU frame {I } (i.e., different parametrization of the rotation
matrix C(IG q̄)); Gp and Gv are the IMU position and velocity in the global frame;
and bg and ba denote the gyroscope and accelerometer biases, respectively.

By noting that the feature is static (with trivial dynamics), as well as using the
IMU motion dynamics [29], the continuous-time dynamic equations of the state (1)
are given by:

I
G

˙̄q(t) = 1

2
Ω

(
Iω(t)

)
I
G q̄(t) , G ṗ(t) = Gv(t) , G v̇(t) = Ga(t)

ḃg(t) = nwg(t) , ḃa(t) = nwa(t) , G ṗ f (t) = 03×1 (2)

where Iω = [
ω1 ω2 ω3

]T
is the rotational velocity of the IMU, expressed in {I }, Ga

is the IMU acceleration in {G}, nwg and nwa are the white Gaussian noise processes
that drive the IMU biases, and Ω(ω) is defined by:

Ω(ω) =
[−�ω×� ω

−ωT 0

]
, �ω×� =

⎡

⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦

A typical IMU provides gyroscope and accelerometer measurements, ωm and am ,
both of which are expressed in the IMU local frame {I }:

ωm(t) = Iω(t) + bg(t) + ng(t) (3)

am(t) = C(IG q̄(t))
(
Ga(t) − Gg

) + ba(t) + na(t) (4)

where Gg is the gravitational acceleration expressed in {G}, and ng and na are zero-
mean, white Gaussian noise.

1Throughout this paper the subscript �| j refers to the estimate of a quantity at time-step �, after all
measurements up to time-step j have been processed. x̂ is used to denote the estimate of a random
variable x , while x̃ = x − x̂ is the error in this estimate. In and 0n are the n × n identity and zero
matrices, respectively. e1, e2 and e3 ∈ R

3 are the unit vectors along x−, y− and z−axes. Finally,
the left superscript denotes the frame of reference which the vector is expressed with respect to.
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Linearization of (2) at the current state estimates yields the continuous-time state-
estimate propagation model [23]:

I
G

˙̄̂q(t) = 1

2
Ω

(
I ω̂(t)

)
I
G

ˆ̄q(t) , G ˙̂p(t) = G v̂(t) , G ˙̂v(t) = G â(t)

˙̂bg(t) = 03×1 ,
˙̂ba(t) = 03×1 , G ˙̂p f (t) = 03×1 (5)

where â = am − b̂a and ω̂ = ωm − b̂g . The error state of dimension 18 × 1 is hence
defined as follows [see (1)]:

x̃(t) =
[
I θ̃

T
(t) b̃T

g (t) G ṽT (t) b̃T
a (t) G p̃T (t) G p̃T

f (t)
]T

(6)

where we have employed the multiplicative error model for a quaternion [29]. That
is, the error between the quaternion q̄ and its estimate ˆ̄q is the 3 × 1 angle-error vec-

tor, I θ̃ , implicitly defined by the error quaternion: δq̄ = q̄ ⊗ ˆ̄q−1 �
[
1
2
I θ̃

1

]
, where

δq̄ describes the small rotation that causes the true and estimated attitude to coin-
cide. The advantage of this parametrization permits a minimal representation, 3 × 3

covariance matrixE
[
I θ̃ I θ̃

T
]
, for the attitude uncertainty. It is important to note that

the orientation error, I θ̃ , satisfies the following rotation-matrix relation [29]:

C(IG q̄) � (
I3 − �I θ̃×�)C(IG

ˆ̄q) (7)

Now the continuous-time error-state propagation is:

˙̃x(t) = Fc(t )̃x(t) + Gc(t)n(t) (8)

where n = [
nT
g nT

wg nT
a nT

wa

]T
is the system noise, Fc is the continuous-time error-

state transition matrix, and Gc is the input noise matrix (see [29]):

Fc =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

−�ω̂×� −I3 03 03 03 03
03 03 03 03 03 03

−CT (IG
ˆ̄q)�â×� 03 03 −CT (IG

ˆ̄q) 03 03
03 03 03 03 03 03
03 03 I3 03 03 03
03 03 03 03 03 03

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, Gc =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

−I3 03 03 03
03 I3 03 03
03 03 −CT (IG

ˆ̄q) 03
03 03 03 I3
03 03 03 03
03 03 03 03

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(9)

The system noise is modelled as zero-meanwhite Gaussian process with autocorrela-
tion E

[
n(t)n(τ )T

] = Qcδ(t − τ), which depends on the IMU noise characteristics.
We have presented the continuous-time propagation model using IMU mea-

surements. However, in any practical EKF implementation, the discrete-time state-
transition matrix, Φ(tk+1, tk), is required in order to propagate the error covariance
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from time tk to tk+1. Typically it is found by solving the following matrix differential
equation:

Φ̇(tk+1, tk) = Fc(tk+1)Φ(tk+1, tk) (10)

with the initial conditionΦ(tk, tk) = I18. And its solution has the following structure:

Φk := Φ(tk+1, tk) =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Φk,11 Φk,12 03 03 03 03
03 I3 03 03 03 03

Φk,31 Φk,32 I3 Φk,34 03 03
03 03 03 I3 03 03

Φk,51 Φk,52 δtkI3 Φk,54 I3 03
03 03 03 03 03 I3

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(11)

where δtk = tk+1 − tk . This matrix (11) can be found either numerically [23, 29] or
analytically [6, 17]. Once it is computed, the EKF propagates the error covariance
in a standard way [20]:

Pk+1|k = ΦkPk|kΦT
k + Qd,k (12)

where Qd,k is the discrete-time system noise covariance computed as follows:

Qd,k =
∫ tk+1

tk

Φ(tk+1, τ )Gc(τ )QcGT
c (τ )ΦT (tk+1, τ )dτ. (13)

3.2 Camera Measurement Model

The camera observes visual corner features, which are used to concurrently estimate
the ego-motion of the sensing platform. Assuming a calibrated perspective camera,
the measurement of the feature at time-step k is the perspective projection of the 3D
point, Ckp f , expressed in the current camera frame {Ck}, onto the image plane, i.e.,

zk = 1

zk

[
xk
yk

]
+ vk (14)

⎡

⎣
xk
yk
zk

⎤

⎦ = Ckp f = C(CI q̄)C(
Ik
G q̄)

(
Gp f − Gpk

) + CpI (15)

where vk is the zero-mean, white Gaussian measurement noise with covariance Rk .
In (15), {CI q̄, CpI } is the rotation and translation between the camera and the IMU.
This transformation can be obtained, for example, by performing camera-IMUextrin-
sic calibration offline [21].
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For the use ofEKF, linearizationof (14) yields the followingmeasurement residual
[see (6)]:

z̃k = Hk x̃k|k−1 + vk = HIk x̃Ik|k−1 + Hfk
G p̃ fk|k−1 + vk (16)

where the measurement Jacobian Hk is computed as:

Hk = [
HIk Hfk

] = HprojC(CI q̄)
[
Hθ k 03×9 Hpk C(

Ik
G

ˆ̄q)
]

(17)

Hproj = 1

ẑ2k

[
ẑk 0 −x̂k
0 ẑk −ŷk

]
(18)

Hθ k = �C(
Ik
G

ˆ̄q)
(
G p̂ f − G p̂k

)×� (19)

Hpk = −C(
Ik
G

ˆ̄q) (20)

Once themeasurement Jacobian and residual are computed,we can apply the standard
EKF update equations to update the state estimates and error covariance [20].

4 Optimal-State-Constraint (OSC)-EKF

It is evident from the preceding section that the visual-inertial SLAM formulation has
quadratic complexity with respect to the number of features in the state vector (due
to the EKF covariance update), which is often too expensive to process as hundreds
of thousands of features can be easily detected from images. To address this issue,
we adopt the multi-state constraint Kalman filter (MSCKF) framework [22] and
perform tightly-coupled VINS over a sliding window of n poses without including
features in the state vector, thus having complexity independent of the total number
of features observed in the environment. The key idea of the proposed OSC-EKF is
to form a novel measurement model that utilizes all feature observations available
within the sliding window to impose probabilistically optimal constraints between
poses, without estimating these features as part of the state vector. In the following
we derive in detail this measurement model for the use of EKF.

4.1 State Vector

The state vector at time-step k augments the current IMU state by the past n poses
where the images were taken through stochastic cloning [25]:

xk = [
xTIk y

T
k−1 · · · yTk−n

]T
(21)

where yT� = [I�
G q̄

T GpT
�

]
is the IMU pose (quaternion and position) where the image

is recorded at time-step �.
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4.2 Propagation

During the propagation, the current state estimates evolve forward in time by inte-
grating (2), while the cloning-state estimates remain static. On the other hand, the
augmented covariance is propagated as follows (see (12) and [25]):

Pk+1|k = Diag (Φk, I6n)Pk|kDiag
(
ΦT

k , I6n
) + Diag

(
Qd,k, 06n

)
. (22)

4.3 Update

During the update, in order to utilize all the information about the poses, which is
encapsulated in all the camera measurements to the features observed in the current
sliding window, we aim to derive optimal constraints between camera poses in the
window. To this end, we first perform structure and motion [24] using the camera
observations only (i.e., without using IMUmeasurements), and then marginalize out
the structure, thus resulting in optimal up-to-scale motion constraints.

Consider a feature point, f j , is observed by the camera at time-step i , for i =
k − n, . . . , k, and j = 1, . . . ,m [see (14)].

zi j = h
(
LxCi ,

L p f j

) + ni j (23)

where the measurement noise ni j ∼ N (0,Ri j ), and {L} denotes the reconstruction
framewhich is initialized by two camera views in the current time window [k − n, k]
when performing structure and motion and that conforms the corresponding epipolar
geometry, and can be simply chosen to be the first frame of the current window.

We formulate the relative maximum likelihood estimation (MLE) using only the
feature measurements with respect to the relative states expressed in the local frame
{L}, i.e., LxC that contains all the camera poses in the time window [k − n, k], and
LpF that includes all the feature points. Under the common assumptions of Gaussian
noise and independentmeasurements, this relativeMLE is equivalent to the following
nonlinear least squares problem:

min
LxC,LpF

∑

i, j

||zi j − h(LxCi ,
L p f j )||2Ri j

(24)

where we have employed the energy norm notation, i.e., ||r||2R = rTR−1r. Note that
in our implementation the inverse depth parameterization for the feature points is
used in order to achieve better numerical stability and thus better estimates [1]. To
solve this problem (24), a Gauss-Newton iterative approach is typically employed.
The information (Hessian) matrix of the relative camera states (i.e., the relative-pose
constraints), is obtained using Schur complement by marginalizing out LpF:
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A = ∑

i, j

HT
i jR

−1
i j Hi j =:

[
AFF AFC

ACF ACC

]
⇒ (25)

Ap = ACC − ACFA−1
FFAFC (26)

where Hi j is the measurement Jacobian with respect to the relative states, LxC and
LpF [see (24)], and the Hessian matrix A is partitioned based on the dimensions of
these two states.

Close inspection reveals that the information matrix A encapsulates all the infor-
mation about the relative states, contained in the feature measurements in the current
sliding window; and thus Ap, the Schur complement of AFF in A, describes all the
information that the featuremeasurements provide us about the relative camera poses,
LxC. Therefore, the following relative constraints for the camera poses induced from
the camerameasurements in the current timewindow, are optimal (up to linearization
errors):

LxC ∼ N (
L x̂C ,Rp

)
(27)

where Rp = A−1
p is the covariance of inferred relative-pose measurements. Note

that, due to marginalization (26), in general, the information matrixAp, and thus the
corresponding covariance matrix Rp, is full, which implies that the induced relative
constraints for the remaining states are correlated.

Nowwe can use these inferred optimal relative measurements to update the global
state estimates in the EKF [see (21)]. In particular, for each relative camera pose

LxCi =
[ Ci

L q̄
LpCi

]
, it is not difficult to derive the following nonlinear relations among

the global states:

C(
Ci
L q̄) = C(IC q̄)TC(

Ii
G q̄)C(

IL
G q̄)TC(IC q̄) (28)

LpCi = C(IC q̄)T
[
C(

IL
G q̄)

(
C(

Ii
G q̄)T IpC + Gpi − GpL

)
− IpC

]
(29)

For the use of EKF, we need to linearize these equations with respect to the global
states (specifically, ILG q̄, GpL ,

Ii
G q̄, and

Gpi ) around the current state estimates.
First consider the inferred relative rotation (28). Using the small-angle approxi-

mation (7), we can rewrite this equation as follows:

(
I3 − �φ̃i L×�)C(

Ci
L

ˆ̄q) (30)

= C(IC q̄)T
(
I3 − �̃θ i×�)C(

Ii
G

ˆ̄q)
(
I3 + �̃θ L×�)C(

IL
G

ˆ̄q)TC(IC q̄)

= C(IC q̄)TC(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)TC(IC q̄) + C(IC q̄)TC(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)T �̃θ L×�C(IC q̄)

− C(IC q̄)T �̃θ i×�C(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)TC(IC q̄) − C(IC q̄)T �̃θ i×�C(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)T �̃θ L×�C(IC q̄)

� C(
Ci
L

ˆ̄q) + C(IC q̄)TC(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)T �̃θ L×�C(IC q̄) − C(IC q̄)T �̃θ i×�C(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)TC(IC q̄)
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where φi L denotes the angle corresponding to the relative rotation C(
Ci
L q̄), and θ̃ i

and θ̃ L are the angle errors expressed in the IMU local frame, i.e., θ̃ i := I θ̃ i and
θ̃ L := I θ̃ L . We hereafter drop the left superscripts to keep the presentation concise.
In the last line we have also neglected the second-order term. From (30), we have:

C(
Ci
L

ˆ̄q)T �φ̃i L×�
� −C(IC q̄)T �̃θ L×�C(

IL
G

ˆ̄q)C(
Ii
G

ˆ̄q)TC(IC q̄) + C(IC q̄)TC(
IL
G

ˆ̄q)C(
Ii
G

ˆ̄q)T �̃θ i×�C(IC q̄)

= −�C(IC q̄)T θ̃ L×�C(
Ci
L

ˆ̄q)T + C(
Ci
L

ˆ̄q)T �C(IC q̄)T θ̃ i×�
= C(

Ci
L

ˆ̄q)T �−C(
Ci
L

ˆ̄q)C(IC q̄)T θ̃ L×� + C(
Ci
L

ˆ̄q)T �C(IC q̄)T θ̃ i×� (31)

Now we have the following error equation, from which we can easily read out the
Jocobian matrices with respect to the global orientation states IL

G q̄ and Ii
G q̄.

φ̃i L � −C(IC q̄)TC(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)T θ̃ L + C(IC q̄)T θ̃ i =: HθL θ̃ L + Hθi θ̃ i (32)

where we have used the fact that C(
Ci
L

ˆ̄q) = C(IC q̄)TC(
Ii
G

ˆ̄q)C(
IL
G

ˆ̄q)TC(IC q̄).
Now consider the inferred relative position (29). It is important to note that the

relative positions between camera poses were determined up to scale (by using only
camera measurements). To compensate for this fact, we can normalize the relative
positions by the z-coordinate of the k-th relative position, LpCk (3), i.e.,

2

L p̄Ci :=
LpCi

LpCk (3)
= ρLpCi (33)

where ρ := 1
LpCk (3)

. Thus, based on (29), we can linearize this up-to-scale relative-
position measurement (33) with respect to the global states around the current state
estimates and obtain the following linearized measurement error equation:

L˜̄pCi
� HpL

G p̃L + Hpi
G p̃i + Hpk

G p̃k + HθL θ̃ L + Hθi θ̃ i + Hθk θ̃ k (34)

where the Jacobian matrices are computed using the chain rule of differentiation, for
i 
= k, as follows:

HpL = −ρ̂C(IC q̄)TC(
IL
G

ˆ̄q) + L p̂CiJPL (35)

Hpi = ρ̂C(IC q̄)TC(
IL
G

ˆ̄q) (36)

Hpk = L p̂CiJPk (37)

HθL = ρ̂C(IC q̄)T �C(
IL
G

ˆ̄q)
(
C(iG

ˆ̄q)IpC + G p̂i − G p̂L

)
×� + L p̂CiJTL (38)

2While in principle we can choose an arbitrary coordinate of any relative position to normalize in
order to compensate for the unknown scale, in practice we may select the one that yields the best
numerical stability.
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Hθi = −ρ̂C(IC q̄)TC(
IL
G

ˆ̄q)C(
Ii
G

ˆ̄q)�IpC×� (39)

Hθk = L p̂CiJTk (40)

where L p̂Ci is computed based on (29) using the current state estimates, and ρ̂ =
1

L p̂Ck (3)
. In the above expressions, the Jacobians of ρ with respect to the pertinent

global states are computed using the current state estimates as follows:

JPL := ∂ρ

∂pL
|pL=p̂L = ρ̂2eT3 C(IC q̄)TC(

IL
G

ˆ̄q) (41)

JPk := ∂ρ

∂pk
|pk=p̂k = −ρ̂2eT3 C(IC q̄)TC(

IL
G

ˆ̄q) (42)

JTL := ∂ρ

∂θ L
|
θ L=θ̂ L

= −ρ̂2eT3 C(IC q̄)T �C(
IL
G

ˆ̄q)
(
C(

Ik
G

ˆ̄q)IpC + G p̂k − G p̂L

)
×� (43)

JTk := ∂ρ

∂θ k
|
θ k=θ̂ k

= ρ̂2eT3 C(IC q̄)TC(
IL
G

ˆ̄q)C(
Ik
G

ˆ̄q)T �IpC×� (44)

Note that if i = k, the measurement (33) becomes identical to the perspective camera
model (14), and thus the corresponding Jacobians can be computed as in (17).

Based on the above novel residual equations (32) and (34) along with the mea-
surement noise covariance Rp (27), we can perform the standard EKF update [20].
It should be noted again that the same observability-based constraints as in [6, 7,
10] can be enforced in the proposed OSC-EKF when computing the propagation and
measurement Jacobians in order to improve estimation consistency.

5 Experimental Results

To prove the concept of the proposed OSC-EKF algorithm, we have preliminarily
performed VINS experiments in an indoor envrionment, in which a hand-held IMU-
camera platform travelled in various indoor environments. In these experiments,
we were using a PointGrey Chameleon monocular camera that records images of
resolution 640 × 480 pixels at 30Hz and a MicroStrain IMU (3DM-GX3-25) which
operates at 100 Hz (see Fig. 1). We employed the Shi-Tomasi corner detector [27] to
extract point features from the first image available in the current sliding window that
consists of n = 10 camera poses, and then track them over the subsequent images
in the window using the KLT tracking algorithm [18]. On average, approximately
m = 200 features were tracked per image and as a common practice, outliers were
rejected from the resulting tracks by running 2-point RANSAC [30].

In this test, the camera-IMU platform traversed about 22m and returned to its
starting position. Figure2 shows the estimated trajectory. At the end of the trajectory,
the OSC-EKF has a position error of 30 cm, which accounts for approximately
1.3% of the total distance travelled. Note that we found from various experiments
that the navigation performance can be greatly affected by sensor calibration and
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Fig. 1 The sensor suite used in our experiments: A MicroStrain 3DM-GX3-25 IMU is rigidly
mounted on a PointGrey Chameleon monocular camera

Fig. 2 The estimated
trajectory of the proposed
OSC-EKF in a real-world
VINS experiment conducted
in a small office room. In this
plot, � denotes the starting
position, while the estimated
ending position is denoted
by ©

synchronization and KLT-based visual tracking, which we aim to improve in the
future. Figure3 respectively depicts the orientation (roll, pitch and yaw) and velocity
(along x , y and z-axis) estimates and their 3σ bounds. These results prove the concept
that we seek to promote (i.e., deriving optimal motion constraints for VINS from
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Fig. 3 Orientation and velocity estimates (left) and their 3σ bounds (right)
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feature measurements without including them in the state vector) and show that the
proposed approach is able to well track the 6 d.o.f. motion of the sensor suite.

6 Conclusions and Future Work

In this paper, we have introduced an efficientOSC-EKF for visual-inertial navigation,
which imposes optimal constraints on the camera poses without estimating visual
features as part of the state vector and thus has linear computational complexity in
terms of the number of features. In particular, in order to optimally fuse visual and
inertialmeasurements over time, the proposedOSC-EKFmaintains a slidingwindow
of poses and derives optimal relative-posemeasurements by performing structure and
motion with images available in the current window and then marginalizing out the
structure. The proposed approach has been preliminarily validated on real-world
experiments. In the future, we will test the proposed approach more thoroughly and
seek to further improve its performance, e.g., by integrating loop closure to enable
long-term navigation while bounding localization errors.
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Part II
Soft Robotics and Natural Machine Motion

Session Summary

Inspired from nature, there has been an increasing interest in the use of soft materials
in the design and construction of robots becausemost of the biological systems rely on
deformable structures. Soft robots can be characterized by the mechanical structures
with high deformation, stretchability, and elasticity, while being continuum,modular,
and often reconfigurable. These aspects are now being replicated in many advanced
robotic systems, some of which were presented in this session.

Phillips-Graffllin and Berenson show their recent development in soft body sim-
ulation for the purpose of robotic surgery. The simulation environment employs
a newly developed soft-rigid interaction model to reproduce the behaviors of soft
organs during surgery including the dissection of tissues. The simulation frame-
work is then used for the optimization of control architectures, and the outcome was
verified in the real-world platform. Tosun, Jing, Kress-Gazit, and Yim present also
a new simulation technique to efficiently develop modular robots. The simulation
framework is open-sourced and contains the software library for assistive designs of
complexmodular robots and their controllers. Sung andRus show their technological
progress of foldable robots. In contrast to conventional foldable robots that usually
have problems with the structural strength, the new approach makes use of thicker
materials that are laser-cut and glued together with thin films to achieve foldability
while maintaining flexibility and modularity. The paper proposed an algorithm to
generate cut patterns to automatically design six-legged robots, for example.

Kupcsik and Lee presented a learning algorithm for dynamic object handover.
They formulate the problem as contextual policy search, in which the robot learns
object handover by interacting with the human. A key challenge in such robot–
human interaction is to develop reward function in handover task under noisy human
feedback. Preliminary experiments show that the robot learns to hand over a water
bottle naturally and that it adapts to the dynamics of human motion.

A group of teams presented a variety of interesting mechanisms inspired by
animals’ mechanisms and structures. Renda and Seneviratne presented a unified
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formulation for describing the dynamics aquatic multi-body soft robots. This
formulation accounts for the continuum hyperelastic nature of the vehicles and for
the interaction with the dense fluid. Soft robotics designs are inspired by the octopus
capable of swimming, manipulating, and crawling. A Cosserat-based formalism that
combines a Reissner shell model and a finite-strain beam formulation is conceived.
Hammond, Wu, and Asada present the design, fabrication, and experimental charac-
terization of soft pneumatic supernumerary robotic (SR) fingers for programmable
motion synergies. There are many situations where an extra finger can be helpful in
manipulating objects. The pneumatic SR fingers consist of inflatable, rigidizable fin-
ger phalanges, and variable stiffness pneumatic bending actuatorswhich are designed
and manufactured using soft robot fabrication methods. The SR grasp assist device
demonstrates the feasibility of using variable stiffness pneumatic structures to pro-
duce grasp synergies. Cheng, Kim, and Desai present a real-time MR image-guided
robotic neurosurgery that utilizes a dexterous mesoscale surgical robot that can work
in tight spaces. An MR-compatible prototype of the minimally invasive neurosurgi-
cal intracranial robot (MINIR-II) is introduced. Each joint of the robot is actuated by
an antagonistic pair of shape memory alloy (SMA) spring actuators with integrated
water cooling modules. The proposed water-based cooling strategy is designed to
improve the cooling rate, and thus the actuation bandwidth of SMA springs.

Ijspeert presents hownumericalmodels and robots can be used to explore the inter-
play of these four components (CPGs, reflexes, descending modulation, and mus-
culoskeletal system). Inspired by animals’ spinal cord circuits that combine reflex
loops and central pattern generators (CPGs), ranging from lamprey to human loco-
motion, a series of models is presented. These models show that the respective roles
of these components have changed during evolution with a dominant role of CPGs in
lamprey and salamander locomotion, and amore important role for sensory feedback
and descending modulation in human locomotion.



AMulti-soft-body Dynamic Model
for Underwater Soft Robots

Federico Renda, Francesco Giorgio-Serchi, Frederic Boyer,
Cecilia Laschi, Jorge Dias and Lakmal Seneviratne

1 Introduction

Marine operations and the growing needs of the offshore industry require under-
water robots to undertake increasingly daunting tasks in always more forbidding
environments. Certain scenarios, however, pose such challenges at sea that standard
Remotely Operated Vehicles (ROVs) andAutonomousUnderwater Vehicles (AUVs)
are likely to be unsuitable. An answer to this problem lies in the development of
innovative underwater robots which, endowed with augmented manoeuvrability and
flexibility, may provide an aid to the ever growing demands of the marine sector.

In recent times underwater robotics has largely benefited from the growing fas-
cination for bioinspired locomotion, because the design of underwater robots can
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profit massively from the investigation of the swimming strategies, hydrodynamics
and physiology of such animals. Several examples exist of aquatic organisms which
have been taken as the source of inspiration for designing a trustworthy robotic
counterpart. The finned and caudal flapping of fish (e.g. [1]) has gathered the most
recognition in the scientific community, in part because of the sound understanding
of the underlying physics involved in their locomotion [2].

The design criteria for replicating the actuation mechanism which drives the
propulsion of fish has, in most cases, entailed the replacement of continuously
deforming bodies by reducing the number of degrees-of-freedom (DOF) with a finite
sequence of rigid links and joints. However, lately the attempt has been made by [3]
to account for the compliant nature of these organisms by resorting to continuous soft
structures and actuators. This is one of the few examples where the design principles
of soft robotics [4] have been adapted to the aquatic context. In water the hindrances
due to the lack of rigid parts are compensated by the support of the dense medium in
which the vehicle is immersed, annihilating many of the limits which soft robots are
facedwith on land. This has encouraged the authors to develop a new breed of aquatic
soft robots inspired by the quintessential soft-bodied sea dweller, the octopus.

While the design of Soft Unmanned Underwater Vehicles (SUUVs), may result
fairly uncomplicated, their modeling and control is anything but straight forward.
Here we present the first example of a cable-actuated, multi-body, aquatic soft robot
and introduce a formulation which accounts for the continuum nature of the robotic
platform and allows to describe the dynamics of this vehicle while it travels in a
quiescent fluid.

1.1 An Aquatic Multi-body Soft Robot

The octopus sports a range of features which are very much sought for in underwater
robotics. These include essentially the capability to swim, crawl and manipulate
along with an overall remarkable structural compliance. These make the octopus
the perfect paradigm of aquatic vehicle. In the scenario of offshore intervention,
where complex environments and highly perturbed conditions are the norm, the
design criteria borrowed from the soft/bioinspired approach could represent a viable
solution to a broad range of tasks which current Unmanned Underwater Vehicles
(UUVs) are unfit for.

By taking inspiration from the octopus, the authors have developed a soft-bodied
vehicle capable of travelling in water and replicating some of the salient skills of this
aquatic organism [5]. The result of this effort is portrayed schematically in Fig. 1. This
first prototype of aquatic multi-body soft robot entails a platform composed for as
much as 80% in volume of rubber-like materials and capable of manipulating as well
as travelling in the aquatic environment either via waterborne pulsed-jet propulsion
or legged locomotion.

The robot essentially consist of a central elastic shell, referred to here as the Soft
Shell Mantle (SSM), which is designated to performing the pulsed-jet propulsion via
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Fig. 1 Aschematic of the SUUVdeveloped by the authors. Numbers refer to: (1) pulsed-jet thruster,
(2) the nozzle, (3) the cables which drive the shell collapse, (4) the continuum manipulators, (5) the
actuators of themanipulators, (6) the actuator of the shell and (7) the cable which drivesmanipulator
actuation

Fig. 2 The Soft Unmanned Underwater Vehicle (SUUV) PoseiDRONE upon assemblage comple-
tion (a) and during testing at sea (b)

the recursive ingestion and expulsion of finite slugs of ambient water [6, 7]. From
this central unit, a number of manipulators, i.e. the Soft Robot Arms (SRAs), depart:
these are conical-shaped continuous structures composed of elastomeric materials
designated to performing basic manipulation [8] and legged-locomotion [9]. Actua-
tion is entirely dealt with via cable-transmission: inextensible cables run through the
arms and inside the central shell and, upon recoiling from the designated DC motor,
drive the twirling of the manipulator or the collapse of the shell.

Once assembled, the vehicles appears as in Fig. 2a. This vehicle has been tested
both in controlled environments as well as in open water, see Fig. 2b and modeling
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and control of this complex system has been attempted by separately accounting for
the various mechanical units [6, 10]. Here, for the first time, the authors attempt
to formulate a unified model which encompasses internal actuation and external
dynamics.

2 Soft Robot Arm and Soft Shell Mantle Model

In the geometrical exact approach, the SRA is viewed as a Cosserat rod [11], i.e.
as a continuous assembly of rigid cross section, while the SSM is modelled as a
Cosserat axisymmetric shell [12], i.e. as a continuous assembly of fibers along the
median surface. In this section, a brief description of the kinematics and dynamics of a
Cosserat rod/shell for underwater soft robotics is given, based on the authors previous
works [8, 13], which should be taken as the reference for a more detailed derivation.
Experimental validation of the model are also presented in [8] for the SRA, while for
the SSM steady state experiments have been presented in [14], dynamic experiments
are under review and a coupled dynamic-potential flow solution is given in [15]. In
order to appreciate the symmetry between the two models, with a slight abuse of
notation, some times we will adopt the same symbols for the two formulations, since
they share the same geometrical and mechanical meaning in both the cases.

2.1 Kinematics

The reference space is endowed with a base of orthogonal unit vectors (e1, e2, e3)
(Fig. 3). In the Cosserat theory, the configuration of a soft body at a certain time
is characterized by a position vector r and a material orientation matrix R, para-

Fig. 3 Sketch of the
kinematics which show the
geometrical meaning of the
elements g, ξ and η. The
reference frames on the
figure are those used in the
model
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meterized by the material abscissas, that are φ ∈ [0, 2π[, the angle of revolution
of the axisymmetric surface, and X ∈ [0, Ls] the abscissa along the meridian for
the SSM; and X ∈ [0, Lb], the abscissa along the robot arm, for the SRA (the sub-
scripts s and b stand respectively for shell and beam). Thus, the configuration space

is defined as a curves gb(X) and a surface gs(X,φ) ∈ SE(3), with gb =
(
Rb rb
0 1

)

and gs =
(
Rs rs
0 1

)
.

In order to exploit the axisymmetry of the SSM, we introduce another orthogonal
basis attached to the material point (X,φ): (er , eφ, e3) (Fig. 3); defined by roto-

translating (e1, e2, e3) of g1(X,φ) equal to: g1 =
(
exp(ẽ3φ) rs

0 1

)
, where exp is the

exponential in SO(3). In this case rs(X) take the form: rs = (cos(φ)r, sin(φ)r, z)T

for which, r(X) and z(X) are two smooth functions which define the radius and
the altitude of the point X on the profile (Fig. 3). For the sake of convenience, we
introduce another orthogonal basis (er , e3,−eφ) rotated from the former by g2 =(
exp(ẽrπ/2) 0

0 1

)
. Then, if we call θ(X) the angle between e3 and the shell fiber

located at any X along the φ-meridian, the so called director orthogonal frame

(x, y, z) is defined at each instant t , by g3(X) equal to: g3 =
(
exp(−ẽφθ) 0

0 1

)
.

Finally, putting them all together, the shell configuration space is gs = g1g2g3.
Now, the tangent vector field along the curve gb(X) is defined by ξ̂(X) =

g−1
b ∂gb/∂X = g−1

b g′
b ∈ se(3) and the tangent plane on the surface gs(X,φ) is

definedby the twovectorfields: ξ̂1(X) = g−1
s ∂gs/∂X = g−1

s g′
s and ξ̂2(X) = g−1

s ∂gs/
∂(r �φ) = g−1

s g�
s (where � denote variable in the reference configuration). In local

frame components we have: ξ = (kT ,gT )T , ξ1 = (kT1 ,gT
1 )T = (0, 0,μ,λ,β, 0)T ,

ξ2 = (kT2 ,gT
2 )T = ( sin(θ)r� , cos(θ)

r� , 0, 0, 0,− r
r� )

T ∈ R
6. where g(X) represents the lin-

ear strains, and k(X) the angular strain. The hat is the isomorphism between the twist
vector space R6 and the Lie algebra se(3).

The time evolution of the configuration curve gb and surface gs is represented by
the twist vector field η(X) ∈ R

6 defined respectively by η̂b = g−1
b ∂gb/∂t = g−1

b ġb
and η̂s = g−1

s ∂gs/∂t = g−1
s ġs . As before, in the local components we have: ηb =

(wT
b , vTb )T , ηs = (wT

s , vTs )T = (0, 0,Ω, Vx , Vy, 0)T ∈ R
6, where v(X) and w(X)

are respectively the linear and angular velocity of a material element at a given
instant.

In accordance with this kinematics, the state vector of the SRA and of the SSM
are represented by the terns (gb, ξ, ηb) and (gs, ξ1, ηs). From the development above,
we can derived the kinematic equations (1) and (2), while in the next sections the
compatibility equations and the dynamic equations will be derived (the tilde is the
isomorphism between a vector of R3 and the corresponding skew-symmetric matrix
∈ so(3)).

ṙb = Rbvb Ṙb = Rbw̃b. (1)
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θ̇ = Ω

ṙ = cos(θ)Vx − sin(θ)Vy

ż = sin(θ)Vx + cos(θ)Vy

(2)

2.2 Strain Measures

There are different ways to measure the strain of a continuous media, we choose the
most common used in the specialized literature for the beam and shell separately.

For the SRA, the strains are defined as the difference between the deformed
configuration ξ and the reference configuration ξ�. In particular, the components of
k − k� measure the torsion and the bending state in the two directions. Similarly,
the components of g − g� represent the longitudinal strain (extension, compression)
and the two shear strains.

For the SSM, in accordance with [12] as described in [13], the strain tensor field
which describes the membrane strain state in the mid-surface is e(X) = 1/2(h − h�)

where h(X) is the first fundamental form of the Reissner shell equal to h =
diag(λ2 + β2, r2/r �2). Thus we have e = (1/2) ∗ diag(λ2 + β2 − 1, r2/r �2 − 1),
in which we have defined h�

11 = 1. For what concerns the shear strain state, we
have s(X) = β − β�. Finally, the flexural strain state is parametrized by the ten-
sor field d(X) = k − k�, where k(X) is the second fundamental form equal to
k = diag(−μλ,−r sin(θ)/r �2). Thus we have d = diag(μ� − μλ, sin(θ�)/r � −
r sin(θ)/r �2). Furthermore, it is natural to consider that there is no transverse shearing
in the reference resting configuration, i.e. β� = 0.

2.3 Compatibility Equations

We have seen above that g′
b = gbξ̂ and g′

s = gs ξ̂1. By taking the derivative of
these equations with respect to time and recalling that ġ = gη̂, we obtain the
following compatibility equations between velocity and deformation variables:
ξ̇ = η′

b + adξ(ηb) and ξ̇1 = η′
s + adξ1(ηs), where ad is the adjoint map. In local com-

ponents, we obtain:
ġ = v′

b + k × vb − wb × g
k̇ = w′

b + k × wb
(3)

μ̇ = Ω ′

λ̇ = V ′
x + βΩ − μVy

β̇ = V ′
y − λΩ + μVx

(4)
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2.4 Dynamics

The p.d.e.’s describing the evolution of a Reissner rod and shell (not necessar-
ily axisymmetric) have been derived respectively in [11] and [12]. With respect
to the local reference frame, these p.d.e’s can be written, in a geometric nota-
tion, as:Mbη̇b = F ′

bi + ad∗
ξ(Fbi ) + Fbe − ad∗

ηb
(Mbηb) andMs η̇s = 1/j ( jF 1

si )
′ +

ad∗
ξα

(F α
si ) + Fse − ad∗

ηs
(Msηs), where j = √

det(h) = r/r �
√

λ2 + β2,Fbi (X) and
F α

si (X) are the wrenches of internal forces in the surface directions given by gα (α
running over {1, 2}), Fbe(X) and Fse(X) are the external wrench of distributed
applied forces, Mb(X) and Ms(X) are the screw inertia matrix and ad∗ = −adT is
the co-adjoint map. For the repeated α the Einstein convention has to be used as in
the rest of the paper. Let us specify the angular and linear components of the inter-
nal and external wrenches respectively (for the axisymmetric case see [16]): Fbi =
(MT

b ,NT
b )T , F 1

si = (M1T
s ,N1T

s )T = (0, 0, MX , NX , H, 0)T , F 2
si = (M2T

s ,N2T
s )T =

(Mφx , Mφy , 0, 0, 0,−Nφ)
T ∈ R

6, andFbe = (mT
b n

T
b )T ,Fse = (mT

s ,nT
s )T = (0, 0,

l, fx , fy, 0)T ∈ R
6, where N(X) and M(X) are the internal force and torque vec-

tors, respectively, while n(X) andm(X) are the external force and torque for unit of
X . The screw inertia matrices are equal to:Mb = ρb ∗ diag(Ib, Jb, Jb, A, A, A) and
Ms = ρs ∗ diag(Js, Is, Js, 2hs, 2hs, 2hs) ∈ R

6 × R
6. In the equations above ρb and

ρs are the body densities, A(X) is the section area equal to A = πh2b, where hb(X)

is the cross section radius, hs is the half of the shell thickness and J (X), I (X) are
the second moment of inertia of the micro-solid equal to Jb = πh4b/4, Js = h2s/3,
Ib = πh4b/2, Is ∼ 0. In components, the dynamic equations are:

ρb Av̇b = N′
b + k × Nb + nb − wb × ρb Avb

ρbJbẇb = M′
b + k × Mb + g × Nb + mb − wb × ρbJbwb

(5)

ρs JsΩ̇ = 1/j ( jMX )′ + λH − βNX − cos(θ)
r� Mφx + sin(θ)

r� Mφy + l
2ρshs V̇x = 1/j ( j NX )′ − μH − cos(θ)

r� Nφ + fx + 2ρshsΩVy

2ρshs V̇y = 1/j ( j H)′ + μNX + sin(θ)
r� Nφ + fy − 2ρshsΩVx

(6)

where Jb is equal to diag(Ib, Jb, Jb).

2.5 Constitutive Equations

A linear visco-elastic constitutive equation, based on the Kelvin–Voigt model, is
chosen. In [8] and [13] we have found respectively:

Fbi = �(ξ − ξ�) + Υ (ξ̇), (7)
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NX = 2Ehs
1−ν2 [λ (e11 + νe22) − Jsμ (d11 + νd22)]

+ 6υhs
1−ν2

[
λ (ė11 + νė22) − Jsμ

(
ḋ11 + νḋ22

)]
Nφ = 2Ehs

1−ν2

[
r
r� (e22 + νe11) − Js

sin(θ)
r� (d22 + νd11)

]
+ 6υhs

1−ν2

[
r
r� (ė22 + νė11) − Js

sin(θ)
r�

(
ḋ22 + νḋ11

)]
H = 2hsβ

[
G + E

1−ν2 (e11 + νe22)
] + 2hs β̇

[
υ + 3υ

1−ν2 (ė11 + νė22)
]

MX = − 2Ehs Js
1−ν2 λ (d11 + νd22) − 6υhs Js

1−ν2 λ
(
ḋ11 + νḋ22

)
Mφx = − 2Ehs Js

1−ν2
r
r� (d22 + νd11) − 6υhs Js

1−ν2
r
r�

(
ḋ22 + νḋ11

)
Mφy = 0

(8)

where �(X) and Υ (X) ∈ R
6 ⊗ R

6 are the screw stiffness matrix and the screw
viscositymatrix, equal to� = diag(GIb, E Jb, E JB, E A,GA,GA),Υ = υ ∗ diag
(Ib, 3Jb, 3Jb, 3A, A, A), where E is the Young modulus, G is the shear modulus
(equal to G = E/2(1 + ν) for an isotropic material with Poisson ratio ν) and υ is
the shear viscosity modulus.

2.6 External Loads

The external loads taken into account are the ones exerted by the fluid (i.e. drag,
added mass, buoyancy and thrust) in addition to the gravity load. Mathematically we
have:

nb = grb + bb + db + ab (9)

ns = ds + as + ts (10)

where grb(X) is the gravity, bb(X) is the buoyancy, ts(X) is the thrust load, d(X) is
the drag and a(X) is the added mass.

An exhaustive derivation and interpretation of the fluid force model for the SSM
is today under review, based on the usual model of net external forces exerted on
a rigid rocket, uniformly “rubbed on” the mantle. Here only the final equation are
reported, since it does not affect the scope of the present work. For the SRA, the
fluid force models have been originally derived in [17] and then introduced in a soft
robotics content in [8].

Gravity and buoyancy are simply the product between the mass per unit of X of
the robot arm ρb and of the water ρw respectively, and the gravity acceleration gr =
−9.81: grb + bb = (ρb − ρw)ART

b G, where G is the gravity acceleration vector,
equal to G = (0, 0, gr)T .

The drag load vector is proportional to the square of the velocity vector and is
directed in the opposite direction.The amplitudeof the drag load is also determinedby
the geometry of section X and by hydrodynamics phenomena expressed by empirical

coefficients. For the SRA and the SSM respectively we have: db = −ρwvTb vbD
vb
|vb|
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and ds = RT
s (0, 0,− ρwCd Are f V |V |

2Am
)T , where D(X) ∈ R

3 ⊗ R
3 is equal to D = hb ∗

diag( 12πCx ,Cy,Cz) for circular cross sections of radius hb, Cx , Cy , Cz being the
empirical hydrodynamic coefficients; Aref is the reference area equal to
π(max(r(X)))2, Am is the total surface of the SSM and Cd is the net drag coef-
ficient. V is the swimming velocity calculated at every time step as the average of
the scalar field ż(X), i.e. V = (1/Am)

∫ Ls

o

∫ 2π
0 ż(−z�′

)dXr �dφ.
The added mass load vector is proportional to the acceleration vector and is

directed in the opposite direction. The amplitude is also determined by the geome-
try of section X and by hydrodynamics phenomena expressed in part by correction
coefficients. For the SRA and the SSM respectively we have: ab = − d(ρwFvb)

dt =
−ρwFv̇b − wb × ρwFvb and as = −Bsρs2hs v̇s = −Bsρs2hs(V̇x , V̇y, 0)T , where Bs

is the net added mass coefficient and F(X) ∈ R
3 ⊗ R

3 is a tensor which incorpo-
rates the geometric and hydrodynamics factors, equal to F = diag(0, ABb, ABb),
Bb being the hydrodynamic correction coefficients.

The thrust load is: ts = RT
s (0, 0,− ρwU̇ |U̇ |

An Am
)T where An is the nozzle area equal to

An = πh2n for the outflow and equal to An = 3πh2n for the inflow (where three inlets
and one outlet have been used with radius hn) and U is the mantle inner volume.

2.7 Internal Actuation

In order to actuate the SRA and the SSM, we impose an internal distributed wrench
(Fa(X, t)) which represents the input of the model. It can be thought to be the
action of the muscle fiber of the body for living organism or the result of embedded
cable-driven actuation as in [8]. The final dynamics equations are as follows:Mbη̇ =
F ′

bi + ad∗
ξ(Fbi ) + Fba + Fbe − ad∗

η(Mbη) andMS η̇ = 1/j ( jF 1
si )

′ + ad∗
ξα

(F α
si ) +

Fsa + Fse − ad∗
η(Msη).

3 Multi-soft-body Dynamic Model

In order to model and control the behavior of a SUUV like the one in Fig. 1, a method
to connect together SRAs and SSMs is needed. In this section, the link between the
soft bodies in a star configuration (i.e. a tree structure with a mobile base) is shown,
then the updating of the external loads of the soft bodies, due to the net motion, is
discussed and finally the overall dynamics of the system is modeled.
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Fig. 4 illustrative scheme of
the SUUV kinematics, where
(E1,E2,E3) is the Euclidean
fixed frame, (e1, e2, e3)
represent the rigid body and
is the soft bodies reference
frame and (x, y, z) is the
local frame for the μsolids

3.1 Star System Kinematics

In order to link the soft bodies in a star configuration, one can pair a Gathering Rigid
Body (GRB) with the already introduced frame (e1, e2, e3). Let us call (E1,E2,E3)

the Euclidean fixed frame, hence the GRB configuration space is defined as a point

gr ∈ SE(3), mapping (E1,E2,E3) in (e1, e2, e3) (Fig. 4), with gr =
(
Rr rr
0 1

)
.

The time evolution of gr is represented by the twist vector ηr ∈ R
6 defined by

η̂r = g−1
r ġr . In accordance to this kinematics, the state vector of the GRB is given

by the pair (gr , ηr ) which gives immediately the kinematics equation:

ġr = gr η̂r (11)

At this point, the configuration of every point of the SUUV is given by g = gr g(s,b)

as illustrated in Fig. 4. It is worth to notice here that the number, geometry and relative
position of the soft bodies can be chosen arbitrary in this scheme. As a matter of fact,
in this example, we impose a rigid translation between a SSM and a SRA of Lr (i.e.
the length of the GRB), by adding −Lr to the third element of rb (Fig. 4).
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3.2 External Loads Update

In order to take into account the overall motion, at each time step, the state vector of
the GRB (gr , ηr ) is exploited to calculate the actual value of the external loads of the
soft bodies (10), (9). In our case, we have rotated the gravity vectorG of RT

r obtaining
the following new equation: grb + bb = (ρb − ρw)ART

b R
T
r G Then, we have updated

the swimming velocity V and the linear velocity vb, by adding respectively the scalar
Vr = (0, 0, 0, 0, 0, 1)ηr (i.e. the linear velocity of theGRB in the swimming direction
e3) and the vector v̄r = diag(0, 0, 0, 1, 1, 1)Adg−1

b
ηr (i.e. the linear velocity of the

GRB transported in the local reference frame (x, y, z)), where Ad is the Adjoint
map. The new drag load equations for the SRA and for the SSM become: db =
−ρw(vb + v̄r )T (vb + v̄r )D

vb + v̄r∣∣vb + v̄r
∣∣ and ds = RT

s (0, 0,− ρwCd Are f (V+Vr )|V+Vr |
2Am

)T .

3.3 Star System Dynamics

At this point, to obtain the dynamics of the SUUV, we only miss the one of the
Gathering Rigid Body that collect the soft appendices. In a geometric notation, it can
be written as:

Mr η̇r = Fr − ad∗
ηr

(Mrηr ) (12)

The soft bodies of the SUUV collected together by the GRB, are frozen in their cur-
rent shape. By taking advantage of that, the above unknown parameters (Mr ,Fr )

can be calculated as follow ([18]): Mr = ∫ 2π
0

∫ Ls

0 Ad∗
gsMsAdg−1

s
(−z�′

)dXr �dφ +∫ Lb

0 Ad∗
gbMbAdg−1

b
d X + Mri = M ′

s + M ′
b + Mri andFr =∫ 2π

0

∫ Ls

0 Ad∗
gsFse(−z′)

dXrdφ + ∫ Lb

0 Ad∗
gbFbe

√
gTgdX + Fre = F ′

se + F ′
be + Fre, where Mri and Fre

are respectively the intrinsic inertia and external load directly belonging to the
GRB, and Ad∗

g = (Adg)−T is the coAdjoint map. It is worth to notice that the
internal reaction and actuation of the soft bodies does not take part of these
integrals, since a frozen shape have to be considered. Furthermore, as a first
approximation, the inertia loads due to the relative acceleration of the soft bod-
ies has not been taken into account. The contribute of the added mass loads of
the soft bodies in F ′

se and F ′
be will appear as an additional mass as follow:

M ′
sa = Bsρs2h

∫ 2π
0

∫ Ls

0 Ad∗
gs diag(0, 0, 0, 1, 1, 1)Adg−1

s
(−z�′

)dXr �dφ and M ′
ba =

BbρwA
∫ Lb

0 Ad∗
gbdiag(0, 0, 0, 0, 1, 1)Adg−1

b
d X .

Going forward into details, in our case, the intrinsic inertia of the GRB is equal to

Mri = ρrUr

(
diag(Jr , Jr , Ir ) ũ

ũT diag(1, 1, 1)

)
, where u = (0, 0,−3Lr/4)T is the

position vector of the center of mass of the GRB whit respect to the reference frame
(e1, e2, e3); Jr , Ir are the second moment of inertia equal to Jr = 3(h2r /4 + L2

r )/5,
Ir = 3h2r /10 (a conic shape have been chosen with base radius hr ), ρr is the density
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andUr is the volume of the rigid body equal toUr = πh2r Lr/3. On the other side, the
external loads on the GRB that have been considered are the gravity and buoyancy
of the rigid body as well as the gravity and buoyancy of the SSM, since the letter
have not been taken into account for the axisymmetric model. Thus we have:Fre =
[(1 − ρw/ρr )Mri + (1 − ρw/ρs)M ′

s ]Adg−1
r

(0, 0, 0,GT )T .

3.4 SUUV Dynamic Model

The final system of equations is composed by the second order partial differential
equations of the soft bodies and the ordinary differential equations of the star sys-
tem. The system of p.d.e.’s is composed by the kinematics equation (2), (1), the
compatibility equations (4), (3) and the dynamic equations (6), (5) respectively com-
plemented with the internal stresses (8), (7) and the external loads (10), (9). The
system of o.d.e.’s for the star system is composed by the kinematic equation (11) and
the dynamic equation (12). Finally, in the state form ẋ = f (x, x ′, x ′′, t), the SUUV
model is:

θ̇ = Ω

ṙ = cos(θ)Vx − sin(θ)Vy

ż = sin(θ)Vx + cos(θ)Vy

ṙb = Rbvb
Ṙb = Rbw̃b

ġr = gr η̂r
μ̇ = Ω ′

λ̇ = V ′
x + βΩ − μVy

β̇ = V ′
y − λΩ + μVx

k̇ = w′
b + k × wb

ġ = v′
b + k × vb − wb × g

Ω̇ = [( jMX )′/j + λH − βNX − cos(θ)Mφ/r �]/(ρJs)
V̇x = [( j NX )′/j − μH − cos(θ)Nφ/r � + 2ρshsΩVy + fx ]/[2hsρs(1 + Bs)]
V̇y = [( j H)′/j + μNX + sin(θ)Nφ/r � − 2ρshsΩVx + fy]/[2hsρs(1 + Bs)]
v̇b = (N′

b + k × Nb + nb − wb × ρb Avb)/(ρb A)

ẇb = (J−1
b /ρb)(M′

b + k × Mb + g × Nb + mb − wb × ρb Jbwb)

η̇r = M−1
r [Fr − ad∗

ηr
(Mrηr )]

(13)
The final system is infinite dimensional since all its components are some func-
tions of the profile abscissa X . As a result, in order to be solved numerically, it
has to be first space-discretised on a grid of nodes before being time integrated
using explicit or implicit time integrators starting from the initial state. In this grid,
all the space derivatives appearing in the p.d.e.’s system can be approximated by
finite difference schemes, with the following boundary conditions: η(0) = 0 and
Fbi (Lb) = F 1

si (Ls) = 0. These operations have been implemented in Matlab©.
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4 Results

Although the final goal of this work is to model and control SUUVs like the one in
Fig. 1, whereby experimental comparison are needed (as has been done separately
for the SRA [8] and for the SSM [14]), in this section an illustrative example, based
on simulation, of the setting developed above is presented, in order to demonstrate
the feasibility of the proposed mathematical framework to achieve the objective.
Further simulation analysis and experimental comparisons with the real prototype,
are planned for the extension of the present paper. Finally, an energetic analysis
disclosed by the current formulation is conducted and used to describe the results.

4.1 Simulation

One SRA and one SSM have been used, the former has a conical shape with a radius
linearly decreasing from max(hb(X)) = 15 to min(hb(X)) = 6mm, the latter is a
semi-sphere of radius 31mm glued with a cylinder of length 86mm, both with an
half thickness of hs = 1mm. The GRB has a conical shape too, with a base radius
equal to hr = max(hb(X)) = 15mm and an height of Lr = 112mm. The density
of these bodies has been chosen equal to the one of the water (1022 [kg/m3]), which
makes the structure neutral underwater. The geometrical and mechanical parameters
are summarized in Table1.

In order to reproduce the jet propulsion of themantle, the SSM is actuated through
a triangular wave force function fs(X, t), perpendicular to the axis of symmetry (thus
along er ), with period T and amplitude ranging in the interval [Fmin, Fmax ]. This pres-
sure has been applied to a central strip of the mantle of height 80mm to reproduce
the bending/steering capability of the robot arm, the SRA is actuated through a linear
torque function fb(X, t)with extremes [Mmin, Mmax ], directed toward the local axis z
for a certain intervalΔt1 and toward the direction y for another intervalΔt3, preceded
and followed by a rest period of respectivelyΔt2 andΔt4. In other words, the internal
distributed wrench Fsa(X, t) takes the form: Fsa = Ad∗

g−1
3

(0, 0, 0, fs, 0, 0)T , and

the internal distributed wrenchFba(X, t) takes different forms for each intervalΔt1,
Δt2, Δt3, Δt4, respectively: Fba = (0, 0, fb, 0, 0, 0)T , Fba = (0, 0, 0, 0, 0, 0)T ,
Fba = (0, fb, 0, 0, 0, 0)T , Fba = (0, 0, 0, 0, 0, 0)T . The loading and dynamic

Table 1 Geometrical and mechanical parameters of the SUUV

E (kPa) υ (Pa ∗ s) ν (−) ρ (kg/m3) L (mm) h (mm) hn (mm)

SSM 40 500 0 1022 130 1 10

SRA 110 300 0 1022 420 [6, 15] –

GRB – – – 1022 112 15 –
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parameters are summarized in Table2, while a few snapshots of the resulting swim-
ming dynamics is depicted in Fig. 5.

Although a simple actuation pattern has been applied, a complex swimming
dynamics came out from the fluid-structure interaction, with unexpected turning
around the symmetry axis of the shell mantle (e3) due to a torsional torque occurred
during the switching from one bending to the other. This represents a further moti-
vation toward the development of a proper model of the SUUVs dynamics, in order
to be able to understand, design and control these promising devices for underwater
exploration.

4.2 Energetic Analysis

Any kind of locomotion is the result of the dynamic interaction between the body
deformation and the environment [19]. The quality of this interaction can be mea-
sured by calculating how the internal actuation power is translated into the kinetic
power of the star system. In the present work, the internal actuation power have
been approximate with the positive part of the stress power, reflecting that the elastic
energy is mainly due to this action and that it can be only increased by the inter-
nal actuation here. With this quantitative index, one can play with the geometrical,
mechanical and actuation parameters during the design phase in order to find the best
solution for a given application. This is probably one of the killer application of the
model.

To do so, we resort to the following efficiency index computed at each time
step throughout the simulation E(t) : E = Wo

Wi
, where Wo(t) and Wi (t) respectively

represent the output kinetic power of the star system and the input actuation power.

Calculating them we obtain: Wo = ηT
r Mr η̇r and Wi = Wis + Wib =

Ls∫
0

2π∫
0

{ 2Ehs1−ν2 [E11 Ė11 + E22 Ė22 + Js(D11 Ḋ11 + D22 Ḋ22)] + 2hsGββ̇}(−z′)dXrdφ +
Lb∫
0

(ξ − ξ�)T�ξ̇
√
gTgdX , where Wis(t) and Wib(t) are respectively the actuation con-

tribution of the SSM and of the SRA (equal to the positive part of the internal
elastic energy and to zero in the other case) and we have defined E11 = e11 + νe22,
E22 = e22 + νe11, D11 = d11 + νd22 and D22 = d22 + νd11. In Fig. 6, the actuation
and kinetic power corresponding to the simulation of Fig. 5 are shown. The mean
value of the index E is around 3%.

In Fig. 6 can be recognized the different phases of the motion of Fig. 5. In the first
part (Δt1), the input power is composed by the cyclic contraction of the SSM and by
the bending of the SRA. In the second phase (Δt2), the output kinetic power benefits
from the released elastic energy of the SRA and from the positive asset of the new
configuration, giving a larger gap with respect to the actuation power. In the third
part (Δt3), the actuation power increase due to the new bending and in the last phase
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Fig. 5 Few snapshots of the
simulation results at t = 0,
t = 1.5, t = 4, t = 5.5,
t = 7.5 and t = 9s of the
swimming dynamics. The
complete video is presented
in the media file attached to
this paper

Fig. 6 Kinematic (blue) and
actuation (red) power (note
the different scales). The
four phases of the simulation
of Fig. 5 are highlighted

(Δt4) the SUUV start to turn around it self due to the hydrodynamic coupling of the
bent SRAwhich is not as efficient as the forward pushing of the second phase, giving
a smaller gap between the kinetic and actuation power.

5 Conclusion

A unified model which account for the continuum nature of a multi-soft-body robot
has been presented which allows to describe the dynamics of an underwater vehi-
cle while it travels in a quiescent fluid. The potentialities of the model have been
demonstrated through an illustrative example, which shows complex and unexpected
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dynamics of the robot despite of a regular actuation input, underlining how much
the behavior of this new kind of systems can be rich and challenging to control.
Furthermore, an energetic analysis which takes into account the internal actuation
and the mechanical properties of the vehicle is proposed. The work presented here
represents a first step toward the development of a mathematical tool for the design
and control of intelligent SUUVs.
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Learning Dynamic Robot-to-Human Object
Handover from Human Feedback

Andras Kupcsik, David Hsu and Wee Sun Lee

1 Introduction

In the near future, robots will become trustworthy helpers of humans, performing
a variety of services at homes and in workplaces. A basic, but essential capability
for such robots is to fetch common objects of daily life, e.g., cups or TV remote
controllers, and hand them to humans. Today robots perform object handover in a
limitedmanner: typically the robot holds an object statically in place andwaits for the
human to take it. This is far from the fluid handover between humans and is generally
inadequate for the elderly, the very young, or the physically weak who require robot
services. The long-term goal of our research is to develop the algorithmic framework
and the experimental system that enable robots to perform fluid object handover in
a dynamic setting and to adapt over human preferences and object characteristics.
This work takes the first step and focuses on a robot handing over a water bottle in
a dynamic setting (Fig. 1), e.g., handing over flyers to people walking by or handing
over water bottles to marathon runners.

Object handover appears deceptively simple. Humans are experts at object han-
dover. We perform it many times a day almost flawlessly without thinking and adapt
over widely different contexts:

• Dynamics: We hand over objects to others whether they sit, stand, or walk by.
• Object characteristics:Wehandover objects of different shape,weight, and surface
texture.
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Fig. 1 Hand over a water bottle to a person sitting, walking, or running

• Human preferences: While typical human object handover occurs very fast, we
adapt our strategy and slow down when handing over objects to the elderly or
young children.

The success of humans, however, belies the complexity of object handover as collab-
orative physical interaction between two agents with limited communication. Manu-
ally programming robot handover with comparable robustness and adaptivity poses
great challenge, as we lack even a moderately comprehensive and reliable model for
handover in a variety of contexts.

Alternatively, the robot can learn the handover skill by interacting with the human
and generalize from experience. In this work, we formulate the learning task as
contextual policy search [19]. Policy search is a general approach to reinforcement
learning and has been very successful in skill learning for robot with many degrees
of freedom [11]. Policy search algorithms parametrize robot control policies and
search for the best parameter values by maximizing a reward function that captures
the policy performance. Contextual policy search introduces a set of context variables
that depend on the task context, e.g., object type or size for the handover task, and
the policy parameters are conditioned on the context variables.

A reward function that accurately measures policy performance is key to the
success of policy search. However, handcrafting a good reward function is often
tedious and error-prone, in particular, for learning object handover. It is unclear what
quantitative measures capture fluid object handover. Instead, we propose to learn the
latent reward function from human feedback. Humans are experts at object handover
and can easily provide reward feedback. However, the feedback is often noisy. To be
robust against noise and avoid overfitting,we apply aBayesian optimization approach
to latent reward learning. Importantly, our learning algorithmallows for both absolute
feedback, e.g., “Is the handover good or bad?”, and preference feedback, e.g., “Is
the handover better than the previous one?”. Combining latent reward learning and
policy search leads to a holistic contextual policy search algorithm that learns object
handover directly from human feedback. Our preliminary experiments show that the
robot learns to hand over a water bottle naturally and that it adapts to the dynamics
of human motion.
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2 Related Work

2.1 Object Handover

Object handover has intrigued the research community for a long time from the both
physical and social-cognitive perspectives. Early work on handover dates back to
at least 1990s [1, 21]. Recent work suggests that object handover consists of three
stages conceptually: approach, signal, and transfer [26]. They do not necessarily
occur sequentially and may partially overlap. In the first stage, the giver approaches
the taker and poses the object to get ready for handover [4, 20, 25]. In the second
stage, the giver and taker signal to each other and exchange information, often through
non-verbal communication, such as motion [12], eye gaze, or head orientation [13],
in order to establish joint intention of handover. In the final stage, they complete
the physical transfer of the object. The transfer stage can be further divided into
two sub-stages, before and after the giver and the taker establish joint contact of
the object, respectively. Earlier work on object transfer generally assumes that the
object remains stationary once joint contact is established and relies on handcrafted
controllers [1, 6, 14, 21]. Our work focuses to the final physical transfer stage only.
The algorithm learns a controller directly from human feedback. It does not make
the stationary assumption and caters for dynamic handover. Object transfer is an
instance of the more general problem of cooperative manipulation [3]: it involves
two asymmetric agents with limited communication.

Human-human object handover provides the yardstick for handover performance.
Understanding how humans perform handover (e.g., [5, 15]) paves the way towards
improved robot handover performance.

2.2 Policy Search

Robot skill learning by policy search has been highly successful in recent years [11].
Policy search algorithms learn a skill represented as a probability distribution over
parameterized robot controllers, by maximizing the expected reward. To allow robot
skills to adapt to different situations, contextual policy search learns a contextual
policy that conditions a skill on context variables [8, 9, 19].

To represent robot skills, policy search typically makes use of parametrized con-
trollers, such as dynamic movement primitives [16] or interaction primitives [2]. The
latter is well-suited for human-robot interaction tasks. Our work, on the other hand,
exploits domain knowledge to construct a parameterized impedance controller.

To learn robot skills, policy search requires that a reward function be given tomea-
sure learning performance. However, handcrafting a good reward function is often
difficult. One approach is inverse reinforcement learning (IRL), also called inverse
optimal control, which learns a reward function from expert demonstration [22,
24]. Demonstrations by human experts can be difficult or tedious to acquire, in
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particular, for robot-human object handover. An alternative is to learn directly from
human feedback, without human expert demonstration. Daniel et al. use reward feed-
back from humans to learnmanipulation skills for robot hands [10].Wilson et al. con-
sider learning control policies from trajectory preferences using a Bayesian approach
without explicit reward feedback [27]. Jain et al. learn manipulation trajectories from
human preferences [17]. Preference-based reinforcement learning algorithms gener-
ally do not use absolute reward feedback and rely solely on preference feedback [28].
Our algorithm combines both absolute and preference feedback in a single Bayesian
framework to learn a reward function and integrate with policy search for robot skill
learning.

3 Learning Dynamic Handover from Human Feedback

3.1 Overview

Assume that a robot and a human have established the joint intention of handover.
Our work addresses the physical transfer of an object from the robot to the human.
The robot controller u(· ;ω) specifies the control action ut at the state xt at time t for
t = 1, 2, . . . . The controller u(· ;ω) is parametrized by a set of parameters ω, and
the notation makes the dependency on ω explicit. A reward function R(ω) assigns a
real number that measures the performance of the controller u(· ;ω). To handle the
dynamics of handover, we introduce a context variable s representing the velocity
of the human hand and condition the controller parameters ω on s, giving rise the
reward function R(ω, s). In general, context variables may include other features,
such as human preferences and object characteristics as well. A contextual policy
π(ω|s) is a probability distribution over parametrized controllers, conditioned on
the context s. Our goal is to learn a contextual policy that maximizes the expected
reward:

π∗ = argmax
π

∫
s

∫
ω

R(ω, s)π(ω|s)μ(s) dω ds, (1)

where μ(s) is a given prior distribution over the contexts.
Contextual policy search iteratively updates π so that the distribution peaks up

on controllers with higher rewards. In each iteration, the robot learner observes
context s and samples a controllerwith parameter valueω from the distributionπ(·|s).
It executes the controller u(·|ω) and observes the reward R(ω, s). After repeating
this experiment L times, it updates π with the gathered data {ωi , si , R(ωi , si )}Li=1
and proceeds to the next iteration. See Fig. 2 for the overall learning and control
architecture and Table1 for a sketch of our learning algorithm.

The reward function R(ω, s) is critical in our algorithm. Unfortunately, it is diffi-
cult to specify manually a good reward function for learning object handover, despite
the many empirical studies of human-human object handover [4, 5, 15, 26]. We
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s

π(ω|s)
ω

R̂(ω, s)π

ωs

F
t = 1 . . . T

ut = u(xt;ω)

Fig. 2 The human-robot handover skill learning framework. The robot observes context s, then
samples ω using the policy π(ω|s). The experiment is executed with a robot controller with para-
metrization ω. The robot controller u(x; ω) provides deterministic control signals u given the state
of the robot and its environment x. After the experiment the human provides a high-level feedback
F , which is used the estimate the latent reward R̂(ω, s). Finally, the policy is updated with the
latest data

Table 1 The learning framework for human-robot object transfer

The C-REPS Algorithm with Human Feedback

Input: relative entropy bound ε, initial policy π(ω|s), maximum number of policy updates H .

for h = 1, . . . , H

Collect human feedback data:

Observe context si ∼ μ(s), i = 1, . . . , L

Draw parameters ωi ∼ π(ω|si )
Collect human feedback Fi

Estimate latent rewards of all previously seen samples {ωi , si ,Fi }Ei=1

Predict rewards:

Draw context s j ∼ μ̂(s), j = 1, . . . , Q

Draw parameters ω j ∼ π(ω|s j )
Predict R̂(ω j , s j ) with reward model

Update policy:

Update policy π(ω|s) using C-REPS with samples {ω j , s j , R̂(ω j , s j )}Qj=1
end

Output: policy π(ω|s)

propose to learn a reward function R̂(ω, s) from human feedback. Specifically, we
allow both absolute and preference human feedback. Absolute feedback provides
direct assessment of the robot controller performance on an absolute scale from 1
to 10. Preference feedback compares one controller with another relatively. While
the former has higher information content, the latter is usually easier for humans
to assess. We take a Bayesian approach and apply Gaussian process regression to
latent reward estimation. The learned reward model R̂(ω, s) generalizes the human
feedback data. It provides estimated reward on arbitrarily sampled (ω, s) without
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additional experiments and drastically reduces the number of robot experiments
required for learning a good policy.

3.2 Representing the Object Handover Skill

In this section we discuss how we encode the handover skill and which parameters
ω refers to. In our work we use a trajectory generator, a robot arm controller and a
robot hand controller to encode the handover skill. A trajectory generator provides
reference Cartesian coordinates for the robot end-effector to follow. In robot learning
tasks, Movement Primitives (MP) are often used to encode a trajectory with a limited
amount of parameters. MPs encode the shape, speed and magnitude of the trajectory
in Cartesian space, or in joint space for each degree of freedom. While MPs can
encode a wide variety of skills, they typically require a higher number of parameters
to tune, which might slow down the learning process.

For handover tasks however, we can use human expert knowledge to define robot
hand trajectories. This approach allows for a more compact representation of the
trajectory generator with less parameters to tune. Furthermore, we can address safety
by reducing theworkspace of the robot andwe can easily synchronizewith the human
motion. In our experiments we use visual data of a Kinect sensor, which tracks the
right hand of the human. As soon as the human hand is within dmax distance from the
robot hand the robot moves the object towards the human hand location. We assume
that a path planner computes the reference trajectory from the current robot hand
location to the human hand location. The reference trajectory is updated every time
the human hand location is updated. As soon as the distance between the human and
the robot hand falls below dmin , we do not use visual information due to possible
occlusion and measurement error. Instead, we use the recorded visual data to predict
the human hand trajectory for the next second when the physical interaction is likely
to happen. The values of dmin and dmax may depend on different factors, such as,
experiment setup, robot configuration, etc.

In order to ensure robust human-robot handover, we need to allow compliant robot
armmotion.WeuseCartesian impedance control [3]where thewrench F6×1 concate-
nating forces and torques exerted in the end-effector frame is computed according
to F = MΔẍ + DΔẋ + PΔx, where Δx6×1 is the deviation from the reference
trajectory. The gain parameters M, D and P will determine the amount of exerted
forces and torques. M is typically replaced with the robot inertia at the current state.
We choose the damping D such that the closed loop control system is critically
damped. We use a diagonal stiffness matrix P = diag([ pTt , pTr ]), where pt is the
translational and pr is the rotational stiffness. Finally, the applied torque commands
are τ = JT F + τ f f , where J is the Jacobian of the robot and τ f f are feed forward
torques compensating for gravity and other nonlinear effects.

Motivated by recent work in human-human handover experiments [5], a robot
grip force controller [6] has been proposed Fg = kFl + Fovl , where Fg is the com-
manded grip force, Fl is the measured load force and Fovl is the preset overloading
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force. The slope parameter k depends on object properties, such as mass, shape and
material properties. When using this controller, the robot will release the object in
case the total load force on the robot drops below a threshold value. For robot hands
with only finger position control we cannot use the above control approach. Instead,
we directly command finger positions by identifying the finger position with mini-
mal grip force that still holds the object. Then, we use a control law to change finger
positions linear in the load force f pos = f min + mFl . The value of m depends on
many factors, such as, object type, weight and other material properties.

For learning the object handover, we tune 7 parameters of the control architecture.
For trajectory generatorwe tune theminimal andmaximal tracking distances dmin and
dmax . For the compliant arm controller we learn the translational stiffness parameters
and one parameter for all the rotational stiffness values. Finally, for finger controller
we tune the slope parameter. All these parameters are collected in ω7×1.

3.3 Estimating the Latent Reward Function

In this section we propose a Bayesian latent reward estimation technique based on
previous work [7]. Assume that we have observed a set of samples {si ,ωi }Ei=1 and
human feedback {Fi }Ei=1, where Fi = R̃( y), in case the human gives an absolute
evaluation (denoted by R̃) on parametrization ωi in context si , y = [sT ,ωT ]T . In
case of preference feedbackFi = yk � yi �=k if yk is preferred over yi . Note that for
a given sample there may exist both preference and absolute evaluation.

We define the prior distribution over the latent rewards as a Gaussian Process
[23], R̂ ∼ N (0, K ), with K i j = k( yi , y j ). Without the loss of generality we
assume 0 prior mean, but more informative priors can be constructed with expert
knowledge. The likelihood function for preference based feedback is given by
p( yi � y j |R̂) = Φ((R̂i − R̂ j )/(

√
2σp)) [7], where Φ(·) is the c.d.f. of N (0, 1)

and σp is a noise term accounting for feedback noise. For absolute feedback data
we simply define the likelihood by p(R̃i |R̂) = N (R̂i , σ

2
r ), where σ 2

r represents the
variance of absolute human feedback. Finally, the posterior distribution of the latent
rewards can be approximated by

p(R̂|D) ∝
N∏
i=1

p( yi,1 � yi,2|R̂)

M∏
j=1

p(R̃ j |R̂ j , σ
2
r )p(R̂|0, K ), (2)

where we used the notation p( yi,1 � yi,2|R̂) to highlight that Fi is a preference
feedback comparing yi,1 to yi,2. For finding the optimal latent rewards, we minimize

J (R̂) = −
N∑
i=1

logΦ(zi ) + σ−2
r

2

M∑
j=1

(R̃ j − R̂ j )
2 + R̂

T
K−1 R̂, (3)
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with zi = (R̂( yi,1) − R̂( yi,2))/(
√
2σp). It was shown in [7] that minimizing J w.r.t.

R̂ is a convex problem in case there is only preference based feedback (M = 0).
However, it easy to see that the Hessian of J (R̂) will only be augmented with
non-negative elements in the diagonal in case M > 0, which will leave the Hessian
positive semi-definite and the problem convex. Optimizing the hyper-parameters
of the kernel function θ and the noise terms can be evaluated by maximizing the
evidence p(D |θ, σp, σr ). While the evidence cannot be given in a closed form, we
can estimate it by Laplace approximation.

It is interesting to note that in case there is only preference feedback, that is,
M = 0, N > 0, we obtain the exact same algorithm as in [7]. In the other extreme,
in case there is only absolute feedback (M > 0, N = 0) we get Gaussian Process
regression, which provides a closed form solution for p(R̂). Overall, our exten-
sion provides an opportunity to mix preference and absolute feedback in a unified
Bayesian framework.

Also note that after obtaining p(R̂)we can use Bayesian linear regression to query
the expected reward R∗ of unseen samples y∗ [7, 23].We can use the resulting gener-
ative model of the reward to query the reward for a large number of samples from the
current control distribution y ∼ μ(s)π(ω|s), without the need for real experimental
evaluation. Such a data-efficient model-based approach has been demonstrated to
reduce the required number of experiments up to two orders of magnitude [10, 19].

3.4 Contextual Relative Entropy Policy Search

To update the policy π(ω|s), we rely on the contextual extension of Relative Entropy
Policy Search [11, 19], or C-REPS. The intuition of C-REPS is to maximize the
expected reward over the joint context-control parameter distribution, while staying
close to the observed data to balance out exploration and experience loss. C-REPS
uses an information theoretic approach, where the relative entropy between con-
secutive parameter distributions is bounded

∫
s,ω p(s,ω) log p(s,ω)

q(s,ω)
dsdω ≤ ε, where

p(s,ω) and q(s,ω) represent the updated and the previously used context-parameter
distributions. The parameter ε ∈ R

+ is the upper bound of the relative entropy. The
emerging constrained optimization problem can be solved by the Lagrangemultiplier
method (see e.g. [18]). The closed form solution for the new distribution is given
by p(s,ω) ∝ q(s,ω) exp ((R(ω, s) − V (s))/η) . Here, V (s) is a context dependent
baseline, while η and θ are Lagrangian parameters. The baseline is linear in some
context features and it is parametrized by θ . To update the policy we use the com-
puted probabilities p(s,ω) as sample weights and perform a maximum likelihood
estimation of the policy model parameters.
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Fig. 3 Robot setup for
experiments. We use the
7-DoF KUKA LBR arm with
the 3-finger Robotiq robot
hand. We use Kinect to track
the human hand motion

4 Experiments

For the handover experiment we use the 7-DoF KUKA LBR arm (Fig. 3). For the
robot hand we use the Robotiq 3-finger hand. The fingers are position controlled, but
the maximum grip force can be indirectly adjusted by limiting the finger currents.
In order for accurate measurement of external forces and torques, a wrist mounted
force/torque sensor is installed.

4.1 Experimental Setup

An experiment is executed as follows. First, a 1.5l water bottle is placed at a fixed
location, which the robot is programmed to pick up. Subsequently, the robot moves
the bottle to a predefined position. At this point we enable compliant arm control
and we use a Kinect sensor (Fig. 3) to track the hand of the human. Subsequently, the
human moves towards the robot to take the bottle. While approaching the robot, we
use the Kinect data to estimate the hand velocity s of the human, which we assume to
be constant during the experiment. We only use data when the human is relatively far
(above 1m) from the robot to avoid occlusion. After the context variable is estimated
the robot sets its parameter by drawing a controller parametrization ω ∼ π(ω|s).
Subsequently, the robot and the humanmake physical contact and the handover takes
place. Finally, the human evaluates the robot performance (preference or absolute
evaluation on a 1–10 scale, where 1 is worst 10 is best) and walks away such that the
next experiment may begin.

We presented the pseudo code of our learning algorithm in Table1. As input to the
algorithm we have to provide the initial policy π(ω|s), and several other parameters.
We use a Gaussian distribution to represent the policy π(ω|s) = N (ω|a + As,Σ).
In the beginning of the learning we set A = 0, that is, the robot uses the same con-
troller distribution over all possible context values. During learning all the parameters
(a, A, Σ) of the policy will be tuned according to the C-REPS update rule.



170 A. Kupcsik et al.

Fig. 4 The robot hand frame
orientation

The initial policymean a and the diagonal elements of the covariancematrixΣ are
set as follows. For the rotational stiffness we set 2.75Nm/radmean and 0.52 variance.
For the translational stiffness parameters we chose 275, 450, 275 N/m in x, y, and z
direction in the hand frame (Fig. 4). The variances are 502, 752, and 502 respectively.
For the finger control slope parameter we chose 2.5 1/N with a variance of 0.52. This
provides a firm grip of the water bottle. The robot will not move the fingers until the
force generated by the human hand reaches half the weight of the bottle. With a slope
parameter of 0 the robot exerts a minimal grip force that can still support the bottle.
With a slope value above 5 the robot only releases the bottle if the human can support
1.2× the object weight. Thus, we can avoid dropping the object, even with the initial
policy. Finally as mean we set 200 and 600mm as minimal and maximal trajectory
tracking control distance. As variances we chose 502 and 1502. The parameters are
therefore initialized as a = (2.75, 275, 450, 275, 2.5, 200, 600)T , A = 0 and
Σ = diag(0.52, 502, 752, 502, 0.52, 502, 1502).

For the C-REPS learning algorithm in Table1 we chose ε = 0.75 and we updated
the policy after evaluating L = 10 human-robot handover experiments. However,
before the first policy update we used L = 40 handover experiments, such that we
have a reliable estimation of the latent rewards. Before each policy updatewe estimate
the latent rewards for all the previously seen experiments {ωi , si ,Fi }Ei=1. Here, E
represents the total number of observed samples. Note, that E is increased by the
amount of latest experiments L before each policy update. Therefore, E represents
how much experimental evaluation, or information we used to reach a certain level
of performance. After estimating the latent rewards we use the resulting generative
reward model to evaluate Q = 500 artificial context-control parameter pairs drawn
from μ̂(s)π(ω|s). We used these artificial samples to update the policy. This way we
got a highly data-efficient algorithm, similar to the one in [19]. After the policy is
updated, we start a new loop and evaluate L new experiment. We not only use this
information to update our dictionary to estimate latent rewards, but also to estimate
the performance of the current policy. The performance of the policy is measured
by the expected latent reward of the newly evaluated L experiments. We expect
the performance measure to increase with the amount of information E and policy
updates. After updating the policy H times (Table1) we terminate the learning.
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Fig. 5 The expected latent
reward mean and standard
deviation over 5 independent
learning trials
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4.2 Results

As the learning algorithm uses randomly sampled data for policy updates and noisy
human feedback, the learned policy and its performancemayvary. In order tomeasure
the consistency of the learning progress we repeated the complete learning trial
several times. A trial means evaluating the learning algorithm starting with the initial
policy and with an empty dictionary, E = 0, but using the same parameters for L and
ε. We evaluated 5 learning trials and recorded the expected performance of the robot
before each policy update. The expected learning performance over 5 trials with 95%
confidence bounds against the amount of real robot experiments E used for policy
update is shown in Fig. 5. We can see that learning indeed improved the performance
of the initial policy, which has an expected value of 6.8. Over the learning trials, we
noticed that the humanmostly gave absolute feedback for very good or bad solutions.
This is expected as humans can confidently say if a handover skill feels close to that
of a human, or if it does something unnatural (e.g., not releasing the object). By the
end of the learning, the expected latent reward rose to the region of 8. Note, that
the variance of the learning performance over different trials not only depends on
the stochastic learning approach, but also on noisy human feedback. Thus we can
conclude that the learning indeed improved the expected latent reward of the policy,
but how did the policy and the experiments change with the learning?

The learned policy. We first discuss the mean value a of the learned policy
and then we show how the policy generalizes to more dynamic tasks. Over several
learning trials we observed that a high quality policy provides a lower rotational
stiffness compared to the hand-tuned initial policy. We observed that on expectation
the learned rotational stiffness is 1.29Nm/rad, which is lower than the initial 2.75.
This helped the robot to quickly orient the object with the human hand upon physical
contact.We observed similar behavior in the translational stiffness values in the x − z
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directions (see Fig. 4). The learned values were almost 100N/m lower compared
to the initial values. This helps the robot to become more compliant in horizontal
motions. Interestingly, the learned stiffness in y direction became slightly higher
(474N/m) compared to its initial value. During physical interaction the forces acting
along the y-axis are mostly responsible for supporting the weight of the object. With
a higher stiffness value interaction times became lower and also helped avoiding
situations where the robot did not release the object. The learned slope parameter
of the finger controller became more conservative (3.63 1/N). This prevented any
finger movement until the human force reached at least 0.8× the weight of the object.
Finally, the learned minimal and maximal tracking distance on expectation became
269 and 541mm respectively.

The policy generalizes the controller parametrization with mean a + As. We dis-
cussed above how a changed on expectation after the learning. We now turn our
attention to A and show how generalization to more dynamic task happens. We typ-
ically executed experiments with hand speed between 0.1 and 1m/s. We observed
that on expectation the rotational stiffness values were lowered for more dynami-
cal tasks (s = 1m/s) with −0.31Nm/rad. This helped the robot to orient with the
human hand quicker. Interestingly, we observed that the stiffness in x direction is
slightly increased with 56N/m. However, the stiffness in y direction is dramatically
decreasedwith−281N/m. This reduces forces acting on the human significantly dur-
ing faster physical interaction. The stiffness in z direction is decreasedwith−10N/m,
which is just a minor change. Interestingly, the slope parameter of the robot finger
controller increases with 0.6 1/N, which leads to an even more conservative finger
control. Finally, we observed that on expectation the minimal hand tracking distance
is increased by 46mm and the maximal distance remains almost the same with an
additional 9mm.Avisual representation of the learned parameters against the context
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Fig. 7 Two example of experimental results of the forces acting between the human and the robot
during physical interaction. The forces are plotted starting right before the physical interaction until
the handover is finished
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Fig. 8 Two example of experimental results in dynamic handover situations. The forces are plotted
starting right before the physical interaction until the handover is finished

value is shown in Fig. 6. In the following, we will analyze some static and dynamic
handover experiments to give more insight why humans prefer the learned policy as
opposed to the initial hand-tuned controller.

Human preferences for static handovers. For static handover tasks we observed
that a robust and quick finger control was always preferred and highly rated. In Fig. 7
we can see the forces and jerks of two typical static handover solutions. Theweight of
the bottle was around 15N.We can see that the preferred solution always maintained
a low jerk and forces remained limited. Moreover, a successful handover happens
relatively fast. In our experiments we observed that a high quality solution happens
within 0.6s and no faster than 0.4s. Similar results have been reported in human-
human object transfer experiments [5]. Typically disliked parameterizations have low
translational stiffness and a stiff finger control, resulting in the robot not releasing
the object quick enough, which is considered a failure. These experiments typically
lasted for 1–2 s until the bottle was released.

Human preferences for dynamic handovers. In dynamic handover situations
contact forces and jerks were significantly higher compared to the static case (Fig. 8).
A typical preferred dynamic handover controller has lower rotational and transla-
tional stiffness, and a more firm finger controller. In our experiments the human
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always came from one direction while taking the bottle from the robot. In the robot
hand frame this was the x-direction. As we can see, a preferred controller achieves
a significantly lower contact force and jerk in this direction. We noticed that a
physical contact time in a dynamic handover scenario is around 0.3–0.6 s. Based
on the latent rewards, we noticed that there is a strong preference towards faster
handovers, as opposed to the static case, where we did not observe such strong cor-
relation in handovers within 0.6s. Interestingly, we noticed that humans preferred
stiffer finger controllers in dynamic handovers. We assume that this helps a robust
transfer of the object from giver to taker. In a dynamic handover situation vision
might not provide enough feedback about the handover situation during physical
contact, and thus, an excess of grip force would be necessary to ensure the robust
transfer and to compensate for inaccurate position control.

Video footage of some typical experiments before and after the learning is avail-
able at www.youtube.com/watch?v=2OAnyfph3bQ.

By analyzing these experiments we can see that the learned policy indeed provides
a controller parametrization that decreases handover time, reduces forces and jerks
acting on the human over a wide variety of dynamic situations. While the initial
policy provides a reasonable performance in less dynamic experiments, learning and
generalization significantly improves the performance of the policy. Based on our
observations, for static handovers a fast and smooth finger control was necessary for
success, while in dynamic handover situation higher compliance and a firm finger
control were preferred.

5 Discussion

This paper presents an algorithm for learning dynamic robot-to-human object han-
dover from human feedback. The algorithm learns a latent reward function from
both absolute and preference feedback, and integrates reward learning with contex-
tual policy search. Experiments show that the robot adapts to the dynamics of human
motion and learns to hand over a water bottle successfully, even in highly dynamic
situations.

The current work has several limitations. First, it is evaluated on a single object
and a small number of people. We plan to generalize the learning algorithm to adapt
over human preferences and object characteristics. While contextual policy search
works well for adapting over handover dynamics, object characteristics exhibit much
greater variability and may pose greater challenge. Second, our handover policy also
does not consider human response during the handover or its change over time. We
want to model key features of human response and exploit it for effective and fluid
handover. For both, combiningmodel-free learning andmodel-based planning seems
a fruitful direction for exploration.
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Decoding the Neural Mechanisms Underlying
Locomotion Using Mathematical Models
and Bio-inspired Robots: From Lamprey
to Human Locomotion

Auke Jan Ijspeert

1 Introduction

Understanding animal locomotion is a complex problem because locomotion is the
result of a complex interaction between multiple components [1]. At an abstract
level, four different components can be distinguished: the musculoskeletal system,
sensory feedback loops in the spinal cord, central pattern generators CPGs (neural
circuits that can produce rhythmic patterns without receiving rhythmic inputs), and
descending modulation from higher control centers (such as the basal ganglia, the
cerebellum, and the motor cortex in mammals).

Robots together with computational models can serve as useful scientific tools
to (i) explore the interaction of these different components, and (ii) investigate how
their respective roles have changed during evolution [1–3].

During the evolution from fish to mammals, the role of CPGs appears to dimin-
ish, and those of sensory feedback and descending modulation to increase with the
apparition of limbs and the transition from sprawling postures like in salamanders to
upright postures of mammals (Fig. 1). The unstable upright postures and the impor-
tance of visually-guided feet placement have required a more prominent role of
sensory feedback and of descending modulation. In humans, the locomotor circuits
are still far from being understood, and there is still a debate whether human loco-
motion involves CPGs or not, and whether the controllers are mainly in the spinal
cord or in the motor cortex.

In order to investigate these components and their interaction for different animals,
we have developed models of locomotor circuits for robots that follow evolution and
take inspiration from the lamprey, the salamander, the cat, and the human (Fig. 2).
This type of research is not only interesting for understanding animal locomotion, but
also for robotics as it addresses problems related to tradeoffs between feedback and
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Fig. 1 Schematic view of the roles of the four components underlying vertebrate locomotion. Note
this is a hypothetical view based on the author’s review of animal locomotion control literature.
Quantifying the respective roles is hardly possible, but computational models can help providing
a qualitative idea of the importance of each component for different animals. The horizontal axis
is somewhat subjectively called “complexity”. The ordering of animal species corresponds to their
appearance on an evolutionary time scale. One possible way of measuring complexity could be the
number of neurons in the central and peripheral nervous systems; another could be the instability
of locomotion (e.g. the upright and bipedal nature of human locomotion makes it less stable, i.e.
more sensitive to perturbations, than lamprey and salamander locomotion)

Fig. 2 Range of models and robots to investigate the evolution of locomotor circuits in vertebrates

feedforward control, robust trajectory generation, and more generally locomotion
in unstructured terrain. In the next sections, the main outcomes of these studies are
briefly presented as well as those of related work.



Decoding the Neural Mechanisms Underlying Locomotion Using Mathematical … 179

2 Lamprey Models

The lamprey is a primitive fish that swims using an anguilliform swimming gait in
which a traveling wave of body undulation is propagated from head to tail. Because
of its relative simplicity, it has been extensively studied by neuroscientists [4, 5].
One of the main findings is that the lamprey’s spinal cord is capable of generating
fictive locomotion: i.e. the ability of an isolated spinal cord in a petri dish to produce
rhythmic patterns of neural activity that closely resemble those of intact locomotion.
This demonstrates the existence of a locomotor central pattern generator in the spinal
cord. Another main finding is the identification of the segmental circuits and neurons
involved in rhythm generation.

The swimming circuit has since been modeled at several levels of abstraction
from detailed neuronal models to more abstract models made of coupled nonlinear
oscillators (see references in [6]). These models have contributed to a better under-
standing of themechanisms of rhythm generation in segmental circuits, of generation
of traveling waves, and of the role of sensory feedback.

The lamprey is also a good source of inspiration for robotics and several lamprey-
like robots have been constructed [7–9]. In my laboratory, we have designed such
a lamprey-like robot, Amphibot (Fig. 2, [10, 11]), to investigate the neural mecha-
nisms of locomotion control in vertebrates, and their evolution from water to ground
locomotion (see next section).

Using a CPG modeled as a chain of coupled oscillators, we could generate swim-
ming gaits that are modulated by simple descending modulation for adjusting the
speed and heading [11]. The speed and heading can be interactively adjusted with a
remote control, and abrupt changes of modulation signals lead to smooth and con-
tinuous modulation of the CPG activity (because of the limit cycle behavior of the
coupled oscillators). This could be done in open-loop, i.e. without sensory feedback
affecting the CPG activity. These findings suggest that CPG networks could be the
main component underlying lamprey locomotion (Fig. 1).

Sensory feedback is not necessary for generating periodic patterns in lamprey
locomotion, but it plays a role in modulating the patterns to adapt to the environ-
ment. In simulation, it was shown by Ekeberg and colleagues that sensory feedback
from stretch sensitive cells can improve swimming in non-steady state conditions,
for instance when swimming against a speed barrier [12]. Experiments will be per-
formed in a near future to test whether similar results can be replicated with the real
robot. Furthermore we are also exploring how sensory feedback might contribute to
adjust the traveling waves, in particular the phase lags between segments. Prelimi-
nary experiments tend to show that feedback can correct traveling waves that do not
have the right phase lags (e.g. too large phase lags), i.e. that the body and the sensory
feedback can act as a filter that corrects wrong open loop patterns.
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3 Salamander Models

The transition from water to ground has been a key moment during evolution. The
salamander is an interesting animal to investigate the changes in morphology and
control that have taken place during that transition. Indeed the body plan of the
salamander is very close to that found in fossils of the first terrestrial tetrapods [13].

The salamander swims using an anguilliform swimming gait like the lamprey.
On ground it switches to a walking trot gait in which the trunk and tail perform and
S-shaped standing wave [14]. Although the organization of the salamander loco-
motor circuit is less well-known than that of the lamprey, it appears to share many
similarities with it [15]. In addition to have a lamprey-like CPG for its axial muscula-
ture, it has specialized oscillatory centers for the limbs, the limb CPGs. Interestingly,
locomotion can be induced by electrical stimulation of a particular region in the
brainstem of the salamander: this induces walking-like gaits at low stimulation, and
swimming-like gaits at high stimulation [16].

We have developed Salamandra robotica, a salamander-like robot capable of
swimming and walking [13, 17]. The robot allowed us to test several hypotheses
about the reorganization of the locomotor circuits during the transition between
water and land, and the apparition of limbs. Our main hypothesis is that the salaman-
der has kept a lamprey-like CPG that tends to produce traveling waves for its axial
musculature, and that it is extended by slower limb CPGs that impose slower walking
gaits when activated. The coupled oscillator model that we developed to test those
hypotheses could replicate the typical swimming and walking gaits of the salaman-
der and dynamically switch between the two depending on the level of descending
drive, like in the animal [13]. We tested several options and the fastest locomotion
on ground is obtained with the same body-limb coordination as the animal [17].

Interestingly, similarly to the lamprey, the robot performs well in open-loop, i.e.
with the CPG and without sensory feedback; suggesting again an important role
of the CPG. Control of speed and heading is similarly obtained with 2 descending
modulation signals one to the left oscillators one to the right ones. Because of the
sprawling posture, accurate feet placement is not necessary and the robot does not
fall over on ground while performing the walking trot gait. While demonstrating
that salamander-like locomotion could be obtained in open loop, we believe that
feedback plays an important role in shaping the locomotor patterns, in particular the
transition between the traveling wave undulation during swimming and the stand-
ing waves during walking. In simulation, different interaction forces in water and
on ground together with sensory feedback from stretch sensors could explain the
different muscle activity patterns [18]. Similar tests will soon be performed with the
robot.

We have recently developed a new robot, Pleurobot (Fig. 2), with 27 actuated
degrees of freedom to explore rich motor skills. In particular, we are interested in
investigating how more complex descending modulation can lead to more complex
motor behaviors. We are exploring how several additional descending modulation
pathways can be added to our spinal networks in order to perform various motor
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behaviors such as turning, backward stepping, moving single limbs and other non-
steady-state maneuvers that the animal exhibits. Preliminary experiments show that
activating differentially different parts of the CPG network is sufficient to generate
a larger range of motor behaviors compared to the swimming and walking gaits that
we initially investigated.

4 Cat Models

Cats have impressive locomotion skills: they can run, jump, climb trees, walk on thin
branches, etc. Due to the upright posture, sensory feedback plays a bigger role than
in salamander for keeping balance. Also cats are capable of complex visuomotor
coordination tasks (e.g. placing feet at specific locations and manipulating objects)
that require more complex descending modulation than salamander or lamprey. Neu-
roscientists have again demonstrated that the spinal cord circuits play a major role in
generating the locomotion patterns [19]. The exact circuits are not as well-known as
for the lamprey, but multiple reflex loops have been identified [20, 21]. Also several
interesting neural models have been developed to investigate the underlying circuitry
[22, 23].

Several impressive quadruped robots have been developed: BostonDynamics’
BigDog and Cheetah, MIT cheetah, SONY’s Aibo, StarlETH, and Tekken, to name
a few. Among these, the Tekken robot has been used by Kimura and colleagues
to explore the interaction between CPGs and reflexes [24]. They explored different
manners in which CPGs and reflexes could be integrated and found out that the most
robust locomotion is obtained when sensory feedback shares interneurons with the
CPG, compared to feedback that is independent and does not affect the CPG. This
is in agreement with phase-dependent reflexes observed in cats [25].

In my laboratory, we have designed two cat-like robots, Cheetah-Cub and Oncilla
(Fig. 2). Cheetah-Cub was designed as a light-weight robot to investigate the role of
visco elastic properties of the body in dynamic locomotion [26]. The legs approxi-
mately match the cat leg design and are made of 3 segments in a pantograph structure
with springs. The robot can produce fast trotting gaits of almost 7 body length per
seconds. Interestingly those gaits were obtained with (well-tuned) open loop pat-
terns. Furthermore the gaits are robust against perturbations such as a step down.
This demonstrates interesting self-stabilizing properties of the (robot) body, and
gives some hints about how properties of the musculo-skeletal system could sim-
plify control in vertebrate animals. This is well-aligned with the notion of “embodied
intelligence” proposed by Pfeifer and colleagues [27].

Oncilla (Fig. 2) is a robot equipped with various sensors (accelerometers, gyro-
scopes, 3D force sensors on feet) that we developed to investigate the interplay
between CPGs, reflexes, and posture control [28]. The posture control is inspired
from virtual model control [29]. Two reflexes are included: a stumbling correction
reflex and a leg extension reflex. In simulation, we tested different combinations of
CPGs, reflexes and posture control (but without vision), and investigated how well
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the controllers performed in terrains with slopes, step downs, and uneven ground.
As expected, the combination of CPGs, reflexes and posture control was necessary
to handle the most complex terrains compared to controllers with only CPGs or only
CPGs and posture control [28]. The same controllers have been successfully ported
to the real robot (manuscript in preparation).

5 Human Models

The locomotor control circuits in humans have not yet been properly decoded. There
is still a debate whether the control circuits include CPGs or not, and whether loco-
motion is mainly controlled by themotor cortex or by the spinal cord [30]. Numerical
models can be very useful to test several options. An influential neuromechanical
model of human locomotion was developed by Taga [31]. He demonstrated that sta-
ble locomotion could emerge from the coupling of a CPG, reflex loops and a simple
mechanical model of a human body. Geyer and colleagues have since then demon-
strated that human-like gaits could be obtained with neuromechanical models that
are purely sensory-driven, i.e. without CPGs [32]. The gaits produced are strikingly
human-like both in terms of kinematics and dynamics. This raises the question about
what could be the added value of including a CPG in such a network.With colleagues
in my laboratory, we have the following three hypotheses about the usefulness of
adding CPGs to Geyer’s sensory driven network: (1) the addition of a CPG can sim-
plify the control of speed, (2) it can make the circuit more robust against sensory
noise, and (3) it can make the circuit more robust against sensory lesions.

We tested the first hypothesis by replicating Geyer’s model and investigating
different options of how a CPG could be added to it [33]. We found that adding a
CPG to the circuits controlling hip motion could lead to simple and robust speed
control. In Geyer’s original model, changing speed of locomotion involves changing
multiple reflex gains in a rather complexmanner.With a CPG, simplymodulating the
intrinsic frequency of the oscillators allows adjusting the frequency of stepping and
hence the speed of walking. This tends to confirm our first hypothesis. We developed
a similar controller for a compliant biped robot COMAN (Fig. 2) in simulation, with
successful control of speed and step size [34]. Tests are currently under way to test
the controller on the real robot.

6 Discussion

The projects presented in this article suggest that the respective roles of the mus-
culoskeletal system, sensory feedback, CPGs, and descending modulation have
changed during the evolution from aquatic to terrestrial locomotion. In lamprey
and salamander, robust locomotion can be obtained by relying heavily on CPGs.
Because the type of locomotion is relatively simple and because posture control is
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less critical than inmammals, the feedforward and open loop patterns of CPGs can by
themselves produce quite robust locomotion. Furthermore the activity of the CPGs
can be modulated by low dimensional descending signals to dynamically change the
speed, heading and (in the salamander) the type of gait.

In the cat and in human locomotion, appear to play a much more important role,
and, as demonstrated by Geyer and colleagues, locomotion could in principle be
generated without CPGs. Our work tends to suggest that CPGs are still useful, but
in a different manner than in the lamprey or the salamander. Instead of generating
complete patterns for all degrees of freedom (DOFs), one possibility, as explored
with our human locomotion study, could be that CPGs influence only a subset of
DOFs (the more proximal ones like the hips) in order to help control the speed (by
influencing the frequency of stepping). Furthermore, we predict that the inclusion of
CPGs can help handling sensory noise and sensory lesions (cf Hypotheses 2 and 3
above) but this remains to be studied. Note that, using a pendulum like a test case,
Art Kuo proposed the interesting idea that a CPG serves as a state estimator (rather
than a controller) and that it acts “as an internal model of limb motion that predicts
the state of the limb” [35]. It remains to be studied how this idea could extend to a
complete body.

Overall, it is becoming clearer that spinal cord circuits can do (much) more than
produce stereotyped locomotion (as has sometimes been believed in the past). More
modeling work remains however to be done to decode how they work, in particular
related to rich motor skills, non-steady state behavior, and multimodal locomotion.
Also the role of properties of the musculoskeletal system in simplifying control
should not be underestimated. It is difficult to assess whether this role has changed
during evolution (and hence, it was kept constant in Fig. 1), but as illustrated in our
work on Cheetah-Cub [26], well-tuned mechanical properties can certainly simplify
control. Robotics can play a key role in decoding this type of embodied intelligence
[36].

The neuroscientific research presented in this article can make several types of
contributions to robotics. First of all, it demonstrates that robotics can not only benefit
from biology, but that it can also contribute something in return with the design of
robots that are used as scientific tools in animal motor control studies. Second, the
type of models presented here can become interesting robot controllers: they are
computationally cheap, are well suited for distributed implementation (e.g. different
oscillators running on different microcontrollers), can be used on compliant robots
with interesting passive dynamics, arewell suited to be usedwith learning algorithms,
are robust against perturbations, and can handle complex unstructured terrains.

Similarly to animals that have conquered many different ecological niches, the
approaches could contribute to design controllers for field robots that have to han-
dle complex unstructured outdoor terrains, with applications in search-and-rescue,
transport, pollution monitoring, inspection, and others.
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7 Conclusion

This article presented several projects in my laboratory concerning the decoding
of locomotion control circuits in vertebrate animals, and the changes that they have
undergone during the transition from swimming to ground locomotion.Using various
robots and numerical models, our studies tend to show that locomotion in lamprey
and salamander can be obtained by relying extensively on feedforward signals from
CPGs, while locomotion in cat and human relies more on sensory feedback (e.g.
for posture control) and on descending modulation. For all animals, the viscoelas-
tic properties of the body should not be underestimated since they might markedly
simplify control. We envision multiple future studies involving robots and numeri-
cal models to further explore the fascinating locomotor abilities of animals, and to
contribute new control approaches in robotics.
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Towards Real-Time SMA Control
for a Neurosurgical Robot: MINIR-II

Shing Shin Cheng, Yeongjin Kim and Jaydev P. Desai

1 Introduction

Having a 5-year mortality rate of 66.5%, brain tumor was ranked 6th in the list
of cancers with the highest mortality rate in the United States in 2010 [1]. Neu-
rosurgeons and medical researchers are continuously looking for ways to improve
the survival rate of brain cancer patients. Minimally invasive open surgery is often
recommended for tumors that are accessible and localized [2]. We envision an intra-
operative magnetic resonance imaging (MRI)-guided robotic neurosurgery in which
a flexible continuum robot, that is controlled by the neurosurgeons in theMRI control
room, performs the surgical resection of brain tumor. In this way, we can potentially
overcome challenges such as unsteady hands and tumors being out of the surgeon’s
line of sight.

We propose a flexible spring-based continuum robot as one of the prototypes
for the minimally invasive intracranial robot (MINIR-II), that can be dexterously
maneuvered in constrained and highly risky environment to avoid critical regions in
the brain. Continuum robots have been explored extensively for use in the medical
domain in the past decade. Examples in the literature include the tendon-driven
robots [3], the pre-curved concentric tube robots [4], and a spring backbone-based
robot [5]. Shape memory alloy (SMA) springs have been chosen as the actuators for
this robot due to its MRI-compatibility and affordable cost [6].
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SMA is a smart material that responds to temperature change. Since we use SMA
tension spring in our setup, the spring contracts upon heating and relaxes upon cool-
ing. At relatively high temperatures (between austenite start and austenite finish
temperature), SMA transforms into the austenite phase which has high stiffness. At
relatively low temperatures (between martensite start and martensite finish tempera-
ture), the SMA transforms into themartensite phase, that has low stiffness. It is a high
power density actuator and thus can be a compact and light actuator with significant
force output. SMA spring also generates significant displacement within a limited
real estate [6–8].

One of themajor drawbacks of SMA is its low actuation rate, limited by its cooling
and heating rate [9, 10]. A neurosurgery is normally performed at a generally slow
pace but requires varying of electrocauterization speed in order to remove tumor as
completely as possible [11]. Several neurosurgical robots, including the NeuroArm
and the ROBOCAST system, have tip speeds between 0.5 and 2mm/s [12, 13].
Therefore, we want to devise a cooling strategy to improve the cooling rate and thus
actuation bandwidth of SMA springs so that sufficiently high operation bandwidth
is available for the neurosurgeons.

Several cooling strategies have been attempted on SMA wires that are used in
a wide range of applications. Cooling by a fan operated at different speeds is an
effective method for SMAs that are not required to be selectively cooled [14]. Heat
sink has also been researched for improving SMAcooling rate. For example, an SMA
wire was inserted into a metal tube that acts as a heat sink and silicone grease was
stuffed into the space between the SMA and the tube for faster heat transfer [15]. A
mobile heat sink was also developed to improve the actuation speed of antagonistic
SMA wires [16]. A wet actuator, inspired by human’s blood circulation system, was
proposed to actuate an SMAwire by passing hot and cold water through a compliant
channel containing the wire [17]. To date, most research efforts have focused on
cooling SMA wires. Developing a compact and efficient cooling mechanism for
SMA spring, which can generate larger force and displacement per unit volume,
remains challenging. Inspired by the wet actuator, we propose that an SMA spring
is integrated into a flexible silicone tubing, coil by coil, to form a compact cooling
module integrated SMA actuator [10]. The rest of the paper can be divided into
six sections: Sect. 2 introduces the 3-segmented MINIR-II, of which the base and
middle segment are actuated by four pairs of SMAsprings. Section3 contains detailed
elaboration on the selection of tubing for the cooling module and the process to
integrate the SMA spring and the tubing. In Sect. 4, the parameters that characterize
the performance of SMAactuators in terms of their actuation bandwidth are discussed
and in Sect. 5, the robotic platform with the vision-based control setup is introduced.
These lead to the results and discussion section in Sect. 6, where the characterization
results and motion test analyses are presented. In Sect. 7, we make some concluding
remarks and present related future work.
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2 Multi-joint Robot Design

We envision using a meso-scale robot that can be dexterously maneuvered to go
around obstacles or critical regions to reach and remove brain tumor. Our robot has
a flexible inner-spring backbone that is divided into three segments: base, middle,
and end (Fig. 1). The outer spring has an outer diameter of 13.2mm and functions as
a shell to maintain the robot shape and rigidity. The robot was manufactured out of
VeroWhite, which is a common plastic material used in the 3-D printer (Objet 350V,
Stratasys, USA). Each segment has a disk with four holes spaced equidistantly on
its periphery. The holes are the terminal points for tendons connecting the robot to
the SMA spring actuators. A pair of tendons are used to actuate the robot segment in
one DoF and each segment offers two DoFs in the direction of pitch and yaw. Ten-
don routing configurations, shown in Fig. 2, were attempted on the robot. Coupling
between joints was found in the robot when tendons were routed along the periphery
of the robot, as shown in Fig. 2a. We were able to resolve the coupling issue using
configuration shown in Fig. 2b and therefore implemented this configuration in the
eventual design of the robot.

(a) (b)

Fig. 1 a Spring-based MINIR-II consisting of three segments, of which the base and middle
segments are actuated to achieve 4-DoF motion. (Electrocautery tips are not functional in the
current robot prototype.) b Schematics showing outer spring and interconnected inner spring which
make up the robot

(a) (b)

Fig. 2 Tendon routing configurations: a Tendons along the periphery of the robot. b Tendons
through the center of the robot
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3 Actuator Design and Actuation Mechanism

The cooling module integrated SMA spring has a flexible tubing that is threaded
through each of its spring coil. The SMA spring is resistively heated and the tubing
acts as a coiled channel for the passage of water and air. The water cooling strategy
mainly addresses two challenges: the low bandwidth of SMA and the usually bulky
design of SMA when paired with a cooling mechanism.

The SMA spring (NiTiNOL springs from eBay.com) has a spring wire diameter
of 0.75mm and a mean coil diameter of 6.5mm. Table1 shows the tubings that
we attempted to use as the cooling channel for the SMA spring. The small inner
diameter and the high Shore A value of Tubing (1) make the threading process
complicated. Though a thin wall of tubing (2) allows the addition of minimal stress
on the SMA spring, it leads to easy tearing of the tubing. The thick wall of tubing (3)
results in the development of excessive stress on the SMA spring and thus increases
the transformation temperatures. Tubing (4) is attractive due to its softness but its
inner diameter does not allow smooth water flow during SMA contraction. Tubing
(5) therefore is our final choice because it has an inner diameter large enough for
smooth water flow during the contraction and relaxation phase of SMA. It also has a
wall thick enough to prevent easy tearing and at the same time thin enough to prevent
the addition of excessive stress.

The threading process starts with the straightening of the two ends of the spring,
which allow easy entry of the tubing. Upon having the tubing cover the entire spring
length, electrical wires are attached to the spring ends and led to a circuit board for
power connection. T-fittings are connected to the tubings at the straights ends of
the spring and sealed with rubber plugs. Monofilament wires are connected at the
spring ends and act as tendon wires that connect to the robot joint. Figure3 shows a
magnified view of a cooling module integrated SMA spring.

In the current work, water is used to cool the SMA spring during the cooling
phase while compressed air at a gauge pressure of 25 Psi is used to remove water

Table 1 Tubing parameters

No. Name Inner
diameter
(in)

Outer
diameter
(in)

Wall
thickness
(in)

Softness
(Shore A)

1 High purity white silicone
rubber tubing (Non-reinforced)

0.040 0.085 0.023 55

2 Odor resistant white silicone
rubber tubing

0.062 0.095 0.017 50

3 High temperature NSF-51
silicone rubber tubing

0.0625 0.125 0.03125 50

4 High temperature silicone
rubber tubing

0.0625 0.125 0.03125 35

5 High purity white silicone
tubing

0.078 0.125 0.024 50
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Fig. 3 SMA spring actuator with cooling module

(a) (b)

Fig. 4 a Schematic showing water flow (bold solid line) and air flow (bold dotted line) to bend
middle segment upward; b schematic showing water flow (bold solid line) and air flow (bold dotted
line) to bend middle segment downward

that remains in the tubing during the heating phase. Figure4 shows the setup for one-
DoFmotion of the robot segment consisting of one antagonistic pair of SMA springs.
When SMA A is heated to bend the middle segment upwards, water is allowed to
flow through the cooling module in SMA B to cool the SMA spring. At the same
time, the air valve is turned on for the initial 2 s, allowing the compressed air to be
pumped into the cooling module in SMA A to force out water for a more efficient
heating process.

4 Characterization of Actuator Performance for Maximum
Actuation Bandwidth

Maximum actuation bandwidth is defined as the maximum frequency that an antag-
onistic SMA springs can be actuated when the corresponding robot segment moves
between two target displacements for one complete cycle. The performance of SMA
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spring actuators in terms of maximum actuation bandwidth is dependent on several
parameters in the current setup. The rate of change in temperature of the SMA spring
is related to the current supplied and the flow rate of water. The pre-strain of SMA
springs, gauge pressure of the air used for forcing out water and themotion amplitude
over which the robot joint moves are also investigated as factors that affect the SMA
performance. We performed characterization experiments by actuating the middle
segment of the robot in the horizontal plane. The parameters at their control state
are as follows: current=4A; water flow rate=0.1L/min; pre-strain=50mm; gauge
pressure=25psi; motion amplitude=10.5◦.

4.1 Water Velocity

Heat transfer coefficient, hw, can be defined as [18]:

hw = kwNu

Dh
(1)

and the hydraulic diameter, Dh , can be expressed as Dh = dt − ds [18]. dt , ds , Nu, and
kw are the silicone tubing inner diameter, SMA springwire diameter, Nusselt number,
and thermal conductivity of water respectively. During forced water convection, Nu
can be expressed as a function of the Reynolds number, Re, which is given by:

Re = uwDh

νw
. (2)

where uw and νw are water velocity and kinematic viscosity, respectively. Water
velocity is varied to change the Reynolds number and therefore the heat transfer
coefficient. In the characterization experiments, we attempted five water flow rates:
0.05, 0.1, 0.2, 0.3, and 0.4L/min.

4.2 Current

Current is provided to heat the SMA spring through a motor driver that is operated
in its current controller mode and is powered by a power source that provides 24V,
which is large enough to ensure the supply of the desired current. An upper limit of
the current is set at 4.2A to ensure that the SMAs are not overheated. We attempted
four different currents, namely 3.5, 3.8, 4.0, and 4.2A.
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4.3 Gauge Pressure

The compressed air is pumped into the cooling channel at different gauge pressures,
including 5, 15, 20, and 25psi. The different air speeds force the static water in the
cooling module to flow out at different speeds. The hypothesis is that water can be
removed more quickly when a higher gauge pressure is used, thus allowing efficient
heating to take effect earlier during each heating phase. This can potentially lead to
the SMA springs having a higher actuation bandwidth.

4.4 Pre-strain

Pre-strain of antagonistic SMA springs can affect the actuation bandwidth since
the internal stress of SMA affects its transformation temperatures [19]. The range
of motion of each SMA is maintained between its austenite displacement and its
maximum recoverable displacement, which has been experimentally determined to
be 80mm[10]. The control pre-displacement of eachSMAwas chosen to be 50mm to
ensure a large range ofmotion of each antagonistic SMAspring in either direction.We
attempted three different pre-strains of 45, 50 and 55mm and investigated the effect
of different pre-strains on the actuation bandwidth of SMA springs on a continuum
robot.

4.5 Motion Amplitude

Motion amplitude determines the distance that a robot segment has to go through. A
larger amplitude requires the SMA to be heated to a higher temperature. Therefore, it
is important to associate the actuation bandwidth of SMAs with motion amplitude of
the robot. Four different angular displacements of the robot segmentswere attempted,
namely ±5.5◦, ±10.5◦, ±15.5◦, and ±20.5◦.

5 Vision-Based Experimental Setup

The experimental setup for MINIR-II consists of a robotic platform, an air compres-
sor, a water reservoir, electrical circuit, a computer with an Analog/Digital board,
a stereo camera, and eight water and air valves. The robotic platform, shown in
Fig. 5, is made out of acrylic plates and consists of a robot holder for holding the
MINIR-II, a back wall to which the springs are fixed on one end, an intermediate
wall to guide the tendons, and a top plate that prevents tubings from interfering with
neighboring SMA springs. Eight SMA springs are arranged in two rows and they
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(a) (b)

Fig. 5 a Robotic platform with the spring-based robot, eight cooling module integrated SMA
springs, and tubings. b Side view of the robotic platform made out of laser-cut acrylic

are connected to the robot joints via tendons. Each antagonistic pair of SMA springs
are also connected directly to each other via a tendon that is routed around a pulley
sitting on a standoff. This is done to ensure that the non-heated SMA spring always
applies zero tension on the robot segment and that the flexible spring-based robot
is not compressed due to unexpected tension from the non-heated SMA spring. The
4-DoF robot motion tracking is controlled via a vision-based setup, in which four
markers were attached on the robot, as shown in Fig. 5. A vector is formed between
adjacent markers and angular displacement of each robot segment is calculated from
the angle of the corresponding vector relative to its previous vector.

In the characterization experiments,we applied step inputs of±10.5◦ to themiddle
segment in the y–z plane. All the parameters were set in the control state except the
parameter that was being varied. Experiments were also done to test the performance
of each of the base and middle segment. The base segment was actuated in the x–z
plane while the middle segment was actuated in the y–z plane. Lastly, an experiment
was done on the base and middle segment of the robot to test the coordinated motion
between two segments, independent joint controllability, and repeatability of the
robot motion. The middle segment was commanded to move to a step input of
+10.5◦. This is followed by the base segment moving to a step input of −10.5◦.
Then the base segment and middle segment were commanded to return to 0◦ one
after another.

6 Results and Discussion

6.1 Characterization for Optimal Performance

The results from the characterization experiments show how the middle segment
move between ±10.5◦. In the following discussion, the rise time is defined as the
time required to move from−10.5◦ to+10.5◦ while the fall time is the time required
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Fig. 6 Effect of a current and b water flow rate on the change of angular displacement versus time

to move from +10.5◦ to −10.5◦. An actuation period is the sum of the rise time and
the fall time, and actuation bandwidth is the reciprocal of the actuation period.

Figure6a shows that the rise times are 18.85, 16.03, 14.73, and 13.3 s and fall times
are 17.05, 14.6, 13.14, and 12.64 s for currents of 3.5, 3.8, 4, and 4.2A, respectively.
The actuation period decreases with an increase in current. The major difference in
actuation period between the different currents occurs in the second half of each rise
and fall curve. This implies that current mainly increases the heating rate and has
little effect on the cooling rate.

Figure6b shows that the rise time and fall time are between 13.1 and 15.1 s and
between 10.41 and 14.68 s for water flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4L/min.
The highest flow rate of 0.4L/min led to the highest rate of change in angular dis-
placement in the beginning of each rise and fall curve. However, the low tempera-
ture it cooled the SMA to demanded additional heating time, leading to eventually
the longest actuation period. The optimal flow rate, based on the shortest actuation
period, was therefore 0.1L/min. It cooled the SMA to approximately its martensite
finish temperature, where SMA is at its lowest stiffness, and subsequently allowed
the minimum amount of heating time to contract the SMA to its target displacement.

The effect of pre-strain is not distinct in the plot of Fig. 7a. However, through care-
ful analysis, themaximumpre-strain correspondedwith the highest average actuation
period of 24.75 s while the minimum pre-strain led to the shortest actuation period of
23.65 s. This agrees with previous literature by Tanaka [19] and Brinson [20], who
suggested that higher pre-strain causes a highest shear stress in the SMA spring and
therefore increases the transformation temperatures and the heating time.

As seen in Fig. 7b, gauge pressure of 5, 15, 20, and 25 psi led to actuation period of
30.01, 26.22, 23.51, and 22.89 s respectively. Different gauge pressure contributed to
different rate of increase in the SMA temperature during the heating phases,which are
represented by the second half of each rise and fall curve. The cooling rate in the first
half of each rise and fall curve is not affected by varying the gauge pressure. Figure8
shows that the average actuation bandwidth decreases with the motion amplitude.
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Fig. 7 Effect of a pre-strain and b gauge pressure on the change of angular displacement versus
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Fig. 8 Bandwidth as a
function of motion amplitude
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SMA springs are required to be heated to a higher transformation temperatures to
achieve larger motion amplitudes. The inherent non-linear property of SMA is also
confirmed by the experimental results. The small initial strain change with temper-
ature led to relatively big difference in the motion bandwidth between amplitude
of 5.5◦ and that of 10.5◦. The larger strain change with temperature at higher SMA
temperature caused the difference in actuation bandwidth between motion amplitude
of 15.5◦ and 20.5◦ to be small.
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Fig. 9 aMotion tracking of middle segment and pictures showing it in home configuration,+10.5◦
and −10.5◦. b Motion tracking of base segment and pictures showing it in home configuration,
+10.5◦ and −10.5◦

6.2 Robot Motion

The actuation performance of the robot segment under force water cooling was
compared with that under natural air cooling. Figure9a shows that the actuation
period was 26.75 s for the middle segment when the antagonistic SMA springs were
cooled under forced water convection. When they were naturally cooled, overshoot
happened in almost everymotion cycle. The tendon then broke at 107s because under
natural cooling, residual heat and temperature built up in the SMAs and induced
excessive stress in the tendons.

The base segment was then actuated under forced water cooling and natural air
cooling. A smaller current was applied to prevent overshoot and stress from building
up quickly in the SMAs. However, it did not allow the SMAs to be actuated fast
enough, leading to poor tracking of the robot segment with respect to the reference
step inputs. Under forced water cooling, the base segment achieved an actuation
period of 32.1 s. There is a discrepancy between actuation period in the base segment
and that of themiddle segment because the coolingmodules were handmanufactured
for each SMA and therefore could lead to different performance outcome.

Lastly, the base and middle segments were alternately actuated and one target
step input was provided to one segment at any instant. The robot was able to achieve
independent joint control since the base segment stayed unmoved at 0◦ when the
middle segment moved towards +10.5◦ reference angle. The base segment was then
actuated to achieve −10.5◦ before being commanded to return to 0◦. The middle
segment was eventually returned to its home configuration of 0◦. The entire process
was repeated to ensure the repeatability of the robotic system (Fig. 10).
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Fig. 10 Motion tracking result of both base andmiddle segmentswhile actuating themalternatively;
Picture showing one complete cycle of motion

7 Conclusion

A robotic platform has been developed with the eventual goal of being used for
an intraoperative MRI-guided neurosurgical procedure. The flexible spring-based
three-segmented MINIR-II prototype, manufactured from a 3-D printer, has four
active DoFs with the base and middle segment actuated by four pairs of SMA spring
and the end segment unactuated. Due to the low cooling rate under natural air cooling,
each SMA springs was covered in a silicone tubing, reasonably selected based on
the diameters and hardness of the tubing, to form a cooling module integrated SMA
actuator. Water is flowed through to cool the SMA during the cooling phases while
compressed air is passed through the cooling module to force out water during the
heating phases to improve heating efficiency. The antagonistic pair of SMA springs
connected to the middle segment of the robot was characterized using five para-
meters, namely the current, water flow rate, pre-strain, gauge pressure, and motion
amplitude. We determined that a higher current increases the heating rate and thus
the actuation bandwidth of the SMAs. A higher water flow rate provides a greater
cooling rate but does not necessarily improves the actuation bandwidth. In our case,
a flow rate of 0.1L/min was optimal at cooling the SMA close to its martensite finish
temperature, subsequently allowing a short heating time for the SMA to reach its
target displacement. The experimental result shows that varying pre-strain would
not significantly contribute to improvement of the actuation bandwidth but a higher
pre-strain still increases, despite slightly, the transformation temperatures and there-
fore the rise and fall times. Higher gauge pressure increases the force of the air that
eliminates water from the cooling module, leading to quicker and more efficient
heating phases. The motion of the base and middle robot segments were evaluated
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and compared under the case of natural air cooling and that of forced water cooling.
Fast actuation of SMA springs is not sustainable under natural air cooling since stress
easily builds up in the SMAs due to the residual heat that is not completely removed
during the cooling phases. In our future work, we will investigate the change in force
with time tomake sure the robot can apply sufficient tip force when actuated at higher
bandwidth.We will theoretically model the optimal flow rate and compare it with the
experimental data. We will also compare the effectiveness of forced water cooling
and forced air cooling under the same experimental condition, and attempt a more
compact design of the robotic platform for the full 6-DoF robot.

Acknowledgements Research reported in this publication was supported by the National Institute
of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Num-
ber R01EB015870. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

References

1. Cancer survival rate statistics by type of cancer. Disabled World (2010)
2. Bindal, A.K., Bindal, R.K., Hess, K.R., Shiu, A., Hassenbusch, S.J., Shi, W.M., Sawaya, R.:

Surgery versus radiosurgery in the treatment of brain metastasis. J. Neurosurg. 84(5), 748–754
(1996). PMID: 8622147

3. Bajo, A., Simaan, N.: Kinematics-based detection and localization of contacts along multiseg-
ment continuum robots. IEEE Trans. Robot. 28(2), 291–302 (2012)

4. Webster, R.J., Romano, J.M., Cowan, N.J.: Mechanics of precurved-tube continuum robots.
IEEE Trans. Robot. 25(1), 67–78 (2009)

5. Choi, D.G., Yi, B.J., Kim,W.K.: Design of a spring backbonemicro endoscope. In: Proceedings
of the IEEE/RSJ Intelligent Robots and Systems (IROS 2007), pp. 1815–1821. IEEE (2007)

6. Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research,
applications and opportunities. Mat. Des. 56, 1078–1113 (2014)

7. Ho, M., McMillan, A.B., Simard, J.M., Gullapalli, R., Desai, J.P.: Toward a meso-scale SMA-
actuated MRI-compatible neurosurgical robot. IEEE Trans. Robot. 28(1), 213–222 (2012)

8. Ho, M., Desai, J.P.: Modeling, characterization and control of antagonistic SMA springs for
use in a neurosurgical robot. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 2013), pp. 2503–2508, May 2013

9. Tadesse, Y., Thayer, N., Priya, S.: Tailoring the response time of shape memory alloy wires
through active cooling and pre-stress. J. Intell. Mat. Syst. Struct. 21(1), 19–40 (2010)

10. Cheng, S.S., Desai, J.P.: Towards high frequency actuation of SMA spring for the neurosur-
gical robot-MINIR-II. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2015), pp. 2580–2585. IEEE, May 2015

11. Fukami, N.: Endoscopic Submucosal Dissection: Principles and Practice. Springer, Heidelberg
(2015)

12. Louw, D.F., Fielding, T., McBeth, P.B., Gregoris, D., Newhook, P., Sutherland, G.R.: Surgical
robotics: a review and neurosurgical prototype development. Neurosurgery, 54(3) (2004)

13. Comparetti,M.D.,DeMomi, E.,Vaccarella,A., Riechmann,M., Ferrigno,G.:Optically tracked
multi-robot system for keyhole neurosurgery. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA 2011), pp. 661–666, May 2011

14. Lewis, N., York, A., Seelecke, S.: Experimental characterization of self-sensing SMA actuators
under controlled convective cooling. Smart Mat.Struct. 22(9), 094012 (2013)



200 S.S. Cheng et al.

15. Loh, C.S., Yokoi, H., Arai, T.: Natural heat-sinking control method for high-speed actuation
of the SMA. Int. J. Adv. Robot. Syst. 3(4) (2006)

16. Andrew Russell, R., Gorbet, R.B.: Improving the response of SMA actuators. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA 1995), vol. 3, pp.
2299–2304, May 1995

17. Ertel, J., Mascaro, S.: Dynamic thermomechanical modeling of a wet shape memory alloy
actuator. J. Dyn. Syst. Meas. Control 132, 45–57 (2010)

18. Incropera, F.P.: Fundamentals of Heat andMass Transfer. JohnWiley&Sons, NewYork (2006)
19. Tanaka, K.: A thermomechanical sketch of shape memory effect: one-dimensional tensile

behavior. Res. Mech. 18(3), 251–263 (1986)
20. Brinson, L.C.: One-dimensional constitutive behavior of shapememory alloys: thermomechan-

ical derivation with non-constant material functions and redefined martensite internal variable.
J. Intell. Mat. Syst. Struct. 4(2), 229–242 (1993)



Variable Stiffness Pneumatic Structures
for Wearable Supernumerary Robotic
Devices

Frank L. Hammond III, Faye Wu and H. Harry Asada

1 Introduction

Millions of people in the U.S. suffer from impaired hand function due to a variety
of medical conditions including stroke-induced neurological injury, blunt physical
trauma, and various diseases that require surgical modification of the hand anatomy
[20]. The disruption or loss of hand function caused by these conditions can, depend-
ing upon the severity, prevent a patient from performing everyday grasping and
manipulation tasks and can significantly reduce a patient’s quality of life. Conven-
tional physical rehabilitation is very often an effective means of restoring function
to the hands of patients suffering from moderate neurological injury (Krebs 1999;
[30]), but for patients who suffer from severe neurological injury or whose hands
have been disfigured by disease or physical trauma, wearable robotic motion assist
devices and robotic prostheses are sometimes the only means of enabling the patient
to accomplish activities of daily living (ADL) [11, 14, 17].

Several research groups are developing wearable robotic grasp assist devices to
address the needs of patients suffering impaired hand function, and each solution has
its own merits and drawbacks. Many wearable grasp assist solutions take the form of
rigid exoskeletons which provide assistive forces across various patient joints [2, 16].
Exoskeletal devices, which are typically cable or gear driven, are known to provide
precise, controllable, high-force motions required to grasp daily living objects, and
have shownefficacy in improvingpatients’ hand functionality in rehabilitation studies

F.L. Hammond III (B) · F. Wu · H.H. Asada
Department of Mechanical Engineering, MIT 77 Massachusetts Avenue,
Cambridge, MA 02139, USA
e-mail: fhammond@gatech.edu

F. Wu
e-mail: yfwu@mit.edu

H.H. Asada
e-mail: asada@mit.edu

© Springer International Publishing AG 2018
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 2, DOI 10.1007/978-3-319-51532-8_13

201



202 F.L. Hammond III et al.

[5, 12, 18, 33]. However, such devices do not accommodate variations in patient
skeletal structure or joint misalignments and can produce compression forces on the
soft tissue and joints during long-term use [26] unless special design considerations
are made [6]. In addition, exoskeletal devices can limit patient motion range and be
difficult to don due to device size, and making them unfit for clinical applications
[12, 33].

In contrast to rigid exoskeleton motion assist devices, soft wearable robotic
devices are innately compliant, backdrivable alternatives which easily conform to
the body of the wearer and safely provide the motive forces required to actuate
human joints. Recent advances in soft robot fabrication techniques have enabled the
creation of fluidic, muscle like actuators [13, 15, 21, 24, 29] that can be embedded
in soft wearable devices and can provide the assistive forces using low mass, high
throughput pressurized air sources. Studies have demonstrated that pneumatically-
driven soft bending actuators could be used to create a low-cost, lightweight wearable
glove capable of assisting basic hand closing motions [7, 23], and that soft actua-
tors can also be programmed using mechanical constraints and multiple chambers
to produce specific actuation profiles [10]. However, due to the same intrinsic flex-
ibility that lends to their safety, pneumatic wearable devices are less precise and
harder to control and coordinate than rigid exoskeletons. Also, in cases where these
devices are constructed from continuous-body inflatable structures, large amounts of
gas are required to produce motion and maintain device shape, making lightweight,
portable power sources less feasible. The monolithic structure also makes adaptation
to anatomical variations challenging.

Supernumerary robotic (SR) devices are a class of wearable device which adds
extra limbs to the user to enhance manipulation capabilities. These devices enhance
manipulation capability without relying on the user’s skeletal structure for support,
making anatomical variation and motion restriction a lesser issue. Recent work on
supernumerary fingers for human augmentation [31] demonstrated the efficacy of
SR devices to compensate for lost motion in the human hand by providing grasp
affordances and greater grasping forces. Despite the functional benefits of these SR
fingers, their use of powerful electricmotors and rigid components present user safety
issues that limit clinical suitability.

In this paper, a pneumatic supernumerary robotic (SR) finger device is proposed
as a means of improving the portability, controllability, and configurability of grasp
assist devices (Fig. 1). The proposed grasp assist device is composed of (1) modular,
inflatable structures which reduce pneumatic power source requirements, and (2)
tunable bending actuatorswhichmake graspmotion programming and device control
less challenging. The modular nature of the pneumatic SR fingers and the ability to
modify the joint motion rates for programmable synergies can make wearable grasp
assist devices more economical (manufacturing cost and energy efficiency), more
adaptive (reconfigurable for different patients and tasks) and more feasible as a
solution for long-term treatment of impaired hand function.

Themajor contribution of this paper is the design, analysis, and experimental char-
acterization of the pneumatic SRfinger’s two primary components. First, an inflatable
robotic finger phalanx - based on strain limited pneumatic bladders [10] - is designed
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Fig. 1 Pneumatic supernumerary robotic fingers being used to provide grasp assistance to individ-
uals suffering from stroke-induced hand impairment

to inflate to its functional form froma lower pressure smaller-volume storage state and
accommodate the grasp forces associated with ADL. Second, a dual-chamber, bidi-
rectional pneumatic bending actuator is designed to enable programmable mechan-
ical stiffness and tunable motion rates for the SR finger joints. Fabrication methods
and experimental characterizations of mechanical behavior (deformation, motion)
for each of the two components are presented. Finally, the bidirectional actuators
and inflatable phalanges are assembled in a wearable grasp assist device and tested
to demonstrate the ability to strategically program joint motion patterns for grasping
objects of daily living.
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2 Programmable Pneumatic Grasp Assist Device:
Performance Requirements and Relevant Functional
Features

2.1 Clinical Motivation

Research has shown that early implementation of rehabilitation practices is critical
to the recovery of patients suffering from impaired hand function. Central to the
adoption and efficacy of these practices is the availability of affordable, portable,
easy-to-use rehabilitation devices that not only allow patients and clinicians greater
treatment flexibility, but also target the grasping and manipulation capabilities most
essential to patient recovery [11, 14]. With proper assistive devices, patients can
more quickly begin to recover motor function and increase their mobility, granting
them greater independence and improved quality of life.

2.1.1 Simple Grasping Capabilities Are Essential to Mobility

The standardmeasure of patient recovery fromhand impairment is their ability to par-
ticipate activities of daily living (ADLs). Many of the objects used in ADLs, such as
cups, bowls, and door knobs, require stable pinch or power grasps - not the dexterous
manipulation capabilities associated with fine motor skills in healthy subjects. Such
grasps can be supported by devices which have limited degrees of freedom, low pre-
cision, and a kinematically simple structure [4, 9]. To this extent, complex assistive
devices with precision motors, large power sources, and complicated control strate-
gies are not essential to treatment. Simple, low-precision, elastomeric grasp-assist
devices are a sufficient solution.

2.1.2 Accommodation of Anatomical and Pathological Variation

Given the large variation in degrees of patient impairment and the anatomical configu-
ration of their hands, a proper grasp assist devicemust be highly reconfigurable – both
kinetically and kinematically - for effective patient-specific solutions. SR devices,
unlike exoskeletal, assistive devices [23], rely on coordinatedmotion between “extra”
robotic limbs and existing biological limbs [19, 25, 32] rather than on providing
mechanical support to existing limbs. In theory, an SR grasp assist device could aid
in the treatment of patients either with or without intact anatomy and regardless of
their specific motor deficiency, making this type of device suitable for a wider range
of patients and disabilities than exoskeletons.
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2.2 Performance Requirements

For a wearable robotic grasp assist device to be fit for clinical applications in rehabil-
itation and the treatment of severe, long-term functional hand impairment, the device
must meet several human factors and performance criteria. These criteria, taken from
literature and from discussions with rehabilitation experts, include:

• Energy efficiency: Not requiring expensive, unsafe, cumbersome energy sources
(large batteries, pumps).

• Low-encumbrance: Lightweight (<500g) and ergonomic for long-term use on
patients with chronic disabilities

• Durability: Must accommodate a large number of usage cycles in daily living
environments while resisting damage from heat, puncture, etc.

• Functional versatility: Accommodates a wide variety of objects and tasks asso-
ciated with ADLs [11].

• Configurability: Easy to program for patient-specific needs, including range and
types of objects and anatomical variations (e.g. no. of functional digits).

• Mechanical power: Capable of generating the contact forces (∼5N) required for
successfully grasping objects of daily living.

• Error tolerance: Robust to positioning and sensing errors, and havingmechanical
design features suited to grasp stability including: high friction, natural distributed
compliance, underactuation [9].

A review of literature on soft robotics and wearable devices suggests that durable,
powerful, low-encumbrance grasp assistance devices are attainable using current soft
fabrication and actuation methods [8, 23]. The functional versatility, configurability,
controllability, and energy efficiency of wearable grasp assist devices, however, are
performance criteria which are predicated more on design strategy than on technical,
manufacturing capabilities. The proposed SR device is focused on meeting these
criteria, and this work provides foundation for predicting the behavior of inflatable
structures used in the device.

2.3 Grasp Assist Device Design

2.3.1 Design Rationale

The proposed pneumatic SR grasp assist device is comprised of two SR fingers,
each with two proximal bending actuators connected in series and one distal phalanx
serving as the primary object-robot interface (Fig. 2). Actuators and phalanges are
73 and 70mm in length respectively. A single actuator in series with a phalanx is
143mm in length, roughly the size of a small female hand. Two actuators in series
with a phalanx are 216mm long, about the size of a large male hand.

Each actuator has a primary and an antagonistic chamber. Individuation of cham-
ber pressure control allows for eight separate pressure sources, but to simplify the



206 F.L. Hammond III et al.

Fig. 2 The proposed pneumatic SR grasp assist device and its modular components: bidirectional
pneumatic bending actuators and inflatable, semi-rigid phalanges

operation of the device and to leverage the benefits of underactuation (i.e. passive
compliance for robust grasp acquisition), the primary actuator chambers share the
same pressure source and the antagonist chambers are pressurized individually with
a second pressure source. To “program” motion synergies into the motion of the SR
grasp assist device, the antagonist chambers are pressurized to pre-determined levels
that affect how quickly, and with what mechanical force, the actuators bend with
respect to the shared primary chamber source. This device, in essence, becomes a
fluidic version of the cable-pulley mechanisms used for passive underactuated grasp
acquisition in previous work [9].

The proposed design has several functional benefits, including the following:

• Energy efficiency through targeted inflation/deflation: Inflatable phalanges,
which comprise a large portion of finger inflation volume, inflate once during
deployment and are then held at a constant operational pressure. Only actuators
require cyclic inflation, reducing total power and time requirements.

• Modularity and reconfigurability: The SR finger components can be assembled
in various configurations to create fingers of different sizes and actuation capa-
bilities, allowing for more flexible, patient-specific customization of the devices.
Components can also be manufactured, tested, and repaired individually, making
assembly and modification of wearable devices simpler.

• Underactuation: Pneumatic SR finger compliance and the ability to actuate
several chambers in parallel allows an SR grasp assist device to operate as an



Variable Stiffness Pneumatic Structures for Wearable Supernumerary … 207

underactuated grasping device – proven in literature as adept at grasping a variety
of objects without low-level control [22]. A single compressed gas source can
inflate all of the primary chambers in the SR grasp device, while strategically
inflated antagonist chambers modulate actuator motions at different rates. This
concept is similar to work in [9, 22] where compliant flexures of different bending
stiffness were used to modulate motion patterns of a cable-driven underactuated
robotic hand. For pneumatic SR fingers, however, the mechanical stiffness and
motion rates of the joints can be controlled in real-time by changing antagonist
actuator pressure, rather than by physically swapping joints to change stiffness.
The size and shape of graspable objects varies with phalanx size, actuator motion
range, kinematic topology, and SR device position on the wearer.

3 Modeling the Elastic Deformation Mechanics

The pneumatic bending actuator and inflatable phalanx are comprised of both strain
limiting elements and elastomeric substrates. The highly nonlinear mechanics of
elastomer deformation make analytical solutions very challenging, but simplified
mechanistic models and empirical data can be used to provide a rudimentary basis
for design and control of the inflatable SR finger structures.

3.1 Inflatable Semi-rigid Phalanx

The inflatable semi-rigid phalanxmodel is simplified as a thin-walled pressure vessel
with zero tensile strain (due to strain limiters). A section through the midline of the
vessel creates a planar geometry with thin beams and a rounded cap (Fig. 3). To
consider the inflatable phalanx’s stiffness against off-axis normal forces applied at
the tip (causing tip deflection and eventually buckling), we model the problem as
a pair of elastic columns (surfaces of a cantilever), one in compression and one in
tension. We assume that phalanx buckling can occur only after the bending-induced
compressive stress in a column is greater than the internal pressure-induced tensile
stress. Total stressσtot in the column is the sumof cantilever stressσF and longitudinal
pressure vessel stress, σl , and the minimum pressure required to prevent the onset of
buckling is given by Eq.1.

The force FT on the phalanx tip that generates the critical Euler buckling force
FB for a given geometry, internal pressure, and normal force is approximated by
Eq.2, where end condition factor n = 4 (Fig. 3). Area A is the cross section of three
of four phalanx walls in compression to approximate all material in compression
and resisting buckling (top wall is always tensioned). Setting FB/A equal to total
column stress, we find FT in terms of combined stresses. We assume for this model
that phalanx internal pressureP remains constant during deformation.
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Fig. 3 A diagram of the phalanx internal pressure, normal loading forces and the approximation
of phalanx buckling mechanics (bottom)

σF = Mz

I
, σl = Pz

2t
; σtot = Pz

2t
+ Mz

I
∴ PB = −2Mt

I
= −2FT Lt

I
(1)

FB = nπ2E I

L2
; FB

A
= nπ2E I

L2A
= σtot ; nπ2E I

L2A
= Pz

2t
+ FT Lz

I

FT = I

Lz
(
nπ2E I

L2A
− Pz

2t
). (2)

3.2 Pneumatic Bending Actuator

Analytical solutions have been derived to predict the deformation mechanics of fiber
reinforced pneumatic bending actuators [23]. Most mechanistic models describe a
single chamber, hemispherical bending actuator and explain bending in one direction.
These models are not easily extensible to the complex geometry and fiber reinforce-
ments of the bidirectional bending presented here. Therefore, the characterization of
bidirectional actuator deformationmechanics is done experimentally for the purposes
of this preliminary work.
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4 Soft Inflatable Component Fabrication Methods

Fabrication of the inflatable SR finger components involves a multi-step mold-based
process in which elastic and inelastic constituents are mechanically integrated. This
process is based in part on previous work in soft robot fabrication [3, 10, 23, 28].

4.1 Inflatable Semi-rigid Phalanx Fabrication

The inflatable semi-rigid phalanges are manufactured using a four-step process. An
exploded view of the phalanx components is shown in Fig. 4.

Step 1: A strain limiting outer layer is created by embeddingwoven fiberglass fabric
(US Composites Inc.) with a two part silicone (DragonSkin 30, Smooth-
On Inc.). The fabric is cut into the desired pattern with a laser engraver
(Universal Laser Systems Inc), wrapped around a phalanx-shaped mold
plug and secured using in a silicone adhesive (SilPoxy, Smooth-On Inc.).

Fig. 4 A sectioned view (top left) and exploded view (bottom right) of the components of the
inflatable semi-rigid phalanx, with 3D printed parts colored red
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Step 2: The mold plug is inserted into the phalanx mold and silicone (DragonSkin
30) is injected to form the body of the phalanx. After curing, mount tabs are
glued to the strain limiting layer for connection to the end caps.

Step 3: Flexible PVC tubing is inserted into a 3D-printed vented phalanx plug and
secured using high-strength epoxy. The plug-tube assembly is then inserted
into the open end of the phalanx body after plug edges and the inside surface
of the phalanx body have been wetted with silicone.

Step 4: The strain limiter mount tabs are secured to the connector end cap using
high-strength epoxy. A small amount of silicone is injected into the seams
around the tabs to prevent fluid penetration.

The completed phalanx is connected to a gas source using barbed tubing adapters,
and to actuators or other components using the end cap mount block.

4.2 Bidirectional Bending Actuator Fabrication

Bidirectional bending actuators are manufactured using a seven-step mold-based
process. An exploded view of the actuator components is shown in Fig. 5.

Fig. 5 Sectioned view (top left) and exploded view (bottom right) of bidirectional bending actuator
components, with 3D printed parts colored red
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Step 1: The strain limiting layer is created by the silicone-fabric embedding method
used in the phalanx fabrication process. After being laser-cut to the desired
shape, 3D-printed tabs are affixed to the ends of the strain limiting strip to
prevent fabric tearing when loads are applied.

Step 2: The strain limiting layer is inserted into an actuator mold plug, which is
then placed in the internal actuator body mold. Silicone (DragonSkin 10,
Smooth-On Inc.) is injected into the mold and then degassed before curing.

Step 3: The actuator is removed from the internal body mold but left on the mold
plug. Kevlar thread is wrapped around the actuator in a helical pattern, using
notches in the actuator as guides, and is secured to the body using SilPoxy.

Step 4: The Kevlar wrapped actuator body is placed into a slightly larger (2mm
wider) external body mold and silicone is injected into the mold, covering
the thread and locking it in place.

Step 5: After removal from the mold, the closed end of the actuator is fitted with an
end cap by inserting contact plates into each chamber, threading machine
screws through the plates and the actuator walls, and into the endcap. Sili-
cone is poured into the chambers to create a thin sheet of rubber to seal that
end.

Step 6: Vented plugs are fitted with high-pressure tubing, inserted into the open
ends of the actuator body, and secured with silicone. The silicone seals the
chambers from the inside and only allows air to flow through the tubing.

Step 7: Finally, the connector end cap is attached to the vented end of the actuator
using a nylon machine screw, which is threaded through the end cap and the
mount tabs on the protruding strain limiting layer (Fig. 5–Step 1).

The completed actuators are connected to a gas source using barbed tubing adapters
on both chambers. The actuator can be connected in series with other inflatable
components (phalanges) using the mount holes located in the end cap (Fig. 6).

Fig. 6 Photos of the completed pneumatic phalanx and bending actuator
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4.3 Pneumatic Grasp Assist Device Assembly

The proposed pneumatic grasp assist device is comprised of two SR fingers and a
forearm brace. The brace, shown in Figs. 1 and 2, is comprised of three cuff plates
which are padded with neoprene and fitted with hook-and-loop backed strips and
fastening buckles. The SR fingermount on themain cuff plate is detachable, allowing
easy modification of the SR finger device (swapping of SR finger types), which is
useful for clinical applications where patients’ grasp assist needs vary.

5 Experimental Validation

5.1 Semi-rigid Phalanx Stiffness

To validate the phalanx’s stiffness against loads imparted duringADL grasping tasks,
it is placed in a cantilever configuration and a range of fingertip loads are applied.
Figure7 shows the phalanx mounted horizontally in a test mount, in cantilever con-
figuration. A contact bracket is placed over the phalanx tip so that weights can be
suspended from the phalanx to apply the normal loads.

For each loading test, the phalanx is first inflated to maximum initial pressures
of 0, 5, and 10 psi (while no load is applied) and scientific weights are suspended
5mm from the phalanx tip. This load is increased from 0–750 g by adding weights
to the suspended stack. Deformation of the phalanx is measured using five fiducial
markers on the side of the phalanx, and the internal phalanx pressures are measured
using a pressure gauge (ASDX-100PA, Honeywell Inc.) and recorded in MATLAB
(Mathworks Inc.). A plot of phalanx deformation versus normal load is shown for

Fig. 7 Phalanx test setup and data: Horizontal dashed line at 2.0cm represents deflection limit.
Dashed vertical lines indicate estimated buckling load and brackets show error
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Fig. 8 Plot of actuator bending angle versus primary chamber pressure

each of the three initial pressures in Fig. 7. Critical buckling loads, predicted by Eq.1
are shown as dashed, color-coded vertical lines.

5.2 Characterizing Actuator Deformation

The bending angle and stiffness of the bidirectional bending actuator are determined
by the primary and antagonist chamber pressures and the loads applied. To charac-
terize these mechanical properties, we tested the actuator in two conditions:

Condition 1- No Load: The primary actuator chamber is pressurized from
atmosphere to 20 psi and the deformation (bending angle and position) are mea-
sured against internal pressure. The antagonist pressure chamber is pressurized at
0 psi (vent to atmosphere), 5, and 10 psi (Fig. 8).

Condition 2 - StiffnessCharacterization: The antagonist chamber is pressurized
to 5, 10, 15, and 20 psi, and then the primary chamber is pressurized so that the angle
is at 0◦. A 200 gmass is suspended from the actuator tip and the resulting deformation
is recorded using fiducials on the actuator body.

The bending actuator stiffness characterization test setup is shown in Fig. 9, along
with the resulting experimental data.

5.3 Programming Motion Synergies

To demonstrate programmable motion synergies, the bidirectional actuators in the
grasp assist device are pre-stressed with different antagonist pressures, allowing
the actuators to move at different rates with respect to the shared primary chamber
pressure source. Figure10 shows a successful grasp of an ADL object achieved using
this method. The forearm brace and SR finger mount are positioned so that the SR
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Fig. 9 Plot of actuator deflection and stiffness (force/deflection) versus chamber pressures. Primary
chamber pressures are indicated next to deflection markers on the plot. Bending stiffness values
(N/cm of tip deflection) are italicized and shown in red on right Y-axis

Fig. 10 Photo of a mug grasped using the pneumatic SR grasp assist device

finger tips meet those of the human user, promoting better form closure on objects
that require open-hand grasp postures (e.g. books, plates, etc.). The brace and SR
finger mount positions can be modified for patient specific needs.
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6 Results and Discussion

6.1 Phalanx Mechanical Stiffness

The simplified approximation of inflatable semi-rigid phalanx buckling resulted in
buckling pressure calculations that matched the trends of the physical phenomenon
but were not accurate. The average error between the actual and predicted buckling
loads was 13.69 psi. This disparity is likely due to model simplicity.

The inflatable phalanx performed better than predicted, withstanding more than
7.35N of normal force (750 g mass) without buckling (Fig. 7). This 7.35N is much
lower than the 175N maximum exertion by the human thumb [1], but is adequate
for grasping objects of ADL. Phalanx stiffness can be improved by increasing the
internal pressure and/or using phalanges with stronger walls.

6.2 Pneumatic Bending Actuator Performance

The bending actuator exhibited a maximum of 87◦ range of motion in the no load and
antagonist chamber vented condition. As the antagonist pressure increased, the range
and rate of motion decreased significantly. This behavior lends itself to strategic
programming of actuator motion rate to achieve certain grasp postures and even
stiffness for certain types of ADL objects or tasks. The ability to modulate stiffness,
as shown in Fig. 9, is particularly useful for tuning grasp strength when high forces
and torques must be applied to the objects being used.

6.3 Pneumatic SR Grasp Assistance Experiments

Thepneumatic SRgrasp assist device experiment demonstrated that the bending actu-
ators and inflatable phalanges were strong enough to apply contact forces required to
manipulate ADL objects and that the ability to modulate finger motion can be lever-
aged to increase grasp quality. Also demonstrated was the desired passive underactu-
ated behavior during grasp acquisition, where the pneumatic SR fingers conformed
to the object using only one active power source and no low-level position control.
The object grasp shown in Fig. 10 required greater stiffness in the distal actuators
than the proximal ones, and this was achieved by applying higher antagonist pres-
sures to those joints. Stiffness modulation also decreased gravity-induced lateral sag
in the fingers by ∼70% (from 4.3cm down to 1.3cm).
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7 Conclusion

This paper presents the design, analysis, and experimental validation of novel vari-
able stiffness pneumatic bending actuators and inflatable semi-rigid phalanges for
programming motion synergies in wearable robotic devices. Soft robot fabrication
methods are presented and functional performance specifications, including motion
range and stiffness, are modeled and experimentally validated. Grasp assist trials
using the pneumatic SR grasp assist device demonstrate the ability to strategically
modulate actuator motion to produce grasps suited to specific objects.

Themodeling of the inflatable structures in this work is based primarily on simpli-
fied mechanical models due to the large, highly-nonlinear deformation of the elastic
components and numerous strain limiting elements. Future research efforts will con-
sider a more rigorous treatment of deformation models which predicts mechanical
behavior based on material types and component design, and allows design opti-
mization. Future research efforts will also consider implementing additional degrees
of freedom for the pneumatic SR fingers (abduction–adduction) and will make use
of soft wearable sensors and pressure regulators to create a closed-loop system that
moves the SR fingers based upon user motion inputs.

Acknowledgements The authors gratefully acknowledge Dr. David Crandell at Spaulding Reha-
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function, and Prof. Rohan Abeyaratne in the MIT Department of Mechanical Engineering for his
expertise on nonlinear elastic deformation mechanics.

References

1. An, K., Chao, E., Cooney, W., Linscheid, R.: Forces in the normal and abnormal hand. J.
Orthop. Res. 3, 202–211 (1985)

2. Balasubramanian, S., Klein, J., Burdet, E.: Robot-assisted rehabilitation of hand function. Curr.
Opin. Neurol. 23(6), 661–670 (2010)

3. Bishop-Moser, J., Krishnan, G., Kim, C., Kota, S.: Design of soft robotic actuators using fluid-
filled fiber-reinforced elastomeric enclosures in parallel combinations. In: IEEE International
Conference on Intelligent Robots and Systems, pp. 4264–4269 (2012)

4. Brown, E., et al.: Universal robotic gripper based on the jamming of granular material. Proc.
Natl. Acad. Sci. 107(44), 18809–18814 (2010)

5. Canela, M., del Ama, A.J., Pons, J.L.: Design of a pediatric exoskeleton for the rehabilitation
of the physical disabilities caused by cerebral palsy. Biosyst. Biorobot. 1, 255–258 (2013)

6. Cempini, M., Cortese, M., Vitiello, N.: A powered finger-thumb wearable hand exoskeleton
with self-aligning joint axes. IEEE Trans. Mechatron. 20(32), 705–716 (2014)

7. Connelly L. et al.: Use of a pneumatic glove for hand rehabilitation following stroke. In: IEEE
International Conference on Engineering in Medicine and Biology Society, pp. 2434–2437
(2009)

8. Deimel, R., Brock, O.: A compliant hand based on a novel actuator. In: IEEE International
Conference on Robotics and Auto, Karlsruhe, Germany, pp. 2047–2053 (2013)

9. Dollar, A.M., Howe, R.D.: The highly adaptive SDMhand: design and performance evaluation.
Int. J. Robot. Res. 29(5), 585–597 (2010)

10. Galloway,K.C., Polygerinos, P.,Walsh, C.,Wood, R.:Mechanically programmable bend radius
for fiber-reinforced soft actuators. In: IEEE International Conference on Advanced Robotics,
Montevideo, Uruguay, pp. 1–6 (2013)



Variable Stiffness Pneumatic Structures for Wearable Supernumerary … 217

11. Graf, C.: The Lawton instrumental activities of daily living scale. Am. J. Nurs. 108(4), 52–62
(2008)

12. Heo, P., et al.: Current hand exoskeleton technologies for rehabilitation and assistive engineer-
ing. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)

13. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for
chemists. Angew. Chem. 123, 1930–1935 (2011)

14. Katz, S.: Assessing self-maintenance: activities of daily living, mobility, and instrumental
activities of daily living. J. Am. Geriatr. Soc. 31(12), 721–727 (1983)

15. Koeneman, E., Schultz, R.,Wolf, S., Herring, D., Koeneman, J.: A pneumaticmuscle hand ther-
apy device. In: Proceedings of the IEEE International Conference on Engineering in Medicine
and Biology Society, pp. 2711–2713 (2004)

16. Krebs,H.I.,Hogan,N.,Aisen,M.L.,Volpe,B.T.:Robot-Aided neurorehabilitation. IEEETrans.
Rehabil. Eng. 6(1), 75–87 (1998)

17. Kutner, N., et al.: Quality-of-life change associated with robotic-assisted therapy to improve
hand motor function in patients with subacute stroke: a randomized clinical trial. Phys. Ther.
90, 493–504 (2010)

18. Kwakkel, G., Kollen, B.J., Krebs, H.I.: Effects of robot-assisted therapy on upper limb recovery
after stroke: a systematic review. Neurorehabil. Neural Repair 22(2), 111–121 (2008)

19. Llorens-Bonilla, B., Parietti, F., Asada, H.: Demonstration-based control of supernumerary
robotic limbs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3936–3942 (2012)

20. McNeil, J.: Americans with disabilities: household economic studies, United States Census,
pp. 70–73 (2011)

21. Noritsugu, T., Yamamoto, H., Sasakil, D., Takaiwa, M.: Wearable power assist device for hand
grasping using pneumatic artificial rubber muscle. In: SICE 2004 Annual Conference, IEEE.
1, 420–425 (2004)

22. Odhner, L., et al.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res.
33(5), 736–752 (2014)

23. Polygerinos, P. et al.: Towards a soft pneumatic glove for hand rehabilitation. In: IEEE Inter-
national Conference of Robotics and Automation, Tokyo, Japan (2013)

24. Park, Y.-L. et al.: Design and control of a bio-inspired soft wearable robotic device for ankle-
foot rehabilitation. Bioinspir. Biomim., 9(1) (2014)

25. Parietti, F., Asada, H.: Bracing the human body with supernumerary robotic limbs for phys-
ical assistance and load reduction. In: Proceedings of the IEEE International Conference on
Robotics and Automation, Hong Kong, China (2014)

26. Pons, J.L.: Rehabilitation exoskeletal robotics. Promise Emerg. Field IEEE Eng. Med. Biol.
Mag. 29(3), 57–63 (2010)

27. Sasaki D., Noritsugu T., Takaiwa M., Yamamoto H.: Wearable power assist device for hand
grasping using pneumatic artificial rubber muscle. In: Proceedings of the IEEE International
Workshop ROMAN, pp. 655–660

28. Shapiro, Y., Wolf, A., Gabor, K.: Bi-bellows: pneumatic bending actuator. Sensor Actuators A
Phys. 167, 484–494 (2011)

29. Suzumori, K.: Elastic materials producing compliant robots. Robot. Auton. Syst. 18, 135–140
(1996)

30. Takahashi, C.D., Der-Yeghiaian, L., Le, V., Motiwala, R.R., Cramer, S.C.: Robot-based hand
motor therapy after stroke. Brain 131(2), 425–437 (2008)

31. Wu, F.Y., Asada, H.H.: Bio-Artificial Synergies for Grasp Posture Control of Supernumerary
Robotic Fingers, Robotics: Science and Systems (2014)

32. Wu,F.Y.,Asada,H.H.:Hold-and-manipulatewith a single handbeing assisted bywearable extra
fingers. In: IEEE International Conference on Robotics and Automation, Seattle, Washington
(2015)

33. Xing, K., Xu, Q., Wang, Y.: Design of a wearable rehabilitation robotic hand actuated by
pneumatic artificial muscles. In: Proceedings of the 7th Asian Control Conference, HongKong,
China, pp. 740–744 (2009)



Reproducing Expert-Like Motion
in Deformable Environments Using
Active Learning and IOC

Calder Phillips-Grafflin and Dmitry Berenson

1 Introduction

Manipulation of deformable objects, and in deformable environments, is an important
area of research as deformable objects are common in domestic, industrial, and
medical environments. Unlike manipulation in rigid environments, where collisions
are forbidden, deformable environments allow, and often require, collisions between
a robot and deformable objects. However, modeling deformable objects is a difficult
problem; models must not only capture the geometry (undeformed and deformed)
of objects (itself a very difficult problem), but should also capture the sensitivity
of the object. This qualitative aspect is critical for deformable environments, as it
allows amotion planner to distinguish betweenmultiple objects with similar physical
properties but with different qualitative characteristics. An important example of
this occurs in surgical robotics; while multiple organs and tissues may have similar
physical properties, some parts of the body are significantly more sensitive than
others. Without accounting for sensitivity, motion planners can produce paths that
could cause unnecessary injury.

The motion planning methods introduced in our previous work [16] use a voxel-
based representation of deformable objects in which each voxel has two parameters.
The first parameter, deformability, captures physical properties of the rigidity of the
material. The second parameter, sensitivity, captures the qualitative significance of

This work is supported in part by the Office of Naval Research under Grant N00014-13-1-0735
and by the National Science Foundation under Grant IIS-1317462.

C. Phillips-Grafflin (B)
Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA
e-mail: cnphillipsgraffl@wpi.edu

D. Berenson
University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109, USA
e-mail: berenson@eecs.umich.edu

© Springer International Publishing AG 2018
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 2, DOI 10.1007/978-3-319-51532-8_14

219



220 C. Phillips-Grafflin and D. Berenson

deforming the object. Together, these parameters are used in a cost function that
provides a cost of deformation that can be used in cost-aware motion planners.

While the deformability parameters are directly related to material properties,
setting the sensitivity parameters is more difficult, as they capture a range of object
characteristics. Setting them by hand is time-consuming and error-prone, as incorrect
sensitivity values can produce unwanted planner behavior. More problematically,
setting these parameters for practical environments requires both domain knowledge
and the ability to mathematically represent that knowledge such that the planner
will perform well. Instead, we propose a framework for automatically learning and
validating these parameters from expert demonstrations. For example, a surgeon can
demonstrate the optimal path for inserting a probe, andwe can use this demonstration
to find the sensitivity values of organs around the path.

Our framework consists of three parts: (1) Automatic generation of demonstra-
tion tasks that prompt the user to provide informative demonstrations through a
novel active learning process; (2) Recovery of object sensitivity values using Path
Integral Inverse Reinforcement Learning (PIIRL) Inverse Optimal Control (IOC)
techniques [10]; and (3) Reproduction of the demonstrated behavior using the RRT*
asymptotically-optimal motion planner [12] with a key modification that allows us
to check for punctures of deformable objects.

This approach offers two main advantages over existing similar techniques. First,
by using sampling-based techniques for IOC that avoid the need to solve the forward
problem as well as sampling-based asymptotically-optimal planners, our framework
is applicable to higher-dimensional problems than approaches such asLEARCH[17],
which are limited by the need to repeatedly compute optimal paths to recover the cost
function. Second, our proposed method for automatically generating demonstration
tasks for experts to perform reduces the number of demonstration tasks needed to
capture the desired behavior and removes the need for domain knowledge to generate
these tasks by hand. Finally, to our knowledge, IOC has never before been applied
to the problem of learning deformable object parameters.

In our experiments in simulated and physical test environments we show that,
despite the limitations inherent in asymptotically-optimal sampling-based planning,
the recovered sensitivity parameters allow motion planners to reliably reproduce
behavior demonstrated by expert users. We also present experiments which show the
generalization capabilities of our method.

2 Related Work

Extensive work on the modeling and representation of deformable objects has been
done, primarily from the perspectives of computer graphics [6] and medicine [2]. In
recent years, this work has been adopted by the robotics field to enable the manip-
ulation of real-world deformable objects such as clothing, rope, food, and human
tissue [8]. A wide range of simulation-based models for deformable objects are
available, most of which are meshed models based on Mass-Spring (M-S) [6] and
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Finite-Element (FEM) [7, 14], but mesh-less models [5, 13, 16] have also been pro-
posed.Ourmodel replaces the need for physical simulationwith a cost function based
on the volume of intersection between voxelized deformable and rigid objects [16].
While this approach cannot capture moving objects, and can only approximate the
true deformation, it is extremely efficient to compute in comparison to simulation-
based methods, and thus ideal for use inside a motion planner. Notably, because
our approach provides a cost function that accounts for both object deformation and
sensitivity, it produces plans that minimize deformation and preferentially deform
or avoid objects based on their sensitivity.

Inverse Optimal Control (IOC) is the problem of recovering the cost or reward
function being optimized by a trajectory or policy. Introduced by Kalman [11] and
applied to robotics by Ng et al. [15], several different formulations of the IOC prob-
lem and algorithms to address it have been proposed, covering both continuous and
discrete state spaces [15]. Earlier approaches to the IOC problem, such as apprentice-
ship learning, require that the forward problem be solved in addition to computing
optimal weights [1, 17]. More recent approaches, based on the maximum entropy
principle, replace the need for solving the forward problem by using sample trajec-
tories around the demonstration [19].

The IOC approach we use, Path Integral Inverse Reinforcement Learning (PIIRL)
samples around the demonstration instead of solving the forward problem [10]. In the
PIIRL formulation, a series of locally-optimal demonstration trajectories are gathered
from the user(s). For each of these demonstrations, a set of sample trajectories around
the demonstration is generated; note that these samples are assumed to be sub-
optimal relative to their demonstration. For all demonstrations and all samples, user-
specified features are evaluated, and the weights associated with these features are
then recovered via a convex optimization problem that attempts to maximize the
margin between the features of the demonstrations and the features of the samples.

3 Problem Statement

Let τ represent the path of a rigid object (i.e. the robot) through an environment
composed of n deformable objects E = O1, O2, . . . , On . Representing τ with a
discrete sequence of configurations, we assume the cost of executing τ is a function of
the formC(τ ) = ∑|τ |

k=1

∑n
i=1 Di Si Vi (τk), where Vi (τk) is the volume of deformation

of Oi that results from placing the rigid object at the kth configuration of path τ , Di

is the deformability of Oi , and Si is the sensitivity of Oi . We focus on learning the Si
parameters, so we assume Di = 1 ∀i , though our methods work with any known D.
Note that while sensitivity parameters S can be set per-voxel in our representation,
we simplify the problem of recovering sensitivities by assuming that each object has
uniform sensitivity.

S represents the ground-truth sensitivities of the objects. We seek to generate
a set of learned parameters Ŝ from a set of demonstrations, such that these Ŝ can
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be used in a motion planner to produce similar behavior to the demonstrations.
Obtaining the true S fromdemonstration is not possible in general, as a demonstration
can, at best, encode only the ratios between different elements of S and not their
magnitudes. Thus it is not meaningful to compare S to Ŝ directly. Amore informative
comparison is howwell a planner imitates demonstrated behaviorwhenplanningwith
Ŝ. Thus we evaluate our method in terms of the cost of the path produced by our
framework. Therefore the quality of Ŝ relative to the ground truth is evaluated as
E(Ŝ, S) = |CS(τd) − CS(τplanned(Ŝ))|, where τd is a path demonstrated for a given
task, τplanned(Ŝ) is a path planned for the same task using the sensitivities Ŝ, and the
cost function CS(·) is evaluated using the ground-truth sensitivities S.

4 Methods

Wehave developed a framework for recovering sensitivity parameters for deformable
objects, as illustrated in Fig. 1. Below we describe each of the four components in
detail.

4.1 Capturing Demonstrations

Like all IOC problems, our approach requires demonstrations. In our case, demon-
strations are captured in a simulation environment using a physics simulator to sim-
ulate deformable objects. Our demonstration task consists of inserting a cylindrical
probe between deformable objects to reach target points distributed across the envi-
ronment, as illustrated in Fig. 2. The user attempts to minimize contact with more
sensitive objects (shown in yellow and green) compared to less sensitive objects
(shown in blue). We record the demonstration trajectory along with the features of
that trajectory, which are the total amounts of deformation of each object. While
outwardly simple, the problem of probe and needle insertion between deformable
objects such as this is common inmedical tasks [2] and a subject of previous research

Fig. 1 Diagram of the three stages and main components of our framework
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Fig. 2 Example demonstration tasks for our 6-object test environment, shownwith the probe reach-
ing the target. a Low sensitivity objects L1, L2 (blue), medium sensitivity objects M1, M2 (green),
and high sensitivity objects H1, H2 (yellow). b–d Goal configurations for three automatically gen-
erated tasks

Fig. 3 Our automatic
demonstration task generator

in robot motion [2, 13], however, none of this work has explored learning qualitative
properties of deformable objects to determine higher-level behavior. In addition to
capturing demonstrations, we use this simulation environment to compute feature
vectors for demonstration and sample paths.

Each demonstration we capture can be parametrized as a demonstration task by
a starting pose of the probe Pstart , a target point Ptarget the user must touch with
the probe tip, and a set of “collision planes” Cplanes, hyperplanes that constrain
the motion of the probe. As shown in Fig. 3, the hyperplanes approximate a funnel
that guides the user towards the target point and restricts which objects the user
can contact with the probe. These hyperplanes are added to constrain the user to
producing demonstrations that capture the relative difference in sensitivity between
the accessible objects. In our experience, without the hyperplanes users sometimes
produce demonstrations that deformonly the globally least-sensitive object(s) instead
of capturing sensitivity relationships between neighboring objects.

While we attempt to capture optimal demonstrations, in practice users may pro-
vide slightly sub-optimal demonstrations. We attempt to correct for this using a local
optimizer that optimizes each demonstration. This method generates a set of random
sample trajectories around the demonstration trajectory and replaces the demonstra-
tion trajectory with any of the random samples with strictly dominating deformation
(i.e. the random sample deforms all objects less than or equal to the demonstration).
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4.2 Active Learning

We can capture demonstrations and compute features for demonstrations and sam-
ples needed for PIIRL, however, this leaves two problems to address: how to generate
demonstration tasks for the user to complete, and howmany demonstrations must be
collected. Clearly, the accuracy of recovered sensitivity values depends on the qual-
ity of the demonstrations provided. For example, if an object has zero feature values
in both demonstrations and the trajectory samples around the demonstrations used
by PIIRL, we cannot recover a meaningful sensitivity value for the object; e.g. if all
demonstrations entered through the forward half of our cube environment, no features
would be available for objects on the reverse. A different, but equally problematic,
issue occurs when features have been collected for every object, but the demonstra-
tions are “unconnected”; for example, in an environment E = {O1, O2, O3, O4}, if
features have been collected for demonstrations between O1, O2 and O3, O4, but not
for O2, O3, the optimizer cannot determine if O1 and O2 are more or less sensitive
that O3 and O4. Thus, we need to ensure that sufficient demonstrations have been
collected.

Algorithm 1 Demonstration task collection algorithm
procedure CollectDemonstrations(A)

G ← {∅,∅}
O1 ← argmaxo∈E degree(A(o))
O2 ← argmaxo∈neighbors(A(O1))degree (A(o))
G ← G ∪ CollectSingleDemonstration(O1, O2)

while {o ∈ E |o /∈ Gv, degree(A(o)) > 0} �= ∅ do
O1 ← argmax{o∈Gv |neighbors(A(o))\Gv �=∅} depth(G(o))
O2 ← argmax{o∈neighbors(A(O1))\Gv} degree(A(o))
G ← G ∪ CollectSingleDemonstration(O1, O2)

G ← EnsureRanking(G)

return G
procedure EnsureRanking((G))

for O1 ∈ Gv do
for {O2 ∈ Gv | depth(G(O2)) ≥ depth(G(O1))} do

if NoDirectedPathExists(O1, O2) then
if DirectlyComparable(O1, O2) then

G ← G ∪ CollectSingleDemonstration(O1, O2)

return EnsureRanking(G)

return G
procedure CollectSingleDemonstration(O1, O2)

Ptarget , Pedge,Cplanes ← GenerateDemonstrationTask(O1, O2, Tclearance, Trange)
Dv, De ← GetDemonstrationFromUser(Ptarget , Pedge,Cplanes)

return (Dv, De)

The conservative solution is to require a demonstration for every pair of adjacent
objects, however, this can result in a large number of demonstrations. For our test
environment shown in Fig. 2, 12 demonstrations would be required to capture the
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relationship between every adjacent pair. We seek to reduce the number of demon-
strations required.

Simply collecting demonstrations such thatwe observe a non-zero feature for each
object is insufficient for accurate parameter recovery, rather, we must ensure that the
demonstrations collected form a ranking of the objects in terms of sensitivity; i.e.
that for objects O1, O2 ∈ E , rank(O1) is either less than, equal to, or greater than
rank(O2) if the objects are comparable. Rankings are derived from demonstrations
collected between adjacent objects; the preferentially-deformed object receives a
lower ranking than the preferentially-avoided object. Rankings are not comparable in
certain cases, such as between objects on the opposing faces of our test environment,
in which it impossible to perform a demonstration between the two objects, and they
cannot be ranked via a combination of other demonstrations.

Demonstrations are collected using Algorithm 1, which takes A, the set of object
adjacencies in E , and iteratively collects demonstrations until there are no more
useful demonstrations to perform. This algorithm captures preference relationships
between objects by building a directed graph G. The nodes in G represent objects
in the environment and the directed edges point from the less-sensitive object to the
more-sensitive one. Initially, G contains no nodes or edges, and each demonstration
adds an edge and 0, 1, or 2 nodes. The key to the algorithm is determining which
demonstration (and thus which edge) should be queried next.

The algorithm uses the structure of G at the current time as well as a heuristic to
decide which demonstration to query next. If the ranking between all objects in G
is known, then the algorithm selects a new object to add to G (via a demonstration
involving that object and one already in G). After adding a new object, the algorithm
queries demonstrations until the ranking of all objects in the graph is again established
(this is done in the EnsureRanking function). It then selects a new object to add,
and so on, until no more objects can be added.

At each step where objects or edges are selected, we choose the object or edge
based on connectivity heuristics. For new objects (i.e. those not already in G), we
prefer those that are adjacent to as many other objects as possible. When picking
objects already in G for a new edge, we prefer objects that have a higher “depth”.
Here depth(n) is the length of the longest directed path in G which ends at n.
These heuristics bias the algorithm to create long chains of edges where possible,
which is clearly beneficial for forming a ranked list; e.g. rank(O1) < rank(O2) <

rank(O3) < rank(O4) is a chain of three edges which gives a complete ranking of
four objects.

Algorithm 1 is not guaranteed to produce the minimal set of demonstrations
because it cannot foresee the results of future demonstrations. It frequently collects
demonstrations early on that prove to be unnecessary in the final set of demon-
strations. In pathological environments, Algorithm 1 may be forced to collect all
possible demonstrations. However, in practice, we show that it reduces the number
of demonstrations without significant impact on the recovered sensitivity parameters.
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Algorithm 2 Demonstration task generation algorithm
procedure GenerateDemonstrationTask(O1, O2, Tclearance, Trange)

Pedge ← GetEdgePointBetweenObjects(O1, O2)

Ptarget ← ∅
while Ptarget = ∅ do

Psampled ← SampleInRange(Pedge, Trange)
if clearance(Psampled ) < Tclearance then

Ptarget ← Psampled

Cplanes ← GenerateCollisionPlanes(Pedge, Ptarget )
return Ptarget , Pedge,Cplanes

For each demonstration requested by Algorithm 1, we generate a new task using
Algorithm 2. This algorithm is given a pair of target objects O1, O2, a target clearance
Tclearance, and a target depth range Trange. First, the algorithm selects an “edge point”,
Pedge by randomly selecting a point on themedial axis between the two target objects.
Using the edge point, the algorithm randomly samples nearby points Trange away
from the edge point to select one that is “inside”1 the environment and also at least
Tclearance away fromanobject,which it returns as Ptarget , the target point. Finally, a set
of “collision planes” are generated to restrict the user’s demonstration to the desired
area. The parameter Trange ensures that the user must insert the probe sufficiently
to cause deformations. Similarly, the parameter Tclearance controls how close to an
object the target point can be, and can be used to ensure that the target point itself is
not in contact with an object (see Fig. 3).

4.3 Parameter Recovery

Our approach to motion planning for deformable objects, introduced in [16], uses a
“cost of deformation” to enable any motion planner that accounts for cost to produce
plans that minimize deformation. We can frame the problem of imitating demonstra-
tion behavior as the problem of inferring the sensitivity parameters used to produce
the demonstration. Assuming that the demonstration is optimal, this is the well-
established problem of Inverse Optimal Control (IOC).

Using the PIIRL formulation of IOC, the cost function consists of a series of
features V = V1, V2, . . . , Vn (in our case these are the amounts of deformation of
each of the n objects) with corresponding sensitivities S = S1, S2, . . . , Sn , such that

1To determine which points are “inside” the environment, we compute a “local maxima map”
using the Signed Distance Field (SDF) of the environment. For each point in the SDF, we follow
the gradient away from obstacles and record the location the gradient becomes zero (i.e. the local
distance maxima). Points “inside” the environment have corresponding local maxima inside the
bounds of the SDF, while points “outside” have local maxima corresponding to the bounds of the
SDF. Intuitively, “inside” points have finite-distance local maxima reachable via the gradient, while
for “outside” points, the local maxima are undefined.
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the total cost of a configurationC = ∑n
i=1 Vi Si , where the Vi can be computed using

our physics simulator, but the optimal set of sensitivities S∗ is unknown.
To find the best estimate of the optimal set of sensitivities Ŝ, PIIRL requires a set of

sample paths around each demonstration. Because the demonstrations are assumed to
be locally optimal, all samples around a demonstration will be sub-optimal w.r.t. the
unknown cost function. For K demonstrations and L samples for each demonstration,
the optimalweights are obtained using the followingminimization problem (a similar
form of the minimization problem used in [10]), where Vk are the feature values for
demonstration k, and Vk,l are the feature values for sample l of demonstration k:

Ŝ = argminS

K∑

k=1

ST Vk

L∑

l=1
ST Vk,l

(1)

This minimization finds the sensitivity values Ŝ that maximize the margin between
the cost of the demonstrations and the costs of their samples.Note that in our problem,
S > 0 and sample feature valuesVk,l �= 0, as all sensitivity valuesmust begreater than
zero and Vk,l = 0 implies Vk = 0 (since samples must be sub-optimal relative to their
demonstrations). Vk = 0 implies that the demonstration k captures no information
about any object and thus can be removed from the optimization so this condition
will not occur. Since this minimization problem is convex, we can use standard
convex optimization solvers to find optimal weights. Unlike previous work such as
LEARCH [17], PIIRL does not rely on the specific configurations the demonstration
path traverses; rather, only the corresponding feature values must be locally optimal
in our cost function [9]. This makes it tractable to learn cost functions in high-
dimensional spaces.

4.4 Recovered Parameter Verification

Once sensitivity values Ŝ have been recovered for each object in our test environ-
ments, we must verify that the recovered values allow our motion planner to imitate
the behavior of the expert demonstrations.We attempt to perform each demonstration
task using an optimal motion planner and comparing the planned path τplanned(Ŝ)

with the demonstration τd in terms of the true cost function CS(·) using the ground
truth sensitivity values S. In our previous work, we used the T-RRT and GradienT-
RRT planners to efficiently produce paths in high-dimensional spaces [16]; however,
since these planners have no optimality guarantees, they are unsuitable for parameter
verification. Instead, we use the asymptotically-optimal RRT* planner [12] with our
deformation cost function. While we could use deformations measured via a physics
simulator to compute cost during planning, our voxel-based deformation cost func-
tion is significantly faster, more stable, and detects object punctures and separation.
To accurately mimic the demonstration tasks, the RRT* planner is provided with the
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same task-space target point to reach with the probe tip, rather than a goal configura-
tion of the probe. Feasible configurations touching this target point can be sampled,
and RRT* attempts to connect the tree to these goal states. As RRT* runs, it improves
the path by reducing the deformation cost of the path and by sampling and connecting
to new, lower-cost goal states. Note that while RRT* is asymptotically optimal, for
finite time it will not return the optimal path, so we expect paths reproduced with
RRT* may be slightly higher-cost than their corresponding expert demonstrations,
but should exhibit the same preferential deformation demonstrated by the expert.

In addition to integrating our existing cost function with RRT*, we have signifi-
cantly improved the quality of planned paths by adding puncture detection to prevent
paths from puncturing or cutting deformable objects. Puncture and cut detection is
essential to planner performance; without it, planners can produce low-cost paths
that pass directly though deformable objects. To prevent punctures and cuts, we
check every extension of the tree in RRT* for puncture using an incremental variant
of the algorithm introduced by Chen et al. [3] for computing topological invariants
on voxel grids. The original algorithm extracts the surface vertices from the voxel
grid, and computes the connectivity of each surface vertex. Each surface vertex can
be connected to between one and six neighboring surface vertices; let M1 be the
total number of surface vertices with one connected neighbor, M2 the total with two
neighbors, and so on. From these totals, Chen et al. prove that the number of holes
in the voxel grid is nholes = 1 + ((M5 + (2 ∗ M6) − M3)/8).

Thus, checking for punctures can be implemented by removing the swept volume
of the path of the probe from the voxel-based model of deformable objects used for
motion planning, and then computing the number of holes to ensure that no new holes
have been created by the path. Additionally, to prevent objects from being completely
cut apart by the path, the overall connectivity of the surface voxels corresponding
to each object are computed; if the surface vertices for an object form multiple
disconnected groups, then the object has been cut apart by the path.

To efficiently perform these checks during the planning process, we incrementally
check for punctures with each extension and rewiring step of RRT* (see Fig. 4).
For testing a new edge from configuration q1 to configuration q2 the process is as
follows: (1) retrieve the stored object surfaces corresponding to q1, (2) update the
object surfaces with the swept volume from q1 to q2, (3) compute the number of

Fig. 4 Illustration of puncture checking for an extension fromconfigurationq1 toq3.As the surfaces
are no longer connected (red), puncture has occurred and the q2 → q3 motion is invalid
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holes in each object surface (check for puncture), (4) compute the connectivity of
each object surface (check for cuts), and (5) if no holes or cuts are encountered, store
the updated surfaces corresponding to q2. For every such check, we are effectively
checking the entire path from the start configuration qstart to q2 for punctures and
cuts.

5 Results

We present results of testing our framework in a 3D simulated environment (5DoF
probe insertion task) and in a physical planar environment (3DoF rigid object nav-
igation task) using an industrial robot. We use the Bullet physics simulator [4] to
provide an environment for capturing demonstrations and computing features, and
theOpenMotion Planning Library (OMPL) [18] to provide the RRT* planner used to
verify the recovered sensitivity values. We show that our methods accurately recover
sensitivity values that allow planners to imitate expert demonstrations.We also report
on how the algorithm generalizes to a new task, where an obstacle is introduced into
the environment, and report on the use of active learning for reducing the number of
demonstrations required. Ideally, we would compare the performance of our frame-
work with existing approaches such as LEARCH [17], however, these approaches
require computing the true optimal path to perform IOC, which is intractable in the
5DoF probe insertion task.

5.1 Recovered Behavior

We first demonstrate the performance of our framework in the 3D simulated environ-
ment without using the automatic demonstration task generator, and show that our
demonstration capture environment and parameter recovery process produce accept-
able object sensitivity values. Using our RRT* planner, we show that the recovered
sensitivities produce paths that imitate the expert demonstrations.

The test environment, as shown in Fig. 2, consists of six deformable objects form-
ing the faces of a hollow cube. These objects form three classes; each pair of opposing
faces has the same sensitivity assigned, with the lowest sensitivity (L1, L2) shown
in blue, an intermediate sensitivity (M1, M2) shown in green, and high sensitivity
(H1, H2) shown in yellow. For testing purposes, the “true” sensitivity values of these
objects are set as L1, L2 = 0.2, M1, M2 = 0.4, H1, H2 = 0.8.We use the true values
to evaluate the quality of paths planned with the recovered sensitivity values, but they
are unknown to our IOC method.

Using the conservative approach discussed in Sect. 4.2, 12 demonstrations were
performed, one for each pair of adjacent objects. Several examples of these demon-
strations can be seen in Figs. 2 and 5. While time-consuming, this approach ensures
that sufficient demonstrations have been collected to capture the desired behavior. In
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Fig. 5 Examples of goal configurations from demonstrations (a, c) and corresponding goals of
paths planned using recovered sensitivity values (b, d). Full paths are not shown for clarity

these demonstrations, lower-sensitivity objects were preferentially deformed instead
of higher-sensitivity objects.

Using the set of 12 demonstrations, we recovered the object sensitivity para-
meters using our parameter recovery process. We generated a set of 100 sample
paths around each demonstration using a multivariate gaussian distribution using the
process described in [9], which produces smooth noisy path samples around an ini-
tial path. Features for all demonstrations and samples were computed by executing
paths in the demonstration capture environment, and all feature values were normal-
ized relative to the highest feature value. Using the PIIRL formulation of IOC, the
optimal weights were recovered using the convex optimization problem in Eq. (1);
we used the function minimization tools in MATLAB to perform this optimization.
For optimization, the lower bound of possible weight values was 0.1, and the upper
bound was 1000, with the weights initialized to 500. The recovered sensitivity val-
ues were L1 = 0.10004, L2 = 0.10092, M1 = 2.8523, M2 = 8.5683, H1 = 958.92,
H2 = 999.51. Note that both high sensitivity objects (H1 and H2) were avoided in
all demonstrations, and thus received maximum weights in the optimization. Again,
recovery of the true sensitivities is impossible and we must evaluate our method in
terms of the cost of the path planned using the recovered sensitivities.

5.1.1 Recovered Parameter Verification

Using the object sensitivity parameters recovered using PIIRL, we planned for all 12
demonstration tasks using RRT*. Table1 compares the demonstrations with results
for planning times of 30 and 60min, with 30 and 15 trials of each, respectively.
Figure5 shows examples of demonstrated paths compared with paths produced by
RRT*. As shown in the table, paths produced using the recovered parameters imi-
tate the behavior of the demonstrations by deforming the same objects with similar
amounts of deformation except for two demonstrations (namely 9 and 12) for which
the planner found a path superior to the original demonstration. Note that due to
the difficulty of the planning problem and the finite planning time for RRT*, we do
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not expect planned paths to exactly match the demonstrations. Two notable types of
error resulted in sub-optimal plans, namely cases where planned paths clip the edge
of higher-sensitivity objects, and cases where planned paths simply result in higher
cost than the demonstration. In both cases, errors are indicated by high standard
deviations; this is expected if a small number of the planned paths exhibit particu-
larly sub-optimal behavior. These errors are caused by the limited time available to
RRT*, which restricts the number of goal states sampled and the refinement of the
path. Results for 60-min planning times shown in Table1 show that in most cases,
increased planning time reduces these errors. Note that the high planning times used
here are partially a consequence of our puncture test, which adds considerable com-
putation in addition to the deformation cost function.

5.1.2 Generalization of Recovered Parameters

The importance of recovering sensitivity parameters is not to reproduce the demon-
strations, since these could simply be replayed; rather, recovering the sensitivity
parameters allows us to generalize the behavior displayed in the demonstrations to
other tasks in the test environment. To demonstrate that the recovered sensitivity
parameters generalize, we performed a set of tests shown in Fig. 6. Starting from
one of the demonstrations (demonstration task 6), we adjusted the target point and
inserted rigid obstacles that block the demonstrated path. As shown in Fig. 6, our
planner produces paths that exhibit the same behavior as the demonstration path;
while the new path differs from the demonstration and thus results in different cost,
the preferential deformation of the blue object over the green one indicates that the
expert’s preference was correctly captured.

Fig. 6 Paths planned to show the generality of recovered sensitivity values, a goal configuration
of demonstration 6, and b, c two goals of paths planned with target points offset from the center of
the environment when the direct path from start to target is blocked by a rigid obstacle (black)



Reproducing Expert-Like Motion … 233

5.2 Automatic Generation of Demonstration Tasks

Using the same test environment, we tested our active learning method for auto-
matically collecting demonstration tasks. Examples of these demonstration tasks are
shown in Fig. 2. Unlike the conservative approach discussed previously, which used
demonstrations between all pairs of adjacent objects, the active learning method
generates only enough tasks to form a ranking of all objects in the environment. We
tested the active learning method in the same test environment as above and allowed
it to select a subset of tests from the set of comprehensive demonstrations. Using this
method, between 8 and 10 demonstrations were required to capture features for all
objects, compared to the 12 used by the conservative approach.As before, 100 sample
paths were generated around each demonstration, and sensitivities were recovered
using the PIIRL optimization problem. Since the active learning process involves
some random selections, we ran 15 trials; 10 demonstrations were required in 14
cases, and 8 demonstrations in 1 case, with average recovered sensitivities (aver-
age [std.dev.]) being L1 = 0.100[0.0], L2 = 0.101[0.0002], M1 = 2.858[0.012],
M2 = 8.630[0.071], H1 = 984.12[29.272], H2 = 999.509[0.165]. Comparing these
results with the sensitivities learned using the full set of demonstrations (see
Sect. 5.1), we observe that the values are not meaningfully different, which shows
that the active learning method can infer very similar sensitivity relationships with
fewer demonstrations.

5.3 Physical Environment Tests

In addition to testing with our simulated environment, we have also applied our
framework to a planar physical test environment shown in Fig. 7 with an L-shaped
block, similar to those used in our previous work [16]. Like our previous work, the
use of a planar 3DoF environment allows for the deformation of objects in the envi-
ronment to be tracked in real time by an overhead camera. Paths in the environment
were planned using the same RRT* planner as before, albeit in SE(2).

Fig. 7 Testing for our physical test environment (a), with objects numbered and start (red) and
goal (blue) states shown. Swept volumes of b path planned with uniform object sensitivity values,
c demonstration path, and d path planned with recovered sensitivity values
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Table 2 Deformation comparison for the five right-hand objects in our physical test environment
between a path planned with uniform object sensitivity values, the demonstrated path, and a path
planned using the recovered sensitivity values. Reported deformation values are in pixels

Object deformation

O1 O2 O3 O4 O5

Uniform 0 3367 2442 0 554148

Demonstration 23451 0 0 0 35222

Recovered 51569 38798 0 0 73013

For comparison purposes, we first planned using uniform sensitivity values for
all objects, as shown in Fig. 7b. A demonstration path through a narrower, higher-
deformation passage was provided using our demonstration capture environment, as
shown in Fig. 7c. As with the simulated environment, 100 samples were generated
around the demonstration, and object sensitivity values O1 = 1.00, O2 = 200.00,
O3 = 100.03, O4 = 200.00, O5 = 36.21 were recovered using a lower bound of
1, upper bound of 200, and initial value of 100. These parameters are expected, as
the demonstration path deforms O1, O4 and O5, while avoiding the other objects.
Planning using the recovered values is shown in Fig. 7d; planning was performed
with a planning time of 5min. Following planning, all three paths were executed in
our test environment by an industrial robot, with object deformations tracked by our
tracking camera and reported in Table2. As before, we do not expect the planned
path to exactly match the demonstration; in particular due to the narrow low-cost
passages in the environment, it is unsurprising that the planned path has significantly
higher cost than the expert demonstration. However, the planned path does avoid O3,
instead preferring the passage between O1 and O2, which matches the preferences
demonstrated by the expert.

6 Conclusion

We have developed a framework for recovering sensitivities of deformable objects so
that our motion planners imitate the behavior of expert users in deformable environ-
ments. By formulating the problem of motion planning in deformable environments
in terms of generating optimal paths that minimize deformation, we can recover
object sensitivity parameters from demonstrated optimal paths using IOC. We also
propose an active learning algorithm to generate demonstration tasks. Our frame-
work has two advantages over existing similar techniques. First, by using sampling-
based techniques for IOC that avoid the need to solve the forward problem and
sampling-based asymptotically-optimal planners, our framework is more applicable
to higher-dimensional problems than existing approaches. Second, our method for
automatically generating demonstration tasks for users to perform reduces the num-
ber of demonstration tasks needed to capture the desired behavior. We tested our



Reproducing Expert-Like Motion … 235

framework in simulated and physical test environments, and showed that it recovers
object sensitivities suitable for planning paths that imitate the behavior of expert
demonstrations. We also showed that these preferences can generalize to new tasks.
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Computer-Aided Compositional Design
and Verification for Modular Robots

Tarik Tosun, Gangyuan Jing, Hadas Kress-Gazit and Mark Yim

1 Introduction

Modular reconfigurable robot systems have been studied extensively for several
decades. These systems distinguish themselves from conventional robotic systems
in their ability to transform into different shapes to address a wide variety of tasks.
They promise to be versatile, robust, and low cost [27]. Dozens of groups have built
different kinds of reconfigurable robots [6, 11], and introduced approaches for pro-
gramming them [18, 21, 30]. Over 800 papers, a book [9], and a survey [28] have
been written on the subject.

This versatility places an additional burden on the user, because solving problems
withmodular robots involves not onlywriting programs, but also determining the best
physical form for the task at hand. If this complexity is not appropriately managed,
it will present a significant barrier to using modular robots to address practical tasks
[26]. If the user is free to create any new design to solve a new task, but must program
the design from scratch every time, creating new designs will be a huge amount of
effort, and the advantage of versatile modular hardware will be defeated.
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Fig. 1 The Centaur is a mobile manipulator made of 29 modules. The framework we present
provides tools that help users quickly create, program, and verify complex designs like the Centaur
by composing existing designs and behaviors from a library

Software modularity is a well-established practice for developing large maintain-
able systems and avoiding duplication of effort. In robotics, software behaviors are
inextricably linked to the hardware they control, resulting in challenges to making
modularity effective. Significant progress has been made on these fronts in tradi-
tional robotics, most notably ROS [17] which provides inter-process communication
and standard libraries for common robot tasks, as well as verification tools [8]. In
modular robotics, the challenge is different. Modular robot systems are not usually
optimized for specific tasks, so in order to use them most effectively, we must take
advantage of their flexibility. To do so, a user must be able to generate and verify
configurations and behaviors as quickly as possible.

Toward that end, we present a design framework that facilitates the rapid creation
of new configurations and behaviors through composition, and tools to verify them
while they are being created. New configurations are created by combining existing
sub-configurations, for example combining a four-legged walking robot with a two-
fingered gripper to form a mobile manipulator, like the “Centaur” configuration
shown in Fig. 1. Behaviors are associated with each configuration, so that when sub-
configurations are composed, their associated behaviors are immediately available
for use. The Centaur in Fig. 1, for example, can immediately execute the walking
behavior of its component four-legged base. We introduce a new motion description
language (Series-Parallel Action Graphs, Sect. 4.2) that facilitates the rapid creation
of complex behaviors by composition of simpler behaviors (for example, composing
“Grasp” and “Walk” behaviors to make the Centaur pick up and carry an object).
We provide tools that automatically verify configurations and behaviors during the
design process, identifying conflicting commands, self-collision, loss of gravitational
stability, and forces exceeding the limits of safety for actuators and connectors. This
allows users to identify problems early and iterate quickly on complex new designs.
In addition to verification, users can evaluate their configurations and behaviors in a
physics-based simulator. The software we have developed is open-source, and will
be made freely available online at: http://modlabupenn.org/compositional-design/.

The remainder of this paper provides a description of the structure and algorithmic
components of our framework. In Sect. 2,we discuss relevant backgroundmaterial. In

http://modlabupenn.org/compositional-design/
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Sect. 3we introduce terminology and concepts used elsewhere in the paper. In Sect. 4,
we describe the algorithmic basis for the three major components of our framework
- design composition, behavior composition, and verification. In Sect. 5, we dis-
cuss the open-source software tools used to implement our framework. In Sect. 6,
we provide examples highlighting important aspects of the framework, including a
demonstration of the user’s workflow.

2 Related Work

In some respects, our work parallels the efforts of Mehta [14] and Bezzo [1], who
aim to create and program printable robots from novice users’ design specifications.
Users create new designs by composing existing elements from a design library,
and appropriate circuitry and control software are automatically generated as phys-
ical designs are assembled. The framework we present is intended specifically for
modular robots, and consequently the workflow and design considerations are fun-
damentally different from that presented by Mehta and Bezzo. In traditional robot
design (or printable robot design), hardware and software are somewhat decoupled -
hardware is designed and built once, and then programmed many times. In the case
of a modular robot system, the system can be reconfigured to meet new tasks, so
hardware configuration and behavior programming go hand in hand. We intend our
system to be fast enough that the user could conceivably develop and program a new
configuration for every new task - configurations are built once, and programmed
once. Where Mehta et al. provide many facilities to generate and verify low-level
behaviors (e.g. motor drivers appropriate for motors), we do so for high-level behav-
iors.

A significant amount of work has been done in developing behaviors and software
for modular robots. Genetic algorithms have been applied for the automated gener-
ation of designs and behaviors [7]. Other work has focused on distributed control
[24], hormone-based control [18], and central pattern generators [20].

Efforts have also been made to generate behaviors by automatically identifying
the “role” a module should play based on its place in a connected structure [21].
Functionality is propagated downward: based on a high-level goal (like “walk”) and
a connected structure of modules, functional sub-structures (like legs and a spine)
are automatically identified, and modules are directed to execute appropriate roles
in a distributed fashion. In our work, modular structures are similarly associated
with appropriate behaviors. Rather than identifying roles in a top-down fashion, we
build designs with the desired functionality from the bottom up. The user creates
new designs by composing sub-components and associated behaviors from a library,
building a new structure that can definitely execute the desired behavior.

While significant progress has been made in the automated generation of modular
robot behaviors, automated systems are not yet capable of making modular robots
truly useful in practice [28]. The need for new programming techniques to manage
the complexity of modular robot systems has been acknowledged in the literature
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[26]. Historically, gait tables have been a commonly used format in which open-
loop kinematic behaviors can be easily encoded [25]. Phased automata have also
been presented as a way to easily create scalable gaits for large numbers of modular
robots [30]. In this paper, we introduce a novel motion description language that
enables users to quickly create behaviors for modular robots.

A number of robot simulators have been developed, including simulators specif-
ically for modular robots [3]. For our work, we opted to use Gazebo [10] because
of its growing popularity in the robotics community. While our software currently
only supports the SMORES robot [5], other modular robot designs can easily be
incorporated. Future work includes incorporating support for the CKBot robot [4].

Our framework assists users in verifying design validity by identifying conflict-
ing commands, self-collision, loss of gravitational stability, and forces exceeding the
limits of safety for actuators and connectors. In existing literature, some of these con-
ditions have been checked in the context of modular robot reconfiguration planning
[2] and motion planning [29]. To our knowledge, there is no modular robot design
tool that verifies these conditions to provide assistance to a human designer.

3 Definitions

In this section, we present concepts and terms which will be used later in the paper.

Definition 1 (Module) A module is a small robot that can move, respond to com-
mands, and attach to other modules. Formally, we define a module as M =
(W DM , X, A, K ). The rigid body displacement, W DM ∈ SE(3) gives the posi-
tion and orientation of the module body frame in the world frame W . The state of
the module, X = [x1, x2, . . . , xd ], is a d-dimensional vector representing the d joint
angles of the module. A = {a1, a2, . . . , ak} is the set of attachment points where the
module can connect to other modules. The module’s forward kinematics function,
K : (X, ai ) → SE(3) returns M Dai (the displacement of attachment point ai in the
module frame) as a function of X . Figure2 shows a schematic representation of a
module with four attachment points.
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(2) (3)
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90

(4)

Fig. 2 From left: a A photo of a SMORES module with four attachment points (left, right, front,
and back), b its graphical representation, c a photo of a configuration with three modules, and d its
graphical representation
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In this paper, we demonstrate our framework using a homogeneous modular robot
system (all modules are identical). The framework could be extended to heteroge-
neous systems by including more information in the definition of a module - for
example, if the system used multiple kinds of connectors, labels on the attachment
points could be included.

Definition 2 (Configuration) A configuration is a contiguous set of connected mod-
ules which we treat as a single robot. The identity of a configuration is determined by
its connective structure; configurations can be represented by graphs with nodes rep-
resenting modules and edges representing connections between modules. Individual
modules are considered interchangeable (as long as they are of the same type).

In this paper, we present an object-oriented design framework for modular robot
systems, and treat configurations as the fundamental objects. Rather than defining
configurations only by the topology of their component modules, we define them
recursively, as being composed of connected sub-configurations. A single module is
considered the smallest configuration.

Formally, we define a configuration as C = (C,γ , M, E, δ, X, B). Here, C =
{C1,C2, . . . ,Cq} is a set of sub-configurations. γ : C → 2M is a function map-
ping a configuration Ci ∈ C to its set of modules, M = ⋃

C∈C γ (C ). E is a set
of connections between modules. Elements of E are pairs of attachment points,
(Mi .ai ,M j .a j ) ∈ E,whereMi ,M j ∈ M,Mi �= M j , andai ∈ Mi .A,a j ∈ M j .A.
The orientation of one attachment point relative to another is represented by the label-
ing function δ : E → SO(3), returningMi .ai RM j .a j . The state of the configuration is
X = ⋃

Mi∈M Mi .X . Finally, associated with each configuration is a set of behaviors
B (see Definition3).

Figure2 shows a photo of a configuration composed of three modules, each with
four attachment points, and its graphical representation. Blue zigzag lines represent
connections betweenmodules, and the label of each connection shows the angle offset
of that connection. We can compute forward kinematics for the entire configuration
by composing displacements module-to-module. Let any module M f ∈ M have
fixed displacement W DM f in the world frame. Let Mi : (Mi .ai , M f .a f ) ∈ E be
connected toM f . We can find W DMi by composing displacements as follows:

W DMi =[W DM f ][M f Da f ][a f Dai ][Mi Dai ]T

=[W DM f ][K f (X f , a f )]
[
δ(e) 0
0 1

]

[Ki (Xi , ai )]T

where e = (Mi .ai , M f .a f ). To find the world-frame displacements of all other
modules,wemay traverse the connections of the configuration, repeatedly composing
displacements in the manner above.

Definition 3 (Behavior) A behavior B : (t, X) → Xset is a programmed sequence
of movements defined over the joints of a specific configuration, and intended to
produce a desired effect - a gait for walking is one example. Behaviors determine
the controller setpoints Xset for a configuration as a function of state X and time t .
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In this paper, we represent behaviors as series-parallel action graphs, described in
detail in Sect. 4.2.

Definition 4 (Controller) A controller is a position or velocity servo for one DoF
of a modular robot. A controller takes as input a desired position or angular velocity,
and drives the error between the desired and actual state of the DoF it controls to
zero over time.

4 Approach and Algorithm

The threemajor components of our framework are configuration composition, behav-
ior composition, and verification of configurations and behaviors. Together, these
three components provide a streamlined workflow to quickly create functional robots
by leveraging an existing library of designs and behaviors. Combining existing
designs and behaviors into new ones allows users to create large, complicated, func-
tional designs.

4.1 Configuration Composition

Before discussing configuration composition, we will first define a set of connec-
tions EC between configurations in a given set C as (Ci .Mi .ai ,C j .M j .a j ) ∈ EC ,
whereCi ,C j ∈ C ,Mi ∈ γ (Ci ),M j ∈ γ (C j ), andai ∈ Mi .A,a j ∈ M j .A.We form
a graph with configurations in C as nodes and connections in EC as edges.

Given a set of configurations C and a set EC of connections between them, con-
figuration composition combines all configurations inC to a single configuration C ∗
that includes all modules and connections from C and EC . The composed configu-
ration is C ∗ = (C∗, γ, M, E, δ, X, B), where C∗, M , E , and B are the unions of the
corresponding sets of the sub-configurations in C .

4.2 Behavior Composition: Series-Parallel Action Graphs

The modular robotics community has developed a number of methods to create
behaviors, including gait tables [25], phased automata [30], hormone-based control
[18], and role-based control [21]. Phased automata, hormone, and role-based control
are typically used to specify a single, cyclic behavior (such as a gait for locomotion)
in a distributed fashion. These methods have good scaling and robustness properties,
but are not well-suited to specifying the non-cyclic, globally coordinated behaviors
required for many tasks (like picking up and moving an object with an arm).
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The simplicity and clarity of gait tables makes them appealing for our application.
However, gait tables are often difficult to compose or re-use, and also hard to scale
to very complicated designs. The motion description language we present allows
low-level behaviors to be combined in series and parallel to create new higher-
level behaviors, encapsulating complexity and facilitating code re-use. The resulting
programs are expressive, and have a nested structure that is easy to understand and
debug.

The atoms of the language are called actions. Similar to a single entry of a gait
table, an action specifies a controller setpoint for a single DoF of a module. Unlike
a gait table entry, actions do not have explicit timestamps. Rather, each action has
an associated interrupt condition, which is a boolean function of the (sensed) state
of the robot. Similar to a state transition in a finite state machine (FSM), when the
interrupt condition is met the action is considered complete, and execution moves on
to the next action. Interrupts allow the programmer to precisely specify behaviors in
a natural way: rather than specifying a timed sequence of motions, the programmer
specifies an ordered sequence of actions and has some assurance that an action will
not begin until the robot has actually achieved the goal state of the previous action.
Actions may optionally include a timeout, which causes the action to be considered
complete automatically once time runs out.

An important distinction between actions in our language and states in a traditional
FSM is that multiple actions may execute in parallel. Actions are combined through
parallel and series composition to create behaviors. When two actions are composed
in series, the second begins when the first ends. When composed in parallel they
begin simultaneously, and the following actions do not begin until both complete. A
behavior created using these operations is a directed acyclic graph of actions with
series-parallel structure [23]; Fig. 3 provides a visual example.

As an example, consider the car design shown in Fig. 4. To create a low-level
“drive-forward” behavior, we simply command all of its wheels to spin in par-
allel. The car steers by swiveling its central steering column, so a “turn right”
behavior can be similarly achieved by commanding parallel actions for the steer-
ing column joints. With these low-level behaviors established, we can command
trajectories through series composition. For example, if we name our car configura-
tion c: c.square = series (c.drive, c.turn, c.drive, c.turn,
c.drive, c.turn, c.drive, c.turn).

Series(B1, B2) =

Start

B1

B2

End

Parallel(B1, B2) =

Start

B1 B2

End

Series(Parallel(B1, B2), B3) =

Start

B1 B2

B3

End

Fig. 3 Series and parallel composition
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Fig. 4 Car design (left) and backhoe design (right)

This paradigm allows low-level behaviors to be coded quickly and easily. How-
ever, the real value comes from its ability to combine behaviors in layers and
quickly generate behaviors for complicated designs. This works particularly well
when designs are made by composing smaller designs. For example, we can
develop “drive” and “turn” behaviors for the 18-module backhoe shown in Fig. 4
(name bh) by composing behaviors of its component car designs (named c1 and
c2): bh.drive = parallel (c1.drive, c2.drive), and bh.turn =
parallel (c1.turn, c2.turn). Each of these one-line statements com-
mands the movement of 28 degrees of freedom.

We can extend this further to generate high-level behaviors for the backhoe.
Suppose that the arm has a laser rangefinder attached to the end, and that we’ve
already created a “scan” behavior that sweeps or rotates the sensor. We might
create a “patrol” behavior that scans continuously while driving in a square:
bh.patrol = parallel (bh.scan, bh.square). Or, if we only want
the robot to scan the corners of a room, we can precisely specify this using
lower-level behaviors:bh.cornerScan =series(bh.drive, bh.scan,
bh.turn, bh.drive, bh.scan, bh.turn, . . .).

Building behaviors in this layered fashionmakes it easy to re-use code and quickly
generate complicated behaviors. Of course, there is no guarantee that two composed
behaviors will be compatible; it is possible to mistakenly create behaviors that are
impossible or dangerous to execute. For this reason, we provide verification tools that
automatically identify problems - for example, if two behaviors composed in parallel
commanded the sameDoF simultaneously (a problemwe call behavior conflict), this
would be automatically identified. Our verification tools are explained in detail in
Sect. 4.3.

Our emphasis on abstraction begs the question:whynot use a amore fully-featured
plan execution model such as behavior trees [13], parallel-hierarchical finite state
machines [19] or even a traditional object-oriented programming language (like Java
or C++)? Our decision was driven by the tradeoff between complexity and ease-of-
use: given our desire for simplicity and speed of programming, we chose a minimal
paradigm with only two composition operations. The language is quite expressive:
we have used it to develop complex behaviors for large designs (see Sect. 6). The
language is also limited: it does not yet include conditional statements, iteration, or
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access to environmental sensor information (other than joint angles). In the future,
we hope to include these capabilities without sacrificing ease-of-use.

4.3 Verification of Configurations and Behaviors

Verification of Configurations: In Sect. 4.1, we introduced the definition of config-
uration composition. During the design process, a user might attempt to compose
configurations in a way that is unstable or physically impossible. By incorporating
existing algorithms into the design process, we provide tools to automatically verify
designs during construction, saving time that would otherwise be spent simulating
or testing invalid designs.

Given a configuration C and state X0, we consider C to be valid in state X0 if
it is gravitationally stable and free from self collision between modules. A robot
is gravitationally stable when it is balanced, and gravity does not create any net
moment on it. If this condition is not met, the robot could tip over and suffer damage.
A self-collision occurs when two different parts of the configuration are commanded
to occupy the same location in space. Self-collisions can also cause damage, and are
almost always unwanted.

To determine gravitational instability and self-collision, we assume that the geo-
metric, kinematic, and mass information for each module are available. To check
for self-collision, the positions and orientation of all modules are obtained through
forward kinematics as in Definition2. Our tool checks self-collision by approximat-
ing modules as spheres, and checking the distance (radius) between all pairs. Due to
this approximation, false-positive collisions might be detected. When this happens,
a user can easily spot the faulty detection in the final configuration and choose to
ignore such warning. More sophisticated techniques are available which efficiently
produce exact results [15], at the cost of higher complexity. To offer instant feed-
back to the user when designing the configurations, we check gravitational stability
by computing the location of the center of mass of the configuration based on the
known kinematics and mass properties of the modules. We find the set of modules
that have minimal position in the z direction and consider them to be in contact with
the ground plane, treating their centroids as an approximate set of ground contact
points. If the projection of the configuration center of mass onto the ground plane
lies within the convex hull of the ground contact points, gravity exerts no moment
and the configuration is stable.

Verification of Behaviors: In Sect. 4.2, we introduced a novel motion description
language for modular robots. Like configurations, behaviors are automatically ver-
ified as the user composes them. In addition to being free from self-collision and
gravitationally stable during execution, a valid behavior also must not exceed the
actuator or connector force limits of the modules, and must be free from behavior
conflict.
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To verify a behavior with time duration TB , we discretize execution with a preset
sampling time tB . At each time step, we first detect behavior conflict by checking
if different commands are given to the same joint of a module simultaneously. If
there is no behavior conflict, we update the positions and orientations of all modules
in the configuration based on the commands. We then check for self-collision and
gravitational instability, using the methods described above. A behavior that results
in self-collision during a single time step is considered invalid. For gravitational
stability, we specify a time bound tmax > tB . A behavior is considered unstable if it
includes any period of instability longer than tmax , or if the behavior is unstable at
time TB (at the end).

To check force limits, unlike other verifications for behaviors, we use an existing
physics engine to detect unsafe conditions during simulation. By setting the maxi-
mum force that can be supported by connectors and exerted by joints, we are able to
identify unsafe behaviors if we detect, during the behavior execution, any undesired
module disconnection or a mismatch between any joints target position and actual
position.

The need for verification becomesmore important as design complexity increases.
Consider a four-legged Walkbot example shown in Fig. 5a. If the user sets two of
the connections with different angle offset, the composedWalkbot configuration will
have two legs pointing in the opposite direction of the other two legs, as shown in
Fig. 5a. Since the projection of the configuration’s center of mass now falls out of
the supporting base, the program will warn the user that the configuration is not
gravitationally stable. As shown in Fig. 5b, in simulation the configuration quickly
fell to the ground due to the instability as warned by the program.

Verification of behaviors also aids the user in creating valid and safe robot behav-
iors.When designing the walking behavior for theWalkbot, if the user commands the
front and rear leg at the same side of the robot to swing toward each other at the same
time, the program will warn the user that there will be collision between modules
in this behavior, as shown in Fig. 5c. The image shown in Fig. 5d demonstrates the
moment of collision during simulation.

There is a trade-off between the correctness and the efficiency of the verification.
By reducing the sampling time tb, more potential self-collisions or gravitational
instability can be detected with the cost of longer computation time. However, since
there is no real-time requirement (verification is done during the design process, not
at runtime), the computational cost of fine-resolution verification is worthwhile in
most cases.

Modules all have limits on the maximum force that is available to maintain con-
nections with other modules and to drive each joint to desired positions. Thus, it is
crucial to notify the user if there is no sufficient force from the module’s hardware to
execute a behavior while maintaining all module connections. As shown in Fig. 5e,
the program detected a disconnection when the user tried to lift a long cantilever
arm. Figure5f demonstrates the disconnection in simulation.
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(1) (2)

(3) (4)

(5) (6)

Fig. 5 From top and left: a The design tool warns the composed configuration is not gravitationally
stable; b The robot fell to ground plane due to instability, in simulation; c The design tool indicates
there is collision during the behavior execution; d Two feet of the robot collided during simulation;
e The design tool indicates there is undesired disconnection; f The configuration disconnected
during simulation

5 Implementation

Our implementation currently supports only the SMORES modular robot [5], but
could easily incorporate any other modular robot for which kinematic, geometric,
and mass information is available. Each SMORES modules has four DoF - three
continuously rotating faces called turntables and one central hinge with a 180° range
of motion (Fig. 2a). The DoF marked 1, 2, and 4 have rotational axes that are parallel
and coincident. Each SMORES module can drive around as a two-wheel differential
drive robot. SMORES modules may connect to one another via magnets on each
of their four faces, and are capable of self-reconfiguration. Formally, we denote the
state of a SMORES module as X = {θL , θR, θF , θB} and the set of attachment points
as A = {L , R, T, B}.

A design interface was implemented to aid users in building complex configura-
tions and behaviors from a set of basic configurations and associated behaviors, and
then verifying their correct execution. We separated the design tool into two main
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Fig. 6 GUIs for configuration builder (left) and behavior builder (right)

parts: a configuration builder and a behavior builder. Given a set of basic configura-
tions (which could be just single modules), the configuration builder allows users to
combine basic configurations by choosing connection nodes on each configuration,
as demonstrated in Fig. 6. In addition, the configuration builder warns users when the
composed configuration is not stable or contains self-collisions. It does so without
the computation complexity of a physical simulator, e.g. Gazebo [10].

Given a configuration, the behavior builder aids users in designing behaviors
by composing existing behaviors in series and parallel. Figure6 illustrates a new
behavior composed by putting four basic behaviors in parallel. Similar to the con-
figuration builder, the behavior builder warns users if there are self-collisions or
behavior conflicts during the execution of composed behaviors, without the need of
a physics-based simulator. To check force limits for connections and actuators, we
create a model of the module in the PhysX [16] physics engine with Unity3D [22],
and specify joint and connection force limits.

6 Examples and User Perspective

Our eventual intention is to develop a large library of configurations and associated
behaviors which are available to all users of our framework, analogous to the stan-
dard libraries of major programming languages. The compositional nature of our
framework will allow users to rely heavily on the library when approaching new
tasks, allowing them to create sophisticated robots very quickly.

As afirst step toward a standard library,wepresent a small library of configurations
in Fig. 7. Configurations in the library are organized by order, defined recursively as
follows: a singlemodule is an order-zero configuration, and the order of all other con-
figurations is one greater than the largest order of the sub-configurations from which
it is composed. Each configuration has an associated set of behaviors, which the user
can compose to accomplish tasks. New behaviors for a higher-order configuration
can be created by composing the behaviors of its component sub-configurations.

For the library to be most effective, the set of configurations and behaviors avail-
able at each level (and especially at the lowest levels) should provide a rich set of
functionalities without presenting the user with an overwhelming number of options.
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(0) Module (1) Chain3 (2) Car

(2) Grasper (2) PUMA (3) Walkbot

(3) Backhoe
(4) Centaur

Fig. 7 Library of designs, listed by order. Order 0: Module. Order 1: Chain3 = 3x Module.
Order 2: Car = Chain3 + 4x Module, Grasper = 3x Chain3, PUMA = Chain3 + Module. Order
3: Walkbot = 2x Grasper, Backhoe = 2x Car + PUMA. Order 4: Centaur = Walkbot + Grasper
+ 2x Module

Build a config-
uration from
a set of basic
configurations

Start The composed configuration is valid

Create a complex
behavior from
a set of basic

behaviors for this
configuration

The composed behavior is valid Test the configuration and
behavior in simulation

A library of basic
configurations

yes

noUnstable or Self-collision

yes

noUnstable or Self-collision
or Behavior-conflict
or Force limit reached

Fig. 8 The design flow

Considering the small library in Fig. 7, it is interesting to note that a diverse set of
second- and third-order configurations can be constructed from only one zero- and
one first-order configuration. Developing metrics to evaluate the quality of such a
library is an interesting opportunity for future work.

Figure8 demonstrates the design flow when a user is designing a configuration
and its behaviors. We present the start-to-end user perspective in designing a com-
plicated configuration called Centaur. Consider the order-1 “Chain3” configuration.
A second-order “Grasper” configuration, capable of grasping objects, can be formed
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(1)
(2)

Fig. 9 Building the Centaur. a Two Graspers are composed to form a Walkbot. b The Walkbot is
composed with one more Grasper and two individual modules to form the Centaur

by combining three first-order “Chain3” configurations. Combining two Graspers
allows us to form the legs and body of the third-order “Walkbot” configuration, now
using the Grasper arms as legs for walking, as demonstrated in Fig. 9a. If we attach
another Grasper to the top of the Walkbot (with two additional modules for struc-
tural support), we get the fourth-order “Centaur”, a mobile manipulator, as shown in
Fig. 9b. Connectingmultiple lower-order configurations allows us to quickly develop
complex high-order configurations like the Centaur. Given access to a library already
containing the Grasper design, for example, creating the Centaur is involves just
two composition steps. The user can then immediately compose behaviors already
associated with the lower-order configurations (like “Walk” and “Grasp”) to create
behaviors for higher-order configurations (like picking up and carrying an object).

7 Conclusions

In this paper, we presented a design framework that facilitates the rapid creation
of configurations and behaviors for modular robots. Complex configurations are
hierarchically constructed from basic subcomponents. We presented a novel motion
description language, which allows existing behaviors to be combined in series and
parallel to createmore complex behaviors. The framework verifies configurations and
behaviors, allowing early detection of design flaws, specifically behavior conflict,
self-collision, loss of gravitational stability, and forces exceeding the limits of safety
for actuators and connectors. In addition to verification, designs can be evaluated in
a physical simulator before testing on hardware.

8 Future

Future work will include expansion of the features of our framework. We hope to
expand the capabilities of our motion description language without sacrificing ease-
of-use, and add more verification tools to assist in problem identification. Another
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area of future work lies in developing a standard library of configurations and behav-
iors for the SMORES robot. We will also investigate metrics to evaluate the quality
of such a library. Perhaps most importantly, we will test and evaluate the designs
and behaviors with actual hardware modules. Currently, each behavior is associated
with exactly one configuration. In many cases, a given behavior could be executed
by several different configurations (if it were correctly mapped onto a subset of their
modules). In the future, we will apply an embedding detection algorithm (see [12])
to map behaviors into any configuration capable of executing them.

Finally, while our implementation currently supports only SMORES, other mod-
ular robots could be easily incorporated. In the future, we plan to incorporate support
for the CKbot robot [4] into our software.
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Automated Fabrication of Foldable Robots
Using Thick Materials

Cynthia Sung and Daniela Rus

1 Introduction

Designing complex machines such as robots often requires multiple iterations of
design and prototyping. In addition, fabricating a robot using traditional manufac-
turing techniques involving machining specialized parts and attaching them together
can be a long and arduous process, meaning that the design cycle itself can also take
a long time.

Recent interest in accelerating fabrication has led to awide variety of techniques in
3D printing of entire mechanisms [4, 23], molding and casting [12], and laser cutting
components for assembly [2, 3], among others. Assembly via folding [9, 14, 18]
allows entire robots to be created in several hours. Furthermore, since all fabrication
prior to folding is planar, circuitry and actuators can easily be incorporated into the
robot body [1, 16].

Using folding for assembly introduces additional constraints on the robot that
designers must take into account during the design process. As a result, composition
has emerged as a method for designing folded structures. Many foldable modules
have been designed [7, 11, 20, 22] that can be combined with each other in order to
produce complex mechanisms. For example, work in [22] proposed a continuously
foldable cylinder that could be tessellated to produce cellular structures that expand
and contract. Work in [7, 20] introduced new joint types that spanned many of the
joints used in conventional robots.

In [17], we developed a data-driven system that guides users through the design
composition process. Users can choose components from a database of foldable robot
parts and combine them with each other to produce custom robot designs. As the
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user interacts with the system, the system ensures that the robot remains fabricable
(i.e., that the fold pattern is valid and printable). Using examples from the database,
it recommends a motion sequence for the articulated joints that allows the robot
to move forward, and it suggests changes to dimensions that improve the robot’s
stability. Once the user is satisfied with the design, the system outputs a 3D mesh
that can be printed using a 3D printer and folded into the robot body.

The system in [17] uses a combination of 3D printing and folding to enable rapid
fabrication of lightweight robots. However, the resulting designs are limited in size
to what can fit in the 3D printer and are intended to have thin walls that do not
interfere with the printed fold, so they are limited in the types of tasks that they can
accomplish. In this paper, we extend the system to enable fabrication of foldable
robots that can be deployed for tasks requiring larger size and higher strength. Since
the system ensures the validity of a fold pattern and generates a 3D printable mesh
as a separate step, it is not actually specific to 3D printing. The same fold pattern can
be implemented using any method that can generate the necessary folds and joints
for the pattern and that produces a robot that can maintain its shape.

A larger robot that can carry a larger payload requires a body made of stiffer
material. At the same time, wewould like the robot to remain lightweight and quickly
fabricable. We introduce a new fabrication option that involves laser cutting thick
materials to produce larger, more rigid robot bodies than those 3D printed previously
(Ref. Fig. 1). Previous work [15, 25] has shown that it is possible to fold a plastic
sheet into a rigid body by heating up the material along the fold line. However, these
approaches are limited by how quickly the material can be heated and cooled and
can only produce objects with one-piece fold patterns. We instead cut rigid faces and
layer them on top of a flexible film. The film enables folding similarly to work in
[11, 13, 16, 20], and the added rigid faces maintain high stiffness in the robot body.
Our techniques are related to previous work in thick origami [21, 24, 26], which also
use layers to produce rigidly foldable structures. However, compared to traditional
origami fold patterns, which contain many cycles of connected faces that can help
the structure maintain its shape, the fold patterns for foldable robots and mechanisms

Fig. 1 Hexapods cut from thick material next to 3D printed hexapod (middle) fabricated in [17].
The new hexapods are almost twice as large
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are often simpler and more treelike. We therefore introduce interlocking teeth along
the edges of joined faces to prevent slip.

This paper contributes the following:

• a fabrication process for foldable robots that involves cutting and layering a rigid,
thick material for stiffness and flexible film to allow folding,

• an algorithm for automatically generating cut patterns for the layered structure
given the fold pattern for a robot design, and

• experimental verification for four rigid shapes and two hexapods of different sizes
that were fabricated using the proposed process.

This paper is structured as follows. Section2 summarizes the design process and
the information associated with a folded robot design. Section3 outlines our fabri-
cation and assembly process, and Sect. 4 describes how the fabrication plans can be
automatically generated from the design information in Sect. 2. In Sect. 5, we demon-
strate the structures that were created using the proposed method, and we conclude
in Sect. 6.

2 Parametric Cut-and-Fold Design

Our folded designs are composed as described in [17]. The system allows users to
compose and customize new ground robots while ensuring fabricability and stable
forward locomotion. Since we fabricate robots using a cut-and-fold process, the 3D
geometry of the robot is designed concurrently with the 2D fold pattern.

The 3D geometry and the fold pattern each consist of polygonal faces that are
joined along edges. There is a one-to-one correspondence between the faces of the
3D geometry and the faces of the fold pattern. We say that edges joining faces that
are adjacent in the fold pattern are themselves adjacent. Nonadjacent joining edges
are edges that join two faces in the 3D geometry but are not adjacent in the fold
pattern. Both types of joining edges are annotated with the dihedral angle between
the two faces in the 3D geometry.

The designs are parametrized so that users can first conceive the general shape
of the robot and subsequently optimize over the size and shape to achieve stable
forward locomotion. For example, the hexapod pictured in Fig. 2 has parameters
of body length, body width, body height, leg length, and leg width. Updates to the
parameters of the robot simultaneously change the 3D geometry and the fold pattern.
This approach introduces some constraints on the parameters, such as not allowing
self-intersection between faces of the fold pattern, that are checked automatically by
the system.

Finally, the system suggests a motion sequence for each articulated joint in the
design that will allow the robot to locomote forward, and it simulates the motion
of the robot to ensure that the robot maintains static stability throughout the motion
sequence. The system provides suggestions for parameter changes if the designed
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Fig. 2 Hexapod geometry and corresponding fold pattern with parameters labeled

robot is not stable. The user of the system can continue to modify the design by
changing parameters or adding and removing parts until satisfied.

3 Fabrication and Assembly

Once the design is finalized, the system automatically converts the fold pattern into
something that can be fabricated. We laser cut rigid materials and layer them with a
thin film so that they can be folded into the robot body. Electronics and software are
also generated for the motion sequences of the articulated joints.

3.1 Robot Body

Since robots folded from flexible materials are unable to carry substantial load [19],
we fabricate rigid robots by layering a thick, rigid material and a flexible film in the
shape of the fold pattern and then folding the structure into its 3D form. The process
is illustrated in Fig. 3. All steps except the final assembly step use planar fabrication.

(a) Cut rigid faces (b) Attach adhesive film (c) Cut adhesive film (d) Fold

Fig. 3 Fabrication process for the robot body. a The fold pattern is first cut from a rigid material.
b Adhesive film is attached to the surface of the rigid material and c then cut into the correct shape.
d Finally, the layered structure is folded into its final 3D form. Tabs cut from the adhesive film are
folded to secure the shape
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The faces of the fold pattern are first cut out of a rigid material using a laser
cutter. We chose to use acrylic sheet for its high surface energy and for ease of laser
cutting. To account for material thickness, the faces are shrunk and separated by
a gap, similarly to [21]. While cutting individual faces, thin strips that bridge the
gaps are kept so that the structure remains a single piece and the correct gap width
is preserved. These strips are later cut during folding. Interlocking teeth along each
pair of joining edges add structural integrity and keep faces from sliding along the
fold line.

Once the rigid material is cut, a thin, adhesive-backed polyester film is layered
on the top and bottom. The film maintains the geometry of the rigid material even
once the thin strips between faces have been cut. The film is then cut using a laser
cutter. For each fold, either the top or bottom film is cut along the toothed edges and
removed, depending on the sign of the fold angle, to allow folding. Since the two
films are separated by the thickness of the rigid material, they can be cut individually
without affecting the integrity of the other side. For nonadjacent joining edges, we
add a tab to one of the pair of edges so that the two can be secured together during
folding. Finally, the thin strips connecting the rigid faces are also cut and removed.

During assembly, the cutout is folded into its 3D form. Tabs cut from the adhesive
filmarewrapped around the corresponding folds to secure the two fold edges together.

3.2 Electronics and Software

The motion sequence associated with the robot design is translated into actuators
and a software controller. This step is currently performed manually since additional
information about the voltage and current requirements of circuit components such
as the microcontroller and sensors, as well as the control input to the actuators, are
not taken in account by the design system. We actuate our robots using servomotors.
The times and waypoints of the motion sequence are converted into a PWM (pulse
width modulation) signal that is sent to the servomotors using an Arduino Uno.

4 Cut Pattern Generation

The system automatically generates the cut patterns required for fabricating the robot
body. The cut pattern consists of two parts: (1) cuts for the thick rigid layer, and (2)
cuts for the thin adhesive layers.

4.1 Rigid Material

Three-dimensional bodies with thick walls have faces of different sizes when viewed
from one side compared to the other. This creates a challenge for laser cutting the
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Fig. 4 Side view of two faces of thickness t that come together at a fold with angle θ between them.
The midline of the material, indicated in red, shows the original length of the faces. The length �o
is the greatest amount that a face can be lengthened without breaking through the surface of the
other face. The length �i is the length that the face must be shortened to avoid intersection with the
other face. The gap width wg is the amount of space that must be placed between two faces joined
at an acute angle once they have been lengthened by �o

faces of the body since cuts are perpendicular to the faces being cut. As a result,
faces cannot always be cut to the same size as they were in the original fold pattern.

Figure4 shows the resulting geometry for two faces of thickness t that are joined
with an angle θ ∈ (−π, π ] between them. Because of the thickness of the material,
when the two faces are joined at an angle, there exists either some overlap or a gap
between the faces. The red line indicates the slice of the material that has the same
dimensions as the original fold pattern. This is equivalent to saying that the material
was folded at that slice. The location of the slice can be designed to occur at any
position within the thickness of the material, or even outside of the material. We
choose for it to be at the midline of the material for symmetry.

Faces joined at an edge must be trimmed so that no intersection occurs during
folding. We also add teeth along a joining edge so that the joined faces interlock
for greater rigidity. We draw rectangular teeth relative to the original location of the
edge of the face and refer to the distances of the outermost and innermost points from
the edge location as �o and �i respectively. The value of �o can be calculated as the
greatest amount that one of the faces can be lengthened without breaking through the
surface of the other face. The value of �i is the amount that the face must be shrunk
in order to avoid intersection with the other face, once lengthened. These two values
vary depending on the angle between the two joined faces as
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⎧
⎨
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The cut pattern for the rigid material is drawn by shrinking and shifting the faces
and adding teeth to the fold edges. The procedure is as follows:

1. Shrink Faces. For each pair of joined faces, shrink the face by �i in the direction
perpendicular to the joining edge. This results in a gap of width 2�i between the
two faces.

2. Shift Faces. Shift the faces by an amount depending on the whether the angle
between the faces is acute or obtuse. For obtuse angles (Fig. 4b), the faces must be
further separated by a distance of 2�o. For acute angles (Fig. 4a), the faces must
be separated by a distance of 2�o + wg , where

wg = 2 sin
θ

2

(
t

tan θ
2

− t

sin θ

)

(3)

is the distance across the shortened corner caused by cutting the faces so that they
do not extend past the angle formed by the outer surfaces.

3. Add Teeth. For each pair of joining edges, add alternating rectangular teeth to
the two edges. The teeth extend a width �i + �o past the edges of the shrunken
faces. The number of teeth was chosen such that each tooth was at most 10mm
long and there were at least three teeth. In addition, teeth were cut 0.3mm wider
than the gap on the opposite edge to account for the kerf of the laser cutter.
In order for the material to remain one piece until assembly, thin strips of material
that bridge the gaps between adjacent joining edges are kept. This is done by
drawing the teeth for a length 2mm shorter than the actual edge length. Figure5
shows the resulting teeth structure for both adjacent and nonadjacent joining
edges. Red lines on the teeth for adjacent edges show the pieces that are cut off
prior to assembly.

4.2 Adhesive Layers

Adhesive layers are placed on both the top and the bottom of the rigid layer and are
cut away to allow folding. We use the convention that when the angle θ between two

i
o

original
edges

(a) Adjacent joining edges (b) Nonadjacent joining edges

original
edge

... ...

i

o

Fig. 5 Teeth structure for a pair of edges that form a fold. a Red lines indicate the pieces that keep
the structure connected but are cut prior to assembly
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(a) Original fold pattern (b) Rigid layer (c) Side view of layers

(d) Top layer (e) Bottom layer (f) Folded layers

Fig. 6 Adhesive layers for an example fold pattern. a Original fold pattern. Red lines correspond
to joining edges with positive angle, and blue lines correspond to negative angle. b Cut pattern for
rigid layer. d, e Resulting cut patterns for top and bottom adhesive-backed layers. c, f Side view of
the resulting layered structure

joined faces is positive, then the top layer is cut away (Ref. Fig. 6c); when the angle
is negative, then the bottom layer is cut.

To draw the cut pattern of the top layer, we begin with the cut pattern of the
rigid material. Then, for each adjacent joining edge, the cut lines corresponding to
the teeth are removed if θ is negative and remain unmodified otherwise. For each
nonadjacent edge, the cut lines corresponding to the teeth are similarly modified
only if θ is negative. In that case, the cut lines corresponding to the teeth are kept
unmodified for one edge, and the other edge is replaced by a rectangular tab. The
process is repeated in the same fashion for the bottom layer, except that cut lines
corresponding to joining edges with negative angle θ are left unmodified instead.
Fig. 6 shows the resulting top and bottom layers for an example fold pattern.

5 Results

We have used the fabrication process described in Sect. 3 to create various folded
structures. Figure7 shows four of the shapes we made. In order to test the system’s
ability to generate cut patterns for different thicknesses ofmaterial,weused adifferent
thickness of acrylic for each of the shapes. The thicknesses are indicated in the figure.
We layered all the structures with a 0.05mm thick polyester film backed with acrylic
adhesive.

The green stand (Fig. 7a) is the simplest structure with both positive and negative
degree folds. Because of the adhesive on the polyester film and the fit of the teeth,
the angles of the structure remain fixed after folding. The red table structure (Fig. 7b)
is the folded strip shown in Fig. 6. It also contains both positive and negative fold
angles, as well as a nonadjacent joining edge. The blue half cuboctahedron (Fig. 7c)
and black pyramid (Fig. 7d) each havemore than two faces joined at a vertex. Because
of the teeth design, both of these structures were able to fold without any interference
between any of the faces.
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(a) Stand (b) Table (c) Half cuboctahedron (d) Tetrahedron

Fig. 7 3D structures cut and folded from acrylic sheets of varying thicknesses (thickness indicated
on the image). The structures in b and d are physical prototypes of the patterns shown in Figs. 6
and 3 respectively

(a) Fold pattern (b) Assembled robot

Fig. 8 Wide hexapod cut out of 3.18mm thick acrylic sheet using our fabrication process

We also created two hexapods of different dimensions. The pattern for the hexapod
consists of a single rectangular body and six rectangular beam legs, shown in Fig. 2.
Although the legs are drawn adjacent to the body, they are not connected via any
joining edges. The pattern was originally designed for 3D printing [17], but the
same fold pattern can be used to create a larger, stronger robot using rigid materials.
Again, to test the system’s ability to generate cut patterns for different thicknesses of
material, we cut a short and wide hexapod (Fig. 8) out of 3.18mm thick acrylic sheet
and a tall and long hexapod out of 4.50mm thick acrylic sheet (Fig. 9). Both robots
were layered with a 0.05mm thick polyester film backed with acrylic adhesive. The
cut patterns for the hexapods both folded into the correct shapes.

The robots were each actuated using six servomotors with stall torques of
2.7kg-cm and controlled using an Arduino Uno. They were powered by two 3.7V,
2600mAH lithium ion batteries regulated to 6V to meet the power requirements of
the servomotors. The servomotors were modified to allow continuous rotation while
still providing position feedback from the potentiometer connected to the output
shaft. During assembly, the servomotors were screwed into mounting holes designed
into the robot body. Similarly, servo horns were screwed to each of the six legs and
then snapped onto the shafts of the servomotors.
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(a) Fold pattern (b) Assembled robot

Fig. 9 Long hexapod cut out of 4.50mm thick acrylic sheet using our fabrication process

0.0 s 0.83 s 1.13 s 1.29 s 

3.04 s 2.58 s 2.38 s 

Fig. 10 One cycle in the walking gait of the wide hexapod. Three legs make one full rotation to
shift the robot forward while the other three keep the robot stable. Next the other three legs rotate

Both hexapods were programmed to follow the same tripod gait as suggested by
the design system. For each of the servomotors, the Arduino Uno received analog
input from the potentiometer and outputted a PWM control. The resulting walking
gait is shown in Fig. 10. All the legs were initialized to an angle of 20◦ (0.35 rad)
offset from vertical. The legs were then split into two sets of three, with each set
containing the front and back legs of one side of the robot and the middle leg of
the other. One set of legs rotated one complete revolution in 1.5 s while the other
set remained static to maintain the stability of the robot. The sets of legs alternated
between rotating and remaining static.

Table1 shows the amount of time required to fully fabricate and assemble each
robot. Fabrication of the layered structure took approximately 1h for each robot,
and full assembly, including attaching electronics, took an additional 1.5h. The long
hexapod, which is the larger and heavier of the two, took more time to fabricate and
assemble than the wide hexapod. Since it is longer, the entire fold pattern did not fit
on one sheet of acrylic, so the robot was fabricated in two parts that were attached
together using the adhesive-backed film. This process doubled the amount of time
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Table 1 Timing per step of fabrication

Timing Wide hexapod Long hexapod

Cut rigid layer 10min 20min

Attach adhesive layer 25min 50min

Cut adhesive layer 5min 5min

Assemble 45min 60min

Attach electronics 25min 25min

Total 1h 50min 2h 40min

3D print body 10h 56min 14h 26min

3D print faces 9h 28min 12h 25min

required to attach the adhesive layer to the rigid layer for the long hexapod compared
to the wide hexapod.

Rubber feet were placed on each of the legs to prevent slip during the walking
gait. The feet were fabricated by 3D printing amold, pouring A15 durometer silicone
rubber into the mold, and then allowing the rubber to cure. The entire process took
about 5h.

Compared to 3D printing the hexapods, laser cutting and folding the robots
resulted in substantial time and materials savings. In particular, 3D printing the
long hexapod takes almost 14.5h on a Fortus 400mc printer (Table1), and 1/4 of
the printed material is support for the hollow body. Even separating the body into
individual faces to minimize support material still requires 12.5h of printing, not to
mention the additional time for assembly. Similarly, printing the wide hexapod takes
11h, with 1/3 of the material being support material, or 9.5h for printing just the
faces.

Both robots were able to walk forward stably, although lack of synchrony between
the servomotors occasionally caused the robots to shuffle and turn during steps.
During experiments, the robots turned at most 10◦ (0.17 rad) per step in the direction
of the side whose middle leg was moving. Table2 describes the size and performance

Table 2 Robot specifications

Wide hexapod Long hexapod

Thickness 3.18mm 4.50mm

Length 192mm 288mm

Width 260mm 190mm

Height 60mm 95mm

Weight 0.672kg 1.058kg

Speed 27.7mm/s 35.9mm/s

Payload capacity 2.50kg 0.76kg
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of each robot. Speed was computed by measuring the amount of time required for
the robot to walk forward 3m and averaging the result over 3 trials. Payload capacity
was measured by incrementally adding weights on top of the robot until its leg sets
were no longer able to complete a full rotation (i.e., the robot could no longer walk
forward).

As might be expected, the long hexapod could move faster than the wide hexapod
butwas able to carry less payload.While thewidehexapodwas able to carrymore than
3.5 times its own body weight, the long hexapod, which uses the same servomotors
but is taller and heavier, was able to carry only about 0.72 times its own weight. In
terms of speed, both hexapods used the same motion sequence, but the long hexapod
has longer legs and so moved about 1.30 times as fast as the wide hexapod.

6 Discussion

In this paper, we describe and demonstrate a method of rapid fabrication that can
be used to create foldable robots. Previous work in designing folded robots often
assumes that the material is infinitely thin, resulting in physical implementations
that can not sustain much load [19]. We use a combination of a thick, rigid material
and an adhesive-backed film to create a layered structure that enables folding while
maintaining rigidity in the faces of the robot body. We incorporate thickness consid-
erations into the design process, and we show how to automatically generate the cut
lines for the layers forming the foldable robot. We have verified our process by fabri-
cating multiple structures with different dimensions and using different thicknesses
of material. Our results indicate that folding may be a viable method for quickly
prototyping robots that must also complete everyday tasks.

One limitation of our approach is that the folding occurs off axis, meaning that
there is a minimum angle between faces that can be achieved. In particular, angle
values close to zero will result in a large amount of shrinking for the corresponding
faces andmay be infeasible using the proposed approach. However, several instances
of previous work [5, 10] have considered thick materials in the context of flat folding
(i.e., angle of 0 between faces). We hypothesize that many of these methods could
be combined with our teeth structure to allow sharp angles in a folded structure. We
also plan to perform more experiments to assess the structural integrity of the folded
robot structures using our fabrication method as compared to previous thick folding
work and 3D printing.

Secondly, as mentioned in [21], shifting faces to make room for joining edges
could cause self-intersection in the resulting cut pattern or yield inconsistencies if
the fold pattern contains cycles. Since most of our robot designs are simple trees, we
have not yet encountered these kinds of issues. However, we foresee having to solve
this problem as the robots become more complex.

One of the advantages of 3D printing for smaller robots [17] was that complex 3D
joints could be incorporated into the design without adding additional complexity to
the fabrication process. There exists a large collection of patterns that can be used
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to create joints from flat and rigid sheets [6, 8]. In the future, we would like to
investigate how to incorporate such joints into our fabrication process.

Finally, all of the electronics and software for the robots were createdmanually. In
particular, stronger servomotors were used compared to the smaller robots produced
for [17]. This resulted in higher voltage and current requirements, which necessitated
more complex circuitry. Work such as that in [13] indicates that the electronics, soft-
ware, and mechanical body of a robot can be simultaneously designed automatically.
Future work includes incorporating information about electronics and software into
our design system and fabrication process to enable simple design, customization,
and fabrication of a robot in its entirety.
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Design, Sensing, and Planning:
Fundamentally Coupled Problems
for Continuum Robots

Arthur W. Mahoney, Trevor L. Bruns,
Ron Alterovitz and Robert J. Webster III

1 Introduction

Continuum robot systems have been created for use in a large variety of practi-
cal applications, including underwater manipulation, nuclear reactor repair, sand-
ing, spray painting, and medical applications [9, 47]. A variety of continuum-robot
devices exist, include multi-backbone devices [48], tendons routed around a back-
bone [30], concentrically-nested elastic tubes [12, 31], pneumatic actuators [18],
shape-memory-based designs [1, 33], and combinations thereof. Some of these are
illustrated in Fig. 1a–d. Each type of continuum robot presents a variety of phys-
ical design parameters, including diameter, segment number and length, material
properties, and actuation systems, among others [47].

The typical process for designing and using a continuum robot in a newapplication
typically involves three discrete steps that are addressed serially. First, one designs
the physical robot to be suitable for the task, i.e. able to reach the desired workspace,
carry the desired payload, etc. Attention is then turned toward sensing. Sensors are
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selected, which may be integrated into the robot, or located off-board. Lastly, given
the physical robot, the motion of the robot is planned to accomplish the desired task.
In what follows, we briefly discuss the state-of-the-art in these areas and describe
the coupling between design, sensing, and planning.

Research on physical robot design has focused largely on developing general
purposemanipulators of various types [16, 47]. Intense design effort has been focused
on a wide variety of medical applications, which has resulted in many new physical
continuum robot structures [9], including concentric precurved tubes [13], whichwill
be used as an example later in this paper. Computational design algorithms are also
increasingly being used in the design of concentric-tube robots [4, 8, 40], and similar
techniques could be applicable to task-specific design of other types of continuum
robot.

Selecting and integrating sensors in continuum robots can be challenging. Often,
most of the continuum robot’s volume is reserved for actuation, and little room is left
for sensing – particularly in the small diameter designs used in medical applications.
Many sensing methods have been developed that measure the pose at a discrete
points on the continuum robot’s backbone such as electromagnetic trackers [17],
mechanical strain of the backbone such as the fiber Bragg gratings [29, 32], and the
internalmoments of a continuum robot’s backbone [49]. To keep the continuum-robot
diameter small, these sensors are integrated into the robot’s mechanical structure
when possible. Vision-based methods are also possible and X-ray/CT-imaging [21],
ultrasound approaches [19, 23], and optical cameras [5, 15] have been applied.
Some of the above sensing systems, which can be used to detect the shape/states of
a continuum robot, are illustrated in Fig. 1f–i.
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Fig. 1 Continuum robots include devices such as a tendon-actuated endoscopes, b concentric-tube
robots, c pushrod-actuated devices, e.g., [48], d pneumatic robots, e.g., [18], e and some compliant
graspers may also fall under this classification, such as that of [24]. Some approaches to sensing the
state of continuum robots include a magnetic tracking such as the NDI Aurora system, g–h X-ray
or CT imaging such as [19], and i three-dimensional (3D) ultrasound, e.g., [37]
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Planning the motion of a continuum robot can enable the robot to automatically
reach a specified target while avoiding obstacles in the environment. Motion plan-
ning for continuum robots such as concentric-tube robots is challenging because,
compared to traditional multi-link manipulators, their kinematics are typically more
expensive to evaluate and their motion is subject to substantial uncertainty. Motion
planning algorithms for concentric-tube robots include fast motion planning by
assuming simplified kinematics [22, 43], noninteractivemotion planning using accu-
rate kinematic models [39], interactive-rate motion planning using accurate kine-
matic modeling via precomputation [41], and motion planners that explicitly con-
sider uncertainty in motion and sensing [36]. Motion planners can also assist in the
context of teleoperation, where a fast, real-time motion planner can automatically
move the robot’s end-effector in response to user commands in a manner that ensures
the entire curvilinear shaft avoids obstacles [42].

Recent research in continuum robotics is showing that there are advantages to
solving sensing-and-planning problems and design-and-sensing problems simulta-
neously. In the case of motion planning for continuum robots, for example, effective
obstacle avoidance requires accurate estimation of the shape of the robot, and simul-
taneously planning the motion of the robot and the placement of moveable sensors
has the potential to improve task success rates [44]. Motion planning can also help
inform the design of concentric-tube robots, e.g., by identifying stable configurations
[3] and in optimizing the design of concentric tubes [2, 40].

In this paper argue that design, sensing, and planning are fundamentally coupled
problems for continuum robots, and that the interaction between these three problems
can be understood through the application of statistical state estimation.

2 Kinematics of a Continuum Robot

We use a notation where scalars are denoted by lower-case standard font (e.g., s),
vectors are denoted by bold, lower-case fonts (e.g., x), matrices are upper-case
standard-font (e.g., M). For compactness, we use subscript notation to denote func-
tion arguments. For example, if a vector is a function of s, then it is written as xs .

The kinematics of a continuum robot describe both the continuous spatial transi-
tion of the states of the robot’s backbone, parameterized by the distance s along the
robot’s backbone, as well as the continuous temporal transition of the states as an
input varies in time. For this present work, we only consider the spatial kinematics
that govern how the states xs , parameterized by arc-length distance s, vary along the
robot’s backbone. We assume that the arc-length distance s falls in the range [0, �],
where s = 0 denotes the proximal end of the continuum robot (i.e., the base) and
s = � denotes the distal end (i.e., the tip). The state of a continuum robot can include,
for example, internal torsional moments and pose of the backbone in SE(3), all of
which vary continuously along the length of the backbone with the parameter s. The
backbone may be a physical structure as is the case for concentric-tube robots, and
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some tendon actuated continuum robots, or the backbone could be a theoretical curve
used as a reference location with respect to the robot’s body.

If the continuum robot is in equilibrium (i.e., quasi static), then the spatial kine-
matics of a continuum robot can be described by the two-point boundary-value
differential equation in arc-length s along the the robot’s body:

x′
s = f (xs, s) , (1)

where ′ is an arc-length differentive, and with constraints and inputs of the form

b0(x0) = 0 b�(x�) = 0 u(x0) = 0 (2)

where b0 and b� define the stationary proximal and distal boundary conditions,
respectively, and u defines the system input. The proximal boundary condition can
constrain properties such as the proximal pose in SE(3) of a continuum robot’s
body. The distal boundary conditions can constrain properties such as the torsional
moment of a concentric-tube robot’s tubes, and the net force and moment applied to
the end-effector platform of a parallel continuum manipulator by its rod-actuators
[7]. The input function u(x0) operates on the proximal state and can define the prox-
imal tendon displacement of a tendon-actuated device or the proximal twist angles
of the tubes comprising a concentric-tube robot.

In this paper, we use concentric-tube robots as examples. Concentric-tube robots,
shown in Fig. 1b, consist of precurved, elastic tubes that move in a tentacle-like
fashion when the tubes are rotated and translated relative to each other. The states
of an unloaded concentric-tube robot are the tubes’ twist angles ψ s , their arc-length
rates-of-change ψ ′

s , the arc-length position of each tube σ s relative to the tubes’
proximal ends, and backbone position ps and orientation Rs .

The kinematics of an n-tube concentric-tube robot is governed by

iψ ′′
s = −uT

s
iKs

(
∂R(iψs)

)
iu∗

s (3a)
iσ ′

s = 1 (3b)

p′
s = Rs z (3c)

R′
s = Rs S(us) (3d)

where us is the frame curvature, the bending and torsional stiffnesses of tube i are
packed in the diagonal matrix iKs , thematrix ∂R(iψs) = ∂R(iψs)/∂

iψs where R(iψs)

is the standard z-axis rotation matrix by the angle iψs , iu∗
s is the tube precurvature,

and S(us) is the skew-symmetric matrix representing the cross-product operation.
Further details can be found in [12, 31].

The proximal boundary conditions are

p0 = 0, R0 − I = 0, (4)

and the distal boundary condition is
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ψ ′
� = 0, (5)

assuming that when a tube is not physically present at an arc-length, it has infinite
torsional stiffness and zero bending stiffness. The inputs are

ψ0 − α = 0, σ 0 − γ = 0, (6)

where α and γ are the tubes’ actuator rotation angles and translations, respectively.

3 State Estimation for Continuum Robots

In this paper, we argue that design, sensing, and planning are fundamentally coupled
problems for continuum robots, and that statistical state estimation can be used to
understand the interaction between these three problems. The goal of statistical state
estimation is to infer a continuum robot’s state that is most likely given the prior
model (1)–(2) and sensor observations, in the presence of uncertainty in the process,
observations, and boundary constraints. We assume that beliefs can be modeled with
Gaussian distributions, denoted with N (x,Σ), having mean x and covariance Σ .

Uncertainty in the spatial kinematics of a continuum robot is modeled using a
spatial stochastic process given by

x′
s = f (xs, s) + qs (7)

with uncertain constraints and inputs of the form

b0(x0) = w0 b�(x�) = w� u(x0) = v (8)

where qs ∼ N (0, Qs) represents uncertainty in the process and is independent
in arc-length. Uncertainty in the boundary conditions is accounted for by w0 ∼
N (0,W0) and w� ∼ N (0,W�), which are independent. Uncertainty in the input
is represented by v ∼ N (0, V ). Uncertainty in the proximal boundary condition
could model uncertainty in the proximal pose of a continuum robot. Uncertainty in
the distal boundary condition could model uncertainty in the distal torsional moment
for a concentric-tube robot, which is ideally moment-free without applied loading.

We denote a set of time-invariant observation functions hs1 , . . . , hsm to be defined
at discrete arc-lengths s1, . . . , sm as

ysi = hsi (xsi ) + zsi , (9)

where i indicates the i th observation and i = 1, . . . ,m. Note that we do not assume
the measurements are evenly spaced or that the dimension of each measurement is
the same (i.e., the measurements can be gathered by a heterogeneous collection of
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sensors placed arbitrarily along the length of the continuum robot). The observations
are subject to additive noise zsi ∼ N (0, Zsi ), and are mutually uncorrelated.

3.1 Spatial Statistical Estimation

Statistical estimation infers the continuum robot’s state-curve given the model (7),
uncertain inputs and constraints (8), and all noisy sensor observations on the robot’s
body. Estimation requires that the states be observable from sensor measurements
[34]. The best estimate is the smoothed estimate, denoted by N (x̄s, P̄s) with
expected value x̄s and covariance P̄s , and can be approximated in a two-step proce-
dure:

(1) The first step recursively computes the posterior estimate at any arc-length s,
denoted byN (x̃s, P̃s), which incorporates the sensor observations in the arc-length
interval [0, s], the proximal boundary constraints b0, and the inputs u. The poste-
rior estimate is found using an extended Kalman filter that has become ubiquitous
throughout robotics [38], and is obtained by continuously propagating a prior state
estimate, denoted byN (x̂s, P̂s), down the length of the robot’s backbone using the
extended Kalman-Bucy equations, and updating it at measurement locations si to
form the posterior estimate. The prior state estimate is the belief given all sensor
measurements obtained in the arc-length interval [0, s). If no sensor measurement is
present at s, then the prior and posterior estimates are the same.

The prior estimate is propagated by piecewise-integrating the equations

x̂′
s = f (x̂s, s) (10)

P̂ ′
s = Fs P̂s + P̂s F

T
s + Qs (11)

from s = 0 to � in the intervals [0, s1], [si−1, si ], . . . , [sm, �]. The initial conditions,
x̂0 and P̂0, represent prior information that could be found by solving (1)–(2).

The prior estimate is updated to form the posterior estimate with a Kalman update
at every sensor observation at arc-lengths s1 · · · sm , of the form

Ŝsi = Ĥsi P̂si Ĥ
T
si + Zsi (12)

K̂si = P̂si Ĥ
T
si Ŝ

−1
si (13)

x̃si = x̂si + K̂si

(
ysi − hsi (x̂si )

)
(14)

P̃si = (I − K̂si Ĥsi )P̂si . (15)

The inputs and boundary conditions (8) can be incorporated using the Kalman
update Eqs. (12)–(15). For example, the distal boundary condition can be incorpo-
rated as a Kalman update with Ĥsi , Zsi , and ysi replaced with the matrix ∂b�/∂x�,
W� and 0, respectively. In theory, the incorporation of constraints in this way also
works if there is no uncertainty in the constraints (i.e., the constraint covariances,
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W0 or W�, are not invertible). Care must be taken in this case since numerical issues
while integrating (11) may result in eigenvalues of the estimate covariance becoming
negative, making the covariance no longer positive-definite. In this case, square-root
formulations of the filtering equations can be used to increase precision and ensure
that the positive semidefinite-ness is preserved [10].

(2) The posterior estimate is then used by the second step, which computes the
state estimate at arc-length s that incorporates all sensor observations everywhere
on the robot, the proximal and distal boundary constraints, and the inputs using an
extended form of a Kalman smoother. Smoothing is frequently used as a method for
batch post-process analysis, after all data has been gathered, to determine the best
state estimates of the past given all gathered knowledge [34].

The smoothed estimate can be computed from the posterior estimate by propa-
gating the Rauch-Tung-Striebel (RTS) differential equations

x̄′
s = f (x̄s, s) + Qs P̃

−1
s (x̄s − x̃s) (16)

P̄ ′
s = (

Fs + Qs P̃
−1
s

)
P̄s + P̄s

(
Fs + Qs P̃

−1
s

)T − Qs (17)

backward from arc-length � to 0, with initial conditions x̄� = x̃� and P̄� = P̃�.

3.2 Experimental Results

We applied the methods presented herein to a three-tube concentric-tube robot,
modeled by Eqs. (3)–(6), and shown in Fig. 2i. The sensing system incorporates

Top

Left

w/out sensors

(a) (b)

Fig. 2 a The experimental setup consists of a three-tube concentric-tube robot (i), controlled with a
6-DoF motorized actuation unit (ii), and with a electromagnetic sensing-system (iii) that tracks two
sensor coils (iv) embedded in the robot’s inner tube. A coordinate measuring machine (CMM) is
used to obtain ground-truth measurements of the robot-tip position (v). bAn example configuration
of the concentric-tube robot with the shape (position) estimate, that incorporates magnetic position
sensors, is shown with the shape estimate without magnetic position-sensors along with the actual
shape of the robot. For the configuration shown, the tip-position errors were 7.3 and 16.0mm for
the estimate with and without sensor information, respectively
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information from the six encoders of the actuation unit (Fig. 2ii) and an NDI Aurora
electromagnetic-tracking system (Fig. 2iii) thatmeasures the position of two sensing-
coils placed in the concentric-tube robot as shown in Fig. 2iv. A FARO Gage coor-
dinate measuring machine (Fig. 2v) was used to measure registration transformation
between the robot and electromagnetic tracker as well as for obtaining ground-truth
tip-position used in the experiments. We found that the six encoder measurements
and the measured registration are sufficient to guarantee observability as discussed
in Sect. 3.1, under the zero-tip-moment assumption (ψ ′′

� = 0).
The magnetic-tracker measurements add additional information that improves

the state estimate under modeling uncertainty. We experimentally demonstrate their
benefit by placing the concentric-tube robot in four configurations and comparing
the error in tip-position provided by the smoothed estimate with themagnetic-tracker
information to the smoothed estimate without tracker information. The tip-position
error was measured using the CMM. On average, the accuracy of the smoothed
estimate with and without tracker information was 8.8 and 14.5mm, respectively.
Figure2b shows the shape estimate with and without the magnetic-tracking sensors
for one of the four configurations used in our experiments.

The smoothed estimate for the states of the three-tube concentric-tube robot is
implemented with the initial covariance of the tube-twist anglesψ0 set to 0.08I rad

2,
where I is a 3 × 3 identity matrix, the initial proximal covariance of the tube-twist-
angle rates-of-change ψ ′

0 are set to 0.01I (rad/m)2, the initial proximal covariance
of the backbone position p0 are set to 5 × 10−5 I m2. The covariances of the initial
proximal backbone orientation (represented as a quaternion) and the concentric-tube
translations σ 0 are assumed to be zero. These initial covariances are found using
estimates of calibration accuracy and are used as the initial values for the state-
covariance in the computation of the posterior state-estimate obtained by integrating
the Kalman-Bucy filter equations, (10) and(11). The position covariance of the mag-
netic tracker is experimentally found to be 1 × 10−6 I m2,which is used in theKalman
update step (12)–(15) for the posterior state-estimate.

4 Connections Between Estimation and Design, Sensing,
and Planning

4.1 Connections Between Mechanical Design and Estimation

When the application requires the continuum robot to be sensed, the mechanical
design of the robot plays an important role in estimation through the kinematic
model (1)–(2), which is used in the Kalman-Bucy filter to condition the uncertain
sensor observations. The mechanical design affects the quality of the state esti-
mate (i.e., the covariance), through the linearized-kinematics state matrix Fs , which
appears in differential equations (11) and (17) that govern the propagation of the prior
and smoothed covariances along the length of the continuum robot. The physicall
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Fig. 3 The effect of changing a concentric-tube robot’s inner-tube curvature on the smoothed state-
estimate position variance in the x direction (out of the page) is shown (the variance in the y and
z are largely unchanged). The smoothed estimate is found using the methods in Sect. 3.1 with two
backbone-position sensors arranged on the robot as depicted. The covariances used by the smoothed
estimator are for the physical robot reported in Sect. 3.2

properties of the robot that affect the matrix Fs could be, in the case of a tendon-
actuated robot with a backbone, the robot’s backbone stiffness or the distance of
routed tendons to the backbone. In the case of a concentric-tube robot, physical prop-
erties can also include tube precurvatures and tube stiffnesses. The physica properties
could vary along the length of the robot. For example, one or more flexure-hinges
along the backbone (e.g., [50]) would locally decrease its stiffness.

As an example of how a continuum robot’s mechanical design could affect state
estimation, we study how changing the curvature of a concentric-tube robot’s inner-
most tube changes the variance of the smoothed position estimate. We use two posi-
tion sensors placed as shown in Fig. 3, with the methods of Sect. 3.1, using the robot
and covariance parameters reported in Sect. 3.2. We now explore the effect on the
covariance of changing the inner-tube’s radius of curvature from 100 to 33.3mm.
The x-variance (out of the page) of the smoothed position estimate for each radius
is shown in Fig. 3 (the variance in the y and z directions is largely unchanged), plot-
ted as a function of backbone arc-length s. As indicated, the x variance increases
between the two sensors (i.e., between arc-lengths at 250 and 350mm) as the cur-
vature increases. In this region, the robot’s backbone position is most sensitive to
rotation of the inner tube, which causes uncertainty in the inner-tube’s rotation to
manifest itself more in the backbone uncertainty, particularly in the x direction.

A nonintuitive effect occurs for proximal arc-lengths between 0mm and approx-
imately 150mm. In this region, higher inner-tube curvature tends to reduce the x
backbone-position variance. This could be an effect resulting from the geometry of
the concentric-tube robot’s proximal end and the sensor placements on the robot’s
backbone. Naturally, it would be difficult to maneuver a robot through a narrow
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passageway in this configuration. In order to make the most of this effect, the robot’s
curvature should be designed in coordination with a motion planner in order to
account for constraints imposed by the robot’s environment.

4.2 Connections Between Sensor Selection, Sensor
Placement, and Estimation

The question of what sensors should be chosen and their placement, is a frequent
concern of continuum robot designers. Often there are space limitations due to the
requirement that the diameter be small (e.g., to navigate through blood vessels)
and there is little room left over once actuators have been installed. Therefore, it
is desirable to obtain as much state information as possible, with as few sensors as
possible.

The kinematic structure of the continuum robot, the robot’s configuration, and
the states that the sensors observe all contribute to the amount of state information
obtained by the sensors. An example is shown for a concentric-tube robot in Fig. 4,
where the smoothed state covariance in the x direction is shown for two arrangements
of sensors. The covariance in the other two directions are largely unchanged. The
covariances used by the smoothed estimator to obtain the results of Fig. 4 are for the
physical robot reported in Sect. 3.2. Clearly, sensor placement has a large influence on
the covariance of the smoothed backbone-position estimate. If an application requires
the position estimate to be more accurate in the arc-length region (150, 300)mm,
then placement “1” would be preferred over placement “2”.

The variation in the smoothed covariance with variation in sensor placement can
be exploited by the designer to best meet the needs of the application. The first task
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Fig. 4 The effect of changing sensor-observation placement is illustrated in this example where
the smoothed state-estimate covariance in the x direction is shown (a) for two sensor arrangements
(b). In 1 the one sensor is placed in the middle of the robot and one at the distal end, while in 2
one sensor is placed at the most proximal and most distal ends of the robot. The position-estimate
covariance in the other two directions is largely unchanged. The covariances used by the smoothed
estimator are for the physical robot reported in Sect. 3.2
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is to select the appropriate sensors and sensor locations to achieve application spec-
ifications when states are estimated as described in Sect. 3.1. For many applications,
partial state informationmay be sufficient. In others, accuracy requirementsmay vary
by direction or arc-length. Based on such specifications, the methods in this paper
enable one to determine howmany sensors are required (e.g., to ensure observability
described in Sect. 3.1).

One way to encode the requirements of the application is through a covariance-
based metric, over which optimization in the sensor positions can be performed. If
there are several arc-length points-of-interest γ1, . . . , γ j where the uncertainty of a
continuum robot’s state estimate is critical in specific directions (e.g., to ensure that
the position estimate in the direction of nearest obstacles is highly certain), then an
example of a metric on the smoothed covariance at the points-of-interest could be

U (P̄γ1 , . . . , P̄γk ) = max
i=1... j

tr(ET
i P̄γi Ei ) (18)

where tr denotes the matrix trace, and Ei is a positive-semidefinite matrix used to
select the critical directions of covariance, to selectively assign priority to arc-length
the points-of-interest on the robot, or enforce unit-consistency. Thismetricminimizes
the worst-case average estimate-variance at the arc-length points-of-interest.

4.3 Connections Between Motion Planning and Estimation

A major benefit of continuum robots is that they have the potential to snake through
constrained spaces. The basic motion planning problem is to find a time-ordered
sequence of continuum-robot inputs u1(x0), . . . , uk(x0), for time indices 1 · · · k,
that guide the robot through the constrained space without colliding with obstacles
in the environment. Motion planning is particularly relevant to surgical applications
of continuum robots, where physicians desire to reach a surgical targetwhile avoiding
anatomical obstacles (e.g., bones, bloodvessels, and sensitive organs) or danger zones
established by the physician that correspond to high risk areas.

To avoid obstacles, motion planners must have knowledge over time of the robot’s
state, which for continuum robots includes the robot’s shape (e.g., position-curve
parameterized by arc-length s). In practice, there is often substantial uncertainty in
the estimate of the robot’s shape, and the motion planner must account for the shape
uncertainty to guarantee that obstacles will be avoided with a desired level of con-
fidence. To address this challenge, rather than following the traditional workflow of
computing amotion plan assuming perfect state estimation and then relying on a real-
time controller to account for uncertainty, recent work has investigated integrating
motion planning with control to compute motion policies, which are parameterized
by time and sensor measurements. Combining motion planning, control, and state
estimation into a single problem can result in higher quality plans. General motion
planning methods linking these problems have been developed for robots for which
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Fig. 5 The effect of changing the input u(x0) to follow a hypothetical trajectory from a start to
goal configuration that could have been generated as an obstacle-avoiding trajectory by a motion
planner. The variance in the x-direction of the concentric-tube robot’s position-covariance is shown
at both configurations. (The position-variance in the other directions are largely unchanged.) The
covariances used by the smoothed estimator are for the physical robot reported in Sect. 3.2

state uncertainty can be modeled using Gaussian distributions in the state space.
These belief-space planners, e.g., [6, 11, 20, 25–28, 45, 46], often use a sampling-
based or optimization-based motion planner integrated with an automatically-tuned
linear controller, and variants have been specifically applied tomedical robots such as
steerable needles and concentric-tube robots based on simplified uncertainty models
[35, 36, 44]. Better models of the belief space of continuum robots (i.e., the space
of distributions of state estimates given specific sensor measurements) could enable
the computation of more effective motion policies.

For concentric-tube robots, someconfigurations naturally result in lower smoothed
covariances than others. To illustrate the information available to a motion planner,
Fig. 5 shows the smoothed state-estimate variance in the x direction as the physi-
cal concentric-tube robot from Sect. 3.2 follows a hypothetical trajectory, where the
inner tube is rotated from the start-configuration to the end-configuration as shown
in Fig. 5a. As the concentric-tube robots nears the goal-configuration, the smoothed
variance of the robot’s shape estimate in the x-direction decreases (the estimate
improves) by 35% at the proximal end of the robot with little change in the distal end.
The covariances used by the smoothed estimator are for the physical robot reported
in Sect. 3.2. For motion planners to fully exploit the natural reduction in smoothed
covariance, the temporal state transition and uncertainty in the transition must be
understood and incorporated into a full spatiotemporal estimate. Creating efficient
belief space planners for continuum robots that are based on accurate kinematic and
uncertainty models is a significant research challenge.

Note that the covariance of the proximal position estimate represents the position
uncertainty of the robot’s pose in space. For some surgical applications, the robot’s
pose is could be intraoperatively registered to a patient’s anatomy. The initial position
covariance in the x direction for the experimental system in Sect. 3.2 (with which
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Fig. 5was computed) was estimated to be 50mm2. The process of Kalman smoothing
can be used to improve the registration using the sensor observations taken along the
robot’s backbone. This is shown in Fig. 5, where position observations generated by
the the electromagnetic tracker improve the position covariance of the registration
in the x direction to less than 3.0mm2. In the case of the robot in the “goal” con-
figuration, the covariance is improved to 1.6mm2. It may be beneficial for a motion
planner to direct the robot near configurations where the initial registration can be
improved before starting delicate surgical procedures.

Whenplaced in certain configurations, someconcentric-tube-robot designs exhibit
elastic instability, which is observed as a windup, and sudden release of torsion. The
release of torsion results in fast, uncontrolled motion of the robot’s distal end. Pass-
ing through an elastic instability could be extremely harmful for sensitive surgical
manipulation tasks. As a result, it is generally assumed that concentric-tube robots
should be operated in configurations that are far from instability [3]. One nonintu-
itive result of Fig. 5, however, is that configurations near instabilities may be more
“information rich” than those far away. This is indicated by the fact that the “goal”
configuration, which is near what we understand to be the most likely configuration
where instability occurs, has lower proximal position covariance than the “start”
configuration, which is near what we know to be a configuration far from instability
[14]. This indicates that configurations near instability may be useful for mitigat-
ing increases in the concentric-tube robot’s state-estimate uncertainty as it follows a
trajectory, and we expect that a motion planner that explicitly considers uncertainty
could favor configurations near (but not at) instability at times for this reason.

5 Conclusion

In this paper, we used statistical state estimation as a tool to study the problems of
designing a continuum robot’s geometry, selecting and placing sensors for detect-
ing the continuum robot, and using motion planning to direct the trajectory of a
continuum robot to accomplish a task. These three problems are fundamentally cou-
pled and their interaction can be studied using the covariance produced by statistical
state estimation. The future of continuum robots lies in the simultaneous solution
to the continuum-robot design, sensing, and planning problems in order to produce
continuum-robot systems that make the most of their geometry and available infor-
mation to satisfy the needs of the most demanding applications.
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Part III
Hands and Haptics

Session Summary

As the new wave of humanoid robots is pushing the boundaries of what can be
achieved outside of traditional, fully structured environments, the importance of
manipulation skills is growing increasingly clear. In applications from disaster
response to e-commerce order picking and in-home assistance, these robots must be
able to effect change on their surrounding environment, interacting with and manip-
ulating a wide range of objects. However, the development of such skills comprises
numerous aspects, from mechanism design to control, planning, and teleoperation.
Beyond autonomous robots, advances in manipulation and haptics can also translate
into improved assistive or rehabilitative devices intended to directly interact with
the human body. This can include orthoses, prostheses, and wearable robots. This
session presented new advances in many of these areas.

A key area of interest is the ability to move beyond simple scenes with isolated
objects to grasping and manipulating in real clutter. The work of ten Pas and Platt
presents a new approach to grasp planning in cluttered scenes, without requiring
existing models of the objects to be manipulated. Dai et al. also present an efficient
method for synthesizing and optimizing grasps using the sequential semidefinite pro-
gramming. Addressing the problems or variance and variability in grasping, Jentoft
et al. introduce a framework for the grasping problem that considers grasp robustness
but also the uncertainty arising from many components of the system; Quispe et al.
introduce a novel taxonomy of benchmark tasks for manipulation, drawing on the
rich related literature in physical therapy and rehabilitation.

In the area of assistive robotic manipulators, Ying et al. present a new method
for shared-control online grasp planning where human input is provided directly
through a brain–computer interface. Tokatli and Patoglu discuss haptic rendering
from amathematical perspective, using fractional ordermodels to render impedances
beyond the reach of traditional models. Last but not least, two papers discuss robotic
hardware and novel control methods. Wu and Carricato present the design of a
serial-parallel 3-degree-of-freedom robotic wrist with a singularity-free 180-degree
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pointing cone; Asano et al. introduce a balancing controller for a humanoid robot
combining the ZMP approach with redundant actuation; Salvietti et al. introduce a
novel wearable extra robot finger for rehabilitation of the paretic limb.

Overall, the presented papers range from design and control to grasp planning,
taxonomies, and encompassing frameworks for manipulation. These are all advances
that aim to push complete manipulation systems closer to the goal of achieving
versatility and robustness in increasingly more difficult domains.



Synthesis and Optimization of Force
Closure Grasps via Sequential Semidefinite
Programming

Hongkai Dai, Anirudha Majumdar and Russ Tedrake

1 Introduction

Force closure, which measures the ability of a grasp to resist wrench disturbances,
is an important property in grasping and has an extensive literature [17, 18]. A
commonly observed fact is that synthesis of force closure grasps is a non-convex
optimization problem, mostly due to the fact that computing the torque on an object
involves a bilinear product between contact locations and contact forces. As a result,
most approaches resort to gradient-based non-convex nonlinear optimization to syn-
thesize a force closure grasp [5]. On the other hand, when fixing the contact locations,
checking if the given contact achieve force closure becomes a convex optimization
problem over contact forces only [3, 10]. Moreover, several grasp metrics have been
introduced to measure the quality of a force closure grasp. These involve computing
the smallest wrench that the grasp cannot resist with bounded contact forces [9, 12,
15]. Liu et al. optimized the contact locations based on such a metric with nonlinear
optimization [13].

In this paper we exploit the observation that although the force-closure grasp
synthesis problem involves non-convex constraints, the bilinear structure of the con-
straintsmakes it special. In particularwepose the problemoffinding (and optimizing)
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Fig. 1 Optimized force closure grasp of a 15 joints robot on a cylinder, from two perspectives

a force closure grasp as a Bilinear Matrix Inequality (BMI). There exist powerful
tools to solve BMIs via sequences of semidefinite programming problems (SDP),
which is a special form of convex optimization.

Besides satisfying the force closure constraint, the contact locations should also
be reachable by the hand, subject to robot kinematics constraints. Traditionally find-
ing robot posture is solved by the Jacobian transpose method [4] or nonlinear op-
timization [7] on robot minimal coordinates, which involve non-polynomial (e.g.,
trigonometric) functions. Recently Rosales et al. searched for hand posture by solv-
ing linear and bilinear equations of robot maximal coordinates, through an iterative
linear optimization scheme [20]. We will adopt the similar idea here to formulate the
inverse kinematics problem as BMIs, and solve them through sequential semidefinite
programming (Fig. 1).

Sequential semidefinite programming is a common technique in solving bilinear
matrix inequalities (BMI) [8, 11]. It relaxes the original non-convex problem to a
convex SDP, and in each iteration solves a convex relaxation until convergence. The
advantage of this approach over gradient based nonlinear-optimization include

1. The ability to incorporate non-smooth positive semidefinite (psd) constraints,
which appear frequently in grasp planning. The gradient-based nonlinear opti-
mization cannot handle such constraints gracefully due to non-smoothness.

2. Proof of infeasibility. If the relaxed convex problem is infeasible, then the original
non-convex problem is also infeasible. Nonlinear optimization cannot guarantee
that a problem is globally infeasible, when locally it fails to find a solution.

We will introduce the background on solving BMI with sequential SDP in Sect. 2,
and elaborate how this technique can be applied to synthesis and optimization of
force closure grasps in Sect. 3. Our results are shown in Sect. 4.
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2 Background

As we will see in Sect. 3, finding force closure grasps for a broad class of object
geometries can be posed as a bilinear matrix inequality (BMI), which is a particular
kind of optimization problem. In this section we provide an introduction to BMIs
along with methods to find feasible solutions to them.

2.1 Bilinear Matrix Inequalities

Bilinear matrix inequalities (BMIs) are problems of the following form:

Find x ∈ R
n (1)

s.t. F0 +
N∑

i=1

xi Fi +
N∑

i=1

N∑

j=1

xi x j Fi j � 0, (2)

where F0, Fi , Fi j are constant m × m symmetric matrices. �0 means the matrix
on the left hand-side is positive semidefinite (psd), i.e. all the eigenvalues are non-
negative; the special case is when the matrix is just a scalar, then �0 is the same as
≥0. We also note that BMIs include constraints that are both bilinear (i �= j) as well
as quadratic (i = j).

2.2 Finding Feasible Solutions to BMIs

While it is well known that BMIs are NP-hard in general [11], there exist very good
heuristic methods based on semidefinite programming (SDP) for solving them. Here
we review the method presented in [11] for finding feasible solutions to BMIs.

Thefirst step is towrite theBMI (1) as a rank-constrainedLinearMatrix Inequality
(LMI) with an additional variable X ∈ R

N×N :

Find: x ∈ R
N , X ∈ R

N×N (3)

s.t. F0 +
N∑

i=1

xi Fi +
N∑

i=1

N∑

j=1

Xi j Fi j � 0, (4)

M :=
[
X x
xT 1

]
� 0, (5)

rank(M) = 1. (6)
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Here, each occurrence of bilinear terms xi x j in (1) has been replaced by the (i, j)
element of the decision matrix X . Constraints (5) and (6) have been introduced
to ensure that X = xxT , resulting in the problems (3) and (1) having equivalent
constraints.We note that without the rank constraint (6), problem (3) is a semidefinite
program,which is a particular kind of convex optimization problem and can be solved
efficiently (e.g., using interior point methods) [2].

The key idea in [11] is to drop the rank constraint in (3) and solve a sequence of
SDPs that attempt to minimize the rank of M , as shown in Algorithm 1.

Algorithm 1 Finding feasible solutions to BMIs
Minimize trace(X) subject to constraints (4) and (5). If problem is infeasible, then problem (1) is
infeasible. If problem is feasible, initialize x (0) and X (0) with the solution. Initialize k = 1.
while ¬converged do
1. Minimize trace(X (k)) - 2x (k−1)T x (k) subject to the constraints (4) and (5).
2. Set k ← k + 1
end while

Note that the first step inAlgorithm 1 is the standard trace heuristic forminimizing
the rank of a positive semidefinite matrix [2, 8]. The justification for the proceeding
steps in the algorithm is based on the observation that the constraint (5) implies (by
the Schur complement lemma) that X � 0 and X − xxT � 0. This in turn implies that
trace(X) − xT x ≥ 0with equality holding if and only if X = xxT (i.e. whenwe have
a feasible solution to (1)). Thus, Algorithm 1 proceeds by linearizing the function
trace(X) − xT x and minimizing this linearization at every iteration. A termination
criterion for Algorithm 1 is provided by the following Lemma in [11].

Lemma 1 ([11]) The following sequence is bounded below by 0 and non-increasing
for k = 1, 2, . . . :

tk := trace(X (k)) − 2x (k−1)T x (k) + x (k−1)T x (k−1).

Hence, this sequence converges to a value topt ≥ 0. Equality holds if and only if
X (k) = x (k)x (k)T as k → ∞.

Lemma 1 provides us with a convergence criterion for Algorithm 1. Assuming that
the first step in Algorithm 1 is feasible (if this is not the case, the original BMI is
infeasible), then convergence of the value of tk to 0 implies that we have found a
feasible solution to the BMI. In the case where topt is not 0, nothing can be inferred.

2.3 Implementation Details

An important detail in implementing Algorithm 1 is that the SDP constraint (5)
can be quite large if one has many decision variables x . However, it is typically
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the case that a large number of variables do not multiply with each other as bilin-
ear products. Formally, consider a graph whose vertices are the variables in x . Two
vertices are connected by an edge if the corresponding variables appear in a bilin-
ear product in some constraint. Then we can partition the variables x into subsets
xI1 , xI2 , . . . , xIk , . . . , xIK corresponding to the connected components of the graph.
We can then replace the constraints (5) and (6) by the following constraints:

Mk :=
[
XIk ,Ik xIk
xTIk 1

]
� 0, rank(Mk) = 1, ∀k = 1, . . . , K . (7)

The cost function in Algorithm 1 is then replaced by the sum of the traces of the
matrices XIk ,Ik .Whilewe end upwithmore psd constraints in general, each constraint
involves a smaller matrix. Since SDP solve times typically scale poorly with the size
of the largest psd constraint, we observe large computational gains in practice.

Another important implementation detail is to employ a randomization step in Al-
gorithm 1, as described in [11]. In each iteration k of the algorithm, we sample a point
x (k)
rand from the Gaussian distribution with mean x (k) and covariance X (k) − x (k)x (k)T ,
where (x (k), X (k)) is a solution to the SDP at the k-th iteration, and use cost function
trace(X (k+1)) − 2x (k)T

rand x
(k+1) in k + 1th iteration. In practice, the randomization step

prevents the algorithm from getting stuck in local minima.
Finally, we note that while we have restricted ourselves so far to feasibility prob-

lems, it is also possible to optimize cost functions subject to BMI constraints. We
will discuss this in the context of optimizing grasp metrics in Sect. 3.3.

3 Approach

3.1 Force Closure

The force closure property for n grasp points xi ∈ R
3, i = 1, . . . , n, is achieved

when these grasp points can resist arbitrary external wrenches with contact forces fi
at point xi lying within the friction cone. Mathematically, force closure is formulated
as the existence of xi and fi satisfying the following constraints:

GG ′ � ε I6×6 (8a)

G f = 0 (8b)

fi ∈ int(FCi ) (8c)

xi ∈ Si (8d)
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Fig. 2 A nonlinear friction cone (blue), and the 4-edge linearized friction cone (red). The red
arrows e1, . . . , e4 are the edges of the linearized friction cone. The axis c is along the direction of
the normal force, pointing outward from the contact surface

where

G =
[
I3×3 I3×3 . . . I3×3

�x1�× �x2�× . . . �xn�×

]
, �xi�× =

⎡

⎣
0 −x (3)

i x (2)
i

x (3)
i 0 −x (1)

i

−x (2)
i x (1)

i 0

⎤

⎦ ∈ R
3×3 (9)

�xi�× is the skew-symmetric matrix representing the cross product �xi�× fi = xi ×
fi , ε is a small given positive scalar, constraint (8a) is the same as G being full rank;
f = [ f T1 f T2 . . . f Tn ]T ∈ R

3n; int(FCi ) is the interior of the friction cone FCi at
grasp point xi , and Si is the admissible contact region of grasp point xi (for example,
the surface of the object being grasped).

We note that condition (8a) is quadratic on xi , and (8b) is bilinear on xi and fi .
Unlike some existing approaches that fix the contact points xi and search only contact
force fi through convex optimization, we can search both xi and fi simultaneously
by solving these BMIs through sequential SDP, as introduced in Sect. 2.2. In the
following two subsections, wewill show that friction cone constraint (8c) and contact
region constraint (8d) can also be formulated as BMIs.

3.1.1 Friction Cones

We consider the Coulomb friction cones as depicted in Fig. 2. For the i th friction cone
FCi , the axis of the cone is denoted by a vector ci ∈ R

3, which is a normal vector
originating at the grasp point xi and pointing outward and perpendicular to the contact
surface. We introduce ci as a decision variable in our problem, to parameterize the
friction coneFCi . For the benefit of the later discussion, we will constrain ci to have
unit length:

cTi ci = 1. (10)
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If we use the nonlinear friction cone, then fi ∈ int(FCi ) is equivalent to

f Ti ci >
1√

μ2 + 1
| fi |, (11a)

where μ is the fixed friction coefficient.
If ci was fixed, constraint (11a) would be a Second-order cone constraint on

fi , which is a special type of psd constraint [1]. Thus by searching both ci and fi ,
constraints (10) and (11a) are both BMIs on variables ci and fi .

If FCi is a linearized friction cone with ne edges, to compute its edges, we can
first construct a coneFC0 that has unit axis c0 = [0 0 1]T , with edges e10, e20, . . . , ene0 .
Without loss of generality we suppose all the edges of the cone have unit length,
|e j

0 | = 1, j = 1, . . . , ne. The edge e
j
0 can be computed using the friction coefficient

and c0, thus they are fixed. The linearized friction cone at xi with cone axis ci , can be
obtained by appropriately rotating cone FC0 such that cone axis c0 is aligned with
ci . Such rotation is parameterized with a unit quaternion zi , satisfying constraints:

zi ⊗ z∗
i =1 (12a)

ci =R(zi )c0 (12b)

where ⊗ is the Hamiltonian product between quaternions. z∗
i is the conjugate of zi ,

and R(zi ) ∈ R
3×3 is the rotation matrix corresponding to zi , each entry in R(zi ) is a

second-order polynomial of zi [21]. Applying the same rotation to the friction cone
edges e j

0 generates the friction cone edges e
j
i at xi .

e j
i =R(zi )e

j
0, j = 1, . . . , ne. (13)

The contact force fi is a positive weighted sum of the edges of the friction cone:

fi =
ne∑

j=1

wj
i e

j
i , wj

i > 0 (14)

Constraints (12a)–(14) involve only second order terms of the decision variables
zi ,w

j
i , e

j
i , and thus can be posed as a BMI.

Fig. 3 The polyhedron P to
be grasped. The admissible
contact regions are the
shrunk regions on each
facets (blue region)
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Fig. 4 The shrunk
polyhedron Ps obtained as
the convex hull of the blue
regions, which are the shrunk
regions on each facets as in
Fig. 3

Fig. 5 The cylinder to be
grasped, the blue surface is
the grasp region

3.1.2 Contact Geometries

In this section, we consider four types of objects to be grasped, including convex
polyhedra (Figs. 3 and 4), spheres, ellipsoids and cylinders (Fig. 5). The constraints
on contact point xi and contact normal ci are straight-forward for the sphere, ellipsoid
and cylinder, since the contact surfaces for these geometries are all parameterized
by quadratic functions. Thus the constraints on xi and ci are also quadratic, and can
be solved as BMIs. When the object is a polyhedron, and the grasp is free to choose
any facets, the problem becomes trickier to handle, and we will discuss it below.

For a convex polyhedron P = ConvexHull(v1p, . . . , v
Np
p ) (The red box in Fig. 3),

where vip is the i
th vertex of the polyhedron, we want to avoid contacts lying at edges

or corners of the polyhedron, since such a grasp can be unstable and the object can
slide out of the grasp. Thus the admissible contact regions are given as the shrunk
surface regions (blue shades). We then construct a shrunk polyhedron (Fig. 4) as the
convex hull of the shrunk surface regions (blue shades). The shrunk polyhedron is
given as Ps = {x |Asx ≤ bs}; this H-representation of a polyhedron can be readily
computed from its vertices [24]. To constrain xi lying on one of the shrunk surface
regions, we use the fact that a point is on the surface of a convex object, if and only
if a supporting hyperplane intersects the object at that point. Thus we introduce a
supporting hyperplane Hi = {x |cTi x + di = 0}, where ci is the axis of the friction
cone, and the constraints:

• The grasp point xi is on the hyperplane

cTi xi + di = 0 (15)
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• All vertices of the original polyhedron P lie on one side of the hyperplane, and
the normal vector ci points outward from the polyhedron

cTi v
j
p + di ≤ 0 ∀ j = 1, . . . , Np (16)

• The grasp point lies within the shrunk polyhedron Ps

Asxi ≤ bs (17)

Geometrically, constraints (15)–(17) state that cTi x + d = 0 is a supporting hyper-
plane of the polyhedron P , and the supporting point xi is not at edges or corners
of the polyhedron, so ci has to coincide with one of the face normals. We want to
highlight that we do not specify on which facet the contact lies; by searching over
ci , xi and di , the optimization program will determine the contact facets by itself.
Constraints (16) and (17) are linear on xi , ci and di . Constraint (15) is a BMI on xi
and ci .

3.2 Kinematics

The contact points are meaningful only if they are reachable by the hand, subject to
the kinematic constraints. As wewill show in this section, such kinematic constraints
can also be formulated as BMIs, using robot maximal coordinates.

We illustrate the kinematic chain between two links, welded by a revolute joint
as in Fig. 6. The orientation of the link frame i − 1, i are represented by unit quater-
nions qi−1, qi , and the position of frame origins are pi−1, pi ∈ R

3 respectively. The
transformation from the axis frame i to the link frame i − 1 is fixed, with a given
unit quaternion zi−1,i for the rotation, and a given vector pi−1,i for the translation,
both expressed in link frame i − 1. We introduce two additional variables ĉi , ŝi , to

Fig. 6 [6] A link frame X̂i−1, Ŷi−1, Ẑi−1 is attached to link i − 1, link frame X̂i , Ŷi , Ẑi is attached
to link i . Ẑi−1, Ẑi are the revolute axes of the joints. The axis frame X̂0

i , Ŷ
0
i , Ẑ0 is attached to the

joint i , and is fixed in the link frame i − 1. The axis frame i and the link frame i share the frame
origin and Ẑi axis, the latter frame is obtained by rotating the former by angle θi around the Ẑi axis
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Fig. 7 To grasp the object with a given finger face (the red shaded region with the red dots as
vertices) on the link j , the face normal vector n j must be in the opposite direction of the object
surface normal vector ci , and the face must be in contact with the object at xi

represent cos θi
2 , sin θi

2 respectively. The rotation of the axis i is thus expressed by the
unit quaternion zθi = ĉi + ŝik. The relationship between link frame i − 1 and i are

pi =R(qi−1)pi−1,i + pi−1 (18a)

qi =qi−1 ⊗ zi−1,i ⊗ zθi (18b)

qi ⊗ q∗
i =1, qi−1 ⊗ q∗

i−1 = 1 (18c)

where R(qi−1) is the rotation matrix for unit quaternion qi−1.
The constraints on ĉi , ŝi are

ĉ2i + ŝ2i = 1 (19a)

ĉi ∈ range

(
cos

θi

2

)
, ŝi ∈ range

(
sin

θi

2

)
, θi ∈ [θ i , θ̄i ] (19b)

where constraint (19a) guarantees that ĉi , ŝi are the values of cosine and sine functions
of a certain angle, and constraint (19b) encodes the joint limits [θ i , θ̄i ] for axis i .
Constraints (18a)–(19b) encode kinematics chain that welds the adjacent links.

We constrain the hand grasping the object with a given face on link j , as shown
in Fig. 7. Suppose the vertices of the contact face on link j’s are given as vl1, . . . , v

l
nl

(the superscript l denotes the point measured in link frame), and the finger face
touches the object at point xi on the object (introduced in Sect. 3.1). By introducing
extra variables αk as convex weights, and vwk as the position of the kth vertex in the
world frame (the superscript w for world frame), we can express xi as a convex
combination of the finger face vertices in the world frame:

vwk = p j + R(q j )v
l
k (20a)

nl∑

k=1

αkv
w
k = xi ,

nl∑

k=1

αk = 1, αk ≥ 0. (20b)
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Suppose the unit length face normal vector in link j’s link frame is given as nlj . Then
the face normal vector in the world frame must be the opposite to the object surface
normal vector ci , as below:

R(q j )n
l
j + ci = 0. (21)

With kinematic constraints formulated as linear and bilinear equations in this sec-
tion, we can solve the inverse kinematics problem by solving BMIs. Furthermore, we
can combine the kinematic constraints and the force closure constraints in Sect. 3.1,
to find a force closure grasping posture through sequential SDP.

3.3 Grasp Quality Optimization

The Q1 metric proposed by Kirkpatrick [12, 22] measures the smallest magnitude of
wrench disturbance that cannot be resisted, given an upper bound on the total contact
forces. For contact point xi , i = 1, . . . , n, and linearized friction cone, whose unit
length edges are e j

i , j = 1, . . . , ne, we define the wrench setW as the set of wrench
that can be resisted by those contact points, when the total contact forces on all
contact points are bounded by 1.

W = Convex Hull(V j
i ), i = 1, . . . , n, j = 1, . . . , ne, where V j

i =
[

e j
i

xi × e j
i

]
.

(22)

IfW contains the origin in the wrench space, then force closure is achieved.
The Q1 metric is defined as the radius of the largest L2 ball centered at the

origin and being contained in the wrench set W . An L2 ball is formulated as B =
{w ∈ R

6
∣∣wT Qww ≤ r2}, where Qw ∈ R

6×6 � 0 is a givenmatrix (usually diagonal),
which weights the relative importance between the force disturbance and the torque
disturbance. We illustrate the geometric interpretation of Q1 metric in Fig. 8. This
cartoon depicts the ball and convex hull in 2D. In the real problem the wrench space
has 6 dimensions.

To find the contact points and friction cones, such that their wrench set contains
the largest L2 ball, we employ an iterative procedure. In each iteration for a given
L2 ball radius r , we search contact point xi and edges of friction cone e j

i such that
B ⊂ W for that r ; and then increment r in the next iteration.

To derive the condition on xi and e j
i such that B ⊂ W for a given r , we define

two cones by appending an extra dimension toW and B
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KB =
{[

w
t

]∣∣∣∣w
T Qww ≤ r2t2, t ≥ 0

}
, (23a)

KW =
∑

i, j

λ
j
i

[
V j
i
1

]
, λ

j
i ≥ 0, i = 1, . . . , n, j = 1, . . . , ne. (23b)

The cross section of cones KB and KW with plane

{[
w
t

]∣∣∣∣ t = 1

}
are B and W

respectively. So the subset relation between B,W is equivalent to the subset relation
between KB,KW

B ⊂ W ⇔ KB ⊂ KW ⇔ K∗
W ⊂ K∗

B. (24)

The second equivalence is based on the fact that for any arbitrary conesK1,K2,K1 ⊂
K2 ⇔ K∗

2 ⊂ K∗
1, where K∗

1 and K∗
2 are the dual cones of K1,K2 respectively [2].

The formulation of the dual cones K∗
W and K∗

B are

K∗
W =

{[
a
b

]∣∣∣∣ (V
j
i )T a + b ≥ 0,∀i = 1, . . . , n, j = 1, . . . , ne

}
(25a)

K∗
B =

{[
a
b

]∣∣∣∣ b
2 ≥ r2aT Q−1

w a, b ≥ 0

}
. (25b)

The geometric interpretation for K ∗
W ⊂ K ∗

B is that for any half-space {w|wTa + b ≥
0} which contains all the vertices V j

i , i = 1, . . . , n, j = 1, . . . , ne, that half-space
will also contain the L2 ball B, as shown in the cartoon Fig. 8. So the necessary and
sufficient condition on B ⊂ W for a given r is that

(V j
i )T a + b ≥ 0,∀i, j ⇒

{
b2 ≥ r2aT Q−1

w a

b ≥ 0
(26)

Fig. 8 The largest ball centered at the origin O , being contained in the convex hull spanned by
vertices. A necessary and sufficient condition for the ball being contained in the convex hull, is that
for any half-space parameterized as wT a + b ≥ 0 (the shaded region) that contains all the vertices
of the convex hull, such half-space will also contain the ball
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where⇒means that the conditions on a, b on the left hand-side implies the relations
on a, b on the right hand-side. We simplify this condition further to remove the
quadratic term on b. Condition (26) is equivalent to

{
(V j

i )T a + b ≥ 0,∀i, j
aT Q−1

w a = 1
⇒ b ≥ r. (27)

Condition (27) is a necessary and sufficient condition for B ⊂ W . Using the
S-procedure [19], wewrite the sufficient condition for (27) as the following algebraic
constraints on polynomials, with a, b being indeterminates

b − r − L1(a, b)(aT Q−1
w a − 1) −

∑

1≤i≤n

∑

1≤ j≤ne

Li, j
2 (a, b)((V j

i )T a + b) is SOS

(28a)

Li, j
2 (a, b) is SOS ∀i, j

(28b)

where L1(a, b), Li, j
2 (a, b) are polynomials on indeterminates a, b. SOS stands for

Sum of Squares, and is a sufficient condition for a polynomial being non-negative.
For a polynomial α(y) on indeterminates y ∈ R

k with highest order 2d

α(y) is SOS ⇔ α(y) = Φ(y)T HΦ(y), H � 0 (29)

where Φ(y) is the vector containing all monomials of y up to degree d. Thus to
search for a non-negative polynomial, it is sufficient to search for the psd matrix H ,
which ends up with a semidefinite problem on the coefficients of the polynomial.
The reader can refer to [19, 23] for more details on SOS.

Since constraint (28a), (28b) are sufficient conditions of (27), for xi and e
j
i satis-

fying constraints (28a) and (28b), r is a lower bound of its Q1 metric. Tomaximize r ,
we can use either bilinear alternation (Algorithm 2) or binary search (Algorithm 3).

In the bilinear alternation, the kth iteration is guaranteed to obtain an objective r
that is at least as good as the previous iteration, since a solution to step 2 in iteration
k is also feasible for step 1 in both iteration k and k + 1; also r cannot increase to
infinity. Hence the bilinear alternation will terminate with convergence of the cost.
It is a common strategy in the SDP literature [14, 19, 23].

The binary search algorithm needs to deal with psd constraints of larger size than
that in bilinear alternation, since it involves the product of Li, j

2 (a, b) and V j
i . Thus

the binary search algorithm takes longer time to solve each SDP. Experimentally,
we find that the binary search algorithm is less susceptible to local minima than the
bilinear alternation alone.
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Algorithm 2 Bilinear alternation

Start with a force closure grasp xi , e
j
i , ci and V j

i found using approach described in Sects. 3.1
while r ¬ converged do
1. At iteration k, fix V j

i in constraint (28a), search for L1(a, b), Li, j
2 (a, b) and r to maximize

r , subject to constraints (28a), (28b). This optimization is a semi-definite programming
problem. It finds an L2 ball contained in the convex hull of V j

i .

2. Fix Li, j
2 (a, b) to the solution in step 1, find feasible V j

i , xi , e
j
i , ci , L1(a, b) that satisfy

(28a) and constraints on xi , ci , e
j
i in Sects. 3.1, 3.2. This is a BMI problem. It finds grasp

points xi and friction cone edges e
j
i , such that the grasp quality is no worse than that in the

previous iteration. The solution V j
i will be used in step 1 in the next iteration.

end while

Algorithm 3 Binary search

Start with r = 0, and r̄ to be some big value, r = r̄+r
2 .

while r ¬ converged do
1. Fix r , search for the coefficients of L1(a, b), Li, j

2 (a, b), V j
i , xi , e

j
i , ci together, subject to

constraints (28a), (28b) and the constraints on xi , e
j
i , ci in Sect. 3.1. This is a BMI problem.

If the problem converges, set the lower-bound r = r ; otherwise set the upper-bound r̄ = r .
2. r = r̄+r

2 , go to step 1.
end while

4 Results

4.1 Force Closure Contact

We show the results of finding force closure contact locations on different geometries
in Fig. 9. We also show the time scalability w.r.t number of contacts in Figs. 10, 11,
and number of polyhedron facets in Fig. 12.Whenwe increase the number of contacts
(Figs. 10 and 11), the size of the largest psd constraints remains the same, and the
number of psd constraints increases linearly. As expected, the computation time
in each SDP scales linearly (Fig. 11); and empirically we observe that the number
of SDP calls remains almost constant (Fig. 10). As a result, the total computation
time scales linearly w.r.t number of contacts. On the other hand, the number of
polyhedron facets does not affect the size or the number of the psd constraints, so
the total computation time remains almost constant (Fig. 12).
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Fig. 9 Force closure contacts on different geometries. The upper row uses nonlinear friction cone,
the lower row uses linearized friction cone. For the polyhedron (column 3), the contact facets are
not specified by the user beforehand

Fig. 10 Scalability w.r.t
number of contacts on a 30
facets polyhedron
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4.2 Kinematics

The inverse kinematics problem is solved for an ABB IRB140 arm with a Robotiq
hand, with 15 joints in total. To evaluate how effective the algorithm is as solv-
ing this inverse kinematics problem, in Fig. 13 we take 10,000 samples within the
0.6m× 0.6m× 0.6m box in the shaded region, and require the center of the palm to
reach the sample point. There are three possible outcomes from the sequential SDP.

• Green dot: sequential SDP converges to topt = 0 ⇒ feasible BMIs, thus reachable.
• Red dot: the rank-relaxed SDP reports infeasibility, thus proved unreachable.
• Blue dot: the rank-relaxed SDP is feasible, but the sequential SDP does not con-
verge to topt = 0.
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Fig. 11 Scalability w.r.t
number of contacts on a 30
facets polyhedron
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Fig. 12 Scalability w.r.t
number of facets, test with 4
contacts
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As shown in Fig. 13, the blue dot layer is thin, showing that in most cases the sequen-
tial SDP algorithm either solves the problem or proves that the problem is infeasible.
The histogram in Fig. 14 shows that when the sequential SDP can solve the problem,
in most (81.36%) cases it converges within 5 SDP calls. The average time to solve
the BMI is 0.25 s using MOSEK [16] on an Intel i7 machine.

4.3 Grasp Optimization

Wefirst show the result of usingbilinear alternation to optimize a 3-point force closure
grasp on a sphere. The initial contacts and linearized friction cones are plotted in
Fig. 15, the optimized contacts becomemore evenly distributed (Fig. 16), as is known
to be the better 3-point grasp on the sphere [13]. In Fig. 17 we draw the Q1 metric in
each iteration. The SOS program (28a), (28b) finds a lower bound of the Q1 metric.
The true Q1 metric is computed as in Appendix. We can see that the gap between
the SOS verified lower bound and true Q1 metric is small. The computation time is
172s using MOSEK solver [16] on an Intel i7 machine.



Synthesis and Optimization of Force Closure Grasps … 301

Fig. 13 Robot arm
reachability

Fig. 14 Histogram on
number of SDP calls
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Fig. 15 Initial contacts and
friction cones

Fig. 16 Optimized contacts
and friction cones

We also show the result of optimizing force closure contacts on a diamond shaped
polyhedron, through binary search. The optimized contacts (Fig. 19) are more evenly
distributed than the initial contacts (Fig. 18). Also we want to highlight that the facets
on which the contacts lie are changed through optimization, this again demonstrates
that the optimization program can search over all facets by itself. The computation
time is around an hour using MOSEK solver on an Intel i7 machine (Fig. 20).
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Fig. 17 The change of Q1
metric in each iteration of
bilinear alternation
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Fig. 18 Initial contacts and
friction cones

Fig. 19 Optimized contacts
and friction cones

Fig. 20 The change of Q1
metric in each iteration of
binary search
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We show the result of optimizing the force closure grasp with Robotiq hand and
ABB arm on a cylinder. The initial posture grasps the tip of the cylinder (Fig. 21), the
optimized posture gets improved by grasping the center of the cylinder (Fig. 22). The
computation time is around 20min using MOSEK on an Intel i7 machine (Fig. 23).
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Fig. 21 Initial force closure
grasp from two views

Fig. 22 Optimized force
closure grasp from two views

Fig. 23 The change of Q1
metric in each iteration of
bilinear alternation, for
robotiq hand grasping the
cylinder
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5 Conclusion and Discussion

In this paper we exploit the bilinear structure in the force closure and kinematic
constraints to synthesize and optimize force closure grasping postures. We do this
by formulating the problem as bilinear matrix inequalities (BMIs) and applying the
sequential semidefinite programming technique commonly employed in the BMI
literature. In contrast to more conventional approaches to the problem that rely on
gradient based nonlinear optimization, our approach is able to handle non-smooth
(such as psd) constraints along with being able to prove infeasibility of problems.We
demonstrate our results on a 15-joint robot and several types of object geometries.

Some tangible improvements include using the nonlinear friction cone when op-
timizing force closure grasps, dealing with non-convex polyhedron object, etc.

Acknowledgements We would like to thank Amir Ali Ahmadi for introducing BMI and reference
[11]; Alberto Rodriguez for the discussion, and ABB Inc for loaning the IRB140 arm.

Appendix

When all contact points xi and friction cone edges e j
i are given, we can compute

the exact value of Q1 metric. First we transform representation of the wrench setW
from using vertices V j

i (V-representation) to using half-spaces (H-representation)
W = {

w|wTaiW ≤ biW , i = 1, . . . ,m
}
, where m is the number of facets for W .

The Q1 metric is computed asmini=1,...,m biW/

√(
aiW

)T
Q−1

w aW . Note thatwe cannot

optimize the Q1 metricwhile searching for xi and e
j
i , since it is nontrivial to transform

from V-representation to H-representation when the vertices are not fixed [24].
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Using Geometry to Detect Grasp Poses in 3D
Point Clouds

Andreas ten Pas and Robert Platt

1 Introduction

Traditionally, robot grasping is understood in terms of two related subproblems:
perception and planning. The goal of the perceptual component is to estimate the
position and orientation (pose) of an object to be grasped. Then, grasp and motion
planners are used to calculate where to move the robot arm and hand in order to
perform grasp. While this approach can work in ideal scenarios, it has proven to be
surprisingly difficult to localize the pose of novel objects in clutter accurately [6].
More recently, researchers have proposed various grasp point detection methods
that localize grasps independently of object identity. One class of approaches use a
sliding window to detect regions of an RGBD image or a height map where a grasp
is likely to succeed [4, 5, 8, 10, 12, 16]. Other approaches extrapolate local “grasp
prototypes” based on human-provided grasp demonstrations [3, 7, 11].

A missing element in the above works is that they do not leverage the geometry
of grasping to improve detection. Grasp geometry has been studied extensively in
the literature (for example [13, 17]). Moreover, point clouds created using depth
sensors would seem to be well suited for geometric reasoning. In this paper, we
propose an algorithm that detects grasps in a point cloud by predicting the presence
of necessary and sufficient geometric conditions for grasping. The algorithm has
two steps. First, we sample a large set of grasp hypotheses. Then, we classify those
hypotheses as grasps or not using machine learning. Geometric information is used
in both steps. First, we use geometry to reduce the size of the sample space. A trivial
necessary condition for a grasp to exist is that the hand must be collision-free and
part of the object surface must be contained between the two fingers. We propose
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a sampling method that only produces hypotheses that satisfy this condition. This
simple step should boost detection accuracy relative to approaches that consider every
possible hand placement a valid hypothesis. The second way that our algorithm uses
geometric information is to automatically label the training set. A necessary and
sufficient condition for a two-finger grasp is an antipodal contact configuration (see
Definition 1). Unfortunately, we cannot reliably detect an antipodal configuration
in most real-world point clouds because of occlusions. However, it is nevertheless
possible sometimes to verify a grasp using this condition. We use the antipodal
condition to label a subset of grasp hypotheses in arbitrary point clouds containing
ordinary graspable objects. We generate large amounts of training data this way
because it is relatively easy to take lots of range images of ordinary objects. This is
a huge advantage relative to approaches that depend on human annotations because
large amounts of training data can significantly improve classification performance.

Our experiments indicate that the approach described above performs well in
practice.Wefind thatwithout using anymachine learning and just using our collision-
free sampling algorithm as a grasp detectionmethod, we achieve a 73%grasp success
rate for novel objects. This is remarkable because this is a trivially simple detection
criterion. When a classification step is added to the process, our grasp success rate
jumps to 88%. This success rate is competitive with the best results that have been
reported. However, what is particularly interesting is the fact that our algorithm
achieves an average 73% grasp success rate in dense clutter such as that shown in
Fig. 1. This is exciting because dense clutter is a worst-case scenario for grasping.
Clutter creates lots of occlusions that make perception more difficult and obstacles
that make reaching and grasping harder.

1.1 Related Work

The idea of searching an image for grasp targets independently of object identity
was probably explored first in Saxena’s early work that used a sliding window
classifier to localize good grasps based on a broad collection of local visual fea-
tures [16]. Later work extended this concept to range data [8] and explored a deep
learning approach [12]. In [12], they obtain an 84% success rate on Baxter and a 92%

Fig. 1 Our algorithm is able
to localize and grasp novel
objects in dense clutter
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success rate on the PR2 for objects presented in isolation (averaged over 100 trials).
Fischinger and Vincze developed a similar method that uses heightmaps instead of
range images and develops a different Haar-like feature representation [4, 5]. In [5],
they report a 92% single-object grasp success rate averaged over 50 grasp trials
using the PR2. This work is particularly interesting because they demonstrate clutter
results where the robot grasps and removes up to 10 piled objects from a box. They
report that over six clear-the-box runs, their algorithm removes an average of 87%
of the objects from the box. Other approaches search a range image or point cloud
for hand-coded geometries that are expected to be associated with a good grasp.
For example Klingbeil et al. search a range image for a gripper-shaped pattern [10].
In our prior work, we developed an approach to localizing handles by searching a
point cloud for a cylindrical shell [19]. Other approaches follow a template-based
approach where grasps that are demonstrated on a set of training objects are gen-
eralized to new objects. For example, Herzog et al. learn to select a grasp template
from a library based on features of the novel object [7]. Detry et al. grasp novel
objects by modeling the geometry of local object shapes and fitting these shapes
to new objects [3]. Kroemer et al. propose an object affordance learning strategy
where the system learns to match shape templates against various actions afforded
by those templates [11]. Another class of approaches worth mentioning are based on
interacting with a stack of objects. For example, Katz et al. developed a method of
grasping novel objects based on interactively pushing the objects in order to improve
object segmentation [9]. Chang et al. developed a method of segmenting objects by
physically manipulating them [2]. The approach presented in this paper is distin-
guished from the above primarily because of the way we use geometric information.
Our use of geometry to generate grasp hypotheses is novel. Moreover, our ability to
generate large amounts of labeled training data could be very important for improv-
ing detection accuracy in the future. However, what is perhaps most important is that
we demonstrate “reasonable” (73%) grasp success rates in dense clutter – arguably
a worst-case scenario for grasping.

2 Approach

We frame the problem of localizing grasp targets in terms of locating antipodal
hands, an idea that we introduce based on the concept of an antipodal grasp. In an
antipodal grasp, the robot hand is able to apply opposite and co-linear forces at two
points:

Definition 1 (Nguyen [14]) A pair of point contacts with friction is antipodal if
and only if the line connecting the contact points lies inside both friction cones.1

1A friction cone describes the space of normal and frictional forces that a point contact with friction
can apply to the contacted surface [13].
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If an antipodal grasp exists, then the robot can hold the object by applying suffi-
ciently large forces along the line connecting the two contact points. In this paper,
we restrict consideration to parallel jaw grippers – hands with parallel fingers and a
single closing degree of freedom. Since a parallel jaw gripper can only apply forces
along the (single) direction of gripper motion, we will additionally require the two
contact points to lie along a line parallel to the direction of finger motion. Rather
than localizing antipodal contact configurations directly, we will localize hand con-
figurations where we expect an antipodal grasp to be achieved in the future when
the hand closes. Let W ⊆ R

3 denote the robot workspace and let O ⊆ W denote
space occupied by objects or obstacles. Let H ⊆ SE(3) denote the configuration
space of the hand when the fingers are fully open. We will refer to a configuration
h ∈ H as simply a “hand”. Let B(h) ⊆ W denote the volume occupied by the hand
in configuration h ∈ H, when the fingers are fully open.

Definition 2 An antipodal hand is a pose of the hand, h ∈ H, such that the hand is
not in collision with any objects or obstacles, B(h) ∩ O = ∅, and at least one pair of
antipodal contacts will be formedwhen the fingers close such that the line connecting
the two contacts is parallel to the direction of finger motion.

Algorithm 1 illustrates at a high level our algorithm for detecting antipodal hands. It
takes a point cloud, C ⊆ R

3, and a geometric model of the robot hand as input and
produces as output a set of hands,H ⊆ H, that are predicted to be antipodal. There
are two main steps. First, we sample a set of hand hypotheses. Then, we classify
each hypothesis as an antipodal hand or not. These steps are described in detail in
the following sections.

Algorithm 1 Detect_Antipodal_Hands

Input: a point cloud, C , and hand parameters, θ
Output: antipodal hands, H
1: Hhyp = Sample_Hands(C )

2: H = Classify_Hands(Hhyp)

3 Sampling Hands

A key part of our algorithm is the approach to sampling from the space of hand
hypotheses. A naive approach would be to sample directly from H ⊆ SE(3). Unfor-
tunately, this would be immensely inefficient because SE(3) is a 6-DOF space and
many hands sampled this way would be far away from any visible parts of the
point cloud. Instead, we define a lower-dimensional sample space constrained by the
geometry of the point cloud.
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Fig. 2 a Hand geometry. b Cutting plane geometry

3.1 Geometry of the Hand and the Object Surface

Before describing the sample space, we quantify certain parameters related to the
grasp geometry. We assume the hand, h ∈ H, is a parallel jaw gripper comprised of
two parallel fingers each modeled as a rectangular prism that moves parallel to a
common plane. Let â(h) denote a unit vector orthogonal to this plane. The hand is
fully specified by the parameter vector θ = (θl, θw, θd, θt) where θl and θw denote
the length and width of the fingers; θd denotes the distance between the fingers when
fully open; and θt denotes the thickness of the fingers (orthogonal to the page in
Fig. 2a). Define the closing region, R(h) ⊆ W , to be the volumetric region swept
out by the fingers when they close. Let r(h) ∈ R(h) denote an arbitrary reference
point in the closing region. Define the closing plane, C(h), to be the subset of
the plane that intersects r(h), is orthogonal to â(h), and is contained within R(h):
C(h) = {p ∈ R(h)|(p − r(h))T â(h) = 0}.

We also introduce somenotation related to the differential geometry of the surfaces
we are grasping. Recall that each point on a differentiable surface is associated
with a surface normal and two principal curvatures where each principal curvature
is associated with a principal direction. The surface normal and the two principal
directions define an orthogonal basis known as a Darboux frame.2 The Darboux
frame at point p ∈ C will be denoted: F(p) = (n̂(p) (â(p) × n̂(p)) â(p)), where n̂(p)
denotes the unit surface normal and â(p) denotes the direction of minimum principal
curvature at point p. Define the cutting plane to be the plane orthogonal to â(p)
that passes through p (see Fig. 2b). Since we are dealing with point clouds, it is not
possible to measure the Darboux frame exactly at each point. Instead, we estimate
the surface normal and principle directions over a small neighborhood. We fit a

2Any frame aligned with the surface normal is a Darboux frame. Here we restrict consideration to
the special case where it is also aligned with the principal directions.
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quadratic function over the points contained within a small ball (3 cm radius in our
experiments) using Taubin’s method [18, 19] and use that to calculate the Darboux
frame.3

3.2 Hand Sample Set

We want a set that contains many antipodal hands and from which it is easy to draw
samples. The following conditions define the set H . First, for every hand, h ∈ H :

Constraint 1 The body of the hand is not in collision with the point cloud: B(h) ∩
C = ∅.
Furthermore, there must exist a point in the cloud, p ∈ C , such that:

Constraint 2 The hand closing plane contains p: p ∈ C(h).

Constraint 3 The closing plane of the hand is parallel to the cutting plane at p:
â(p) = â(h).

These three constraints define the following set of hands:

H = ∪p∈CH(p), H(p) = {h ∈ H|p ∈ C(h) ∧ â(p) = â(h) ∧ B(h) ∩ C = ∅}.
(1)

Constraint 3 is essentially a heuristic that limits the hand hypotheses that our algo-
rithm considers. While this eliminates from consideration many otherwise good
grasps, it is a practical way to focus detection on likely candidates. One motivation
behind this constraint is that humans prefer grasps for which the wrist is oriented
orthogonally to one of the object’s principal axes [1]. Moreover, it is easy to sample
fromH by: (1) sampling a point, p ∈ C , from the cloud; (2) sampling one or more
hands from H(p). Notice that for each p ∈ C , H(p) is three-DOF because we have
constrained two DOF of orientation and one DOF of position. This means that H
is much smaller than H and it can therefore be covered by many fewer samples.

The sampling process is detailed in Algorithm 2. First, we preprocess the point
cloud, C , in the usual way by voxelizing (we use voxels 3mm on a side in our
experiments) and applying workspace limits (Step 2). Second, we iteratively sample
a set of n points (n is between 4000 and 8000 in our experiments) from the cloud (Step
4). For each point, p ∈ C , we calculate a neighborhood,N(p), in the θd-ball around p
(using aKD-tree, Step 5). The next step is to estimate theDarboux frame at p byfitting
a quadratic surface using Taubin’s method and calculating the surface normal and
principal curvature directions (Step 6). Next, we sample a set of hand configurations

3Taubin’s method is an analytic solution that performs this fit efficiently by solving a generalized
Eigenvalue problem on two 10 × 10 matrices [18]. In comparison to using first order estimates of
surface normal and curvature, the estimates derived from this quadratic are more robust to local
surface discontinuities.
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Algorithm 2 Sample_Hands

Input: point cloud, C , hand parameters, θ
Output: grasp hypotheses, H
1: H = ∅
2: Preprocess C (voxelize; workspace limits; etc.)
3: for i = 1 to n do
4: Sample p ∈ C uniformly randomly
5: Calculate θd -ball about p: N(p) = {q ∈ C : ‖p − q‖ ≤ θd}
6: Estimate local Darboux frame at p: F(p) = Estimate_Darboux(N(p))
7: H = Grid_Search(F(p),N(p))
8: H = H ∪ H
9: end for

over a coarse two-DOF grid in a neighborhood about p. Let hx,y,φ(p) ∈ H(p) denote
the hand at position (x, y, 0) with orientation φ with respect to the Darboux frame,
F(p). Let Φ denote a discrete set of orientations (8 in our implementation). Let X
denote a discrete set of hand positions (20 in our implementation). For each hand
configuration (φ, x) ∈ Φ × X, we calculate the hand configuration furthest along the
y axis that remains collision free: y∗ = maxy∈Y such that B(hx,y,φ) ∩ N = ∅, where
Y = [−θd, θd] (Step 3). Then, we check whether the closing plane for this hand
configuration contains points in the cloud (Step 4). If it does, then we add the hand
to the hypotheses set (Step 5).

Algorithm 3 Grid_Search

Input: neighborhood point cloud, N ; Darboux frame, F
Output: neighborhood grasp hypotheses, H
1: H = ∅
2: for all (φ, x) ∈ Φ × X do
3: Push hand until collision: y∗ = maxy∈Y such that B(hφ,x,y) ∩ N = ∅
4: if closing plane not empty: C(hφ,x,y∗ ) ∩ N �= ∅ then
5: H = H ∪ hφ,x,y∗
6: end if
7: end for

4 Classifying Hand Hypotheses

After generating hand hypotheses, the next step is to classify each of those hypotheses
as antipodal or not. The simplest approach would be to infer object surface geometry
from the point cloud and then check which hands satisfy Definition 2. Unfortunately,
since most real-world point clouds are partial, many hand hypotheses will fail this
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check simply because all relevant object surfaceswere not visible to a sensor. Instead,
we infer which hypotheses are likely to be antipodal using machine learning (i.e.
classification).

4.1 Labeling Grasp Hypotheses

Many approaches to grasp point detection require large amounts of training data
where humans have annotated images with good grasp points [4, 5, 7, 8, 12, 16].
Unfortunately, obtaining these labels is challenging because it can be hard for human
labelers to predict what object surfaces in a scene might be graspable for a robot.
Instead, our method automatically labels a set of training images by checking a
relaxed version of the conditions of Definition 2.

In order to check whether a hand hypotheses, h ∈ H, is antipodal, we need to
determine whether an antipodal pair of contacts will be formed when the hand
closes. Let f̂ (h) denote the direction of closing of one finger. (In a parallel jaw
gripper, the other finger closes in the opposite direction). When the fingers close,
they will make first contact with an extremal pair of points, s1, s2 ∈ R(h) such that
∀s ∈ R(h), sT1 f̂ (h) ≥ sT f̂ (h) ∧ sT2 f̂ (h) ≤ sT f̂ (h).An antipodal hand requires two such
extremal points to be antipodal and for the line connecting the points to be parallel to
the direction of finger closing. In practice, we relax this condition slightly as follows.
First, rather than checking for extremal points, we check for points that have a surface
normal parallel to the direction of closing. This is essentially a first-order condition
for an extremal point that is more robust to outliers in the cloud. The second way
that we relax Definition 2 is to drop the requirement that the line connecting the two
contacts be parallel to the direction of finger closing and to substitute a requirement
that at least k points are found with an appropriate surface normal. Again, the inten-
tion here is to make detection more robust: if there are at least k points near each
finger with surface normals parallel to the direction of closing, then it is likely that
the line connecting at least one pair will be nearly parallel to the direction of finger
closing. In summary, we check whether the following definition is satisfied:

Definition 3 A hand, h ∈ H, is near antipodal for thresholds k ∈ N and θ ∈
[0, pi/2] when there exist k points p1, . . . , pk ∈ R(h) ∩ C such that n̂(pi)T f̂ (h) ≥
cos θ and k points q1, . . . , qk ∈ R(h) ∩ C such that n̂(qi)T f̂ (h) ≤ − cos θ .

When Definition 3 is satisfied, then we label the corresponding hand a positive
instance. Note that in order to check for this condition, it is necessary to register at
least two point clouds produced by range sensors that have observed the scene from
different perspectives (Fig. 3). This is because we need to “see” two nearly opposite
surfaces on an object. Even then, many antipodal hands will not be identified as
such because only one side of the object is visible. These “indeterminate” hands are
omitted from the training set. In some cases, it is possible to verify that a particular
hand is not antipodal by checking that there are fewer than k points in the hand
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Fig. 3 Our robot has stereo
RGBD sensors

Fig. 4 HOG feature
representation of a hand
hypothesis for the box shown
in Fig. 2b

closing region that satisfy either of the conditions of Definition 3. These hands are
included in the training set as negative examples. This assumes that the closing region
of every sampled hand hypothesis is at least partially visible to a sensor. If there are
fewer than k satisfying points, then Definition 3 would not be satisfied even if the
opposite side of an object was observed. In our experiments, we set the thresholds
k = 6 and θ = 20 degrees. However, our qualitative results are not terribly sensitive
to these exact numbers. In general, it might be necessary to tune these parameters
(especially k) with respect to the number of points that can be expected to be found
on a graspable object and the accuracy of the surface normal estimates (Fig. 4).

4.2 Feature Representation

In order to classify hand hypotheses, a feature descriptor is needed. Specifically, for a
given hand h ∈ H, we need to encode the geometry of the points contained within the



316 A. ten Pas and R. Platt

hand closing region, C ∩ R(h). A variety of relevant descriptors have been explored
in the literature [15, 20]. In our case, we achieve good performance using a simple
descriptor based on HOG features. For a point cloud, C , a two dimensional image of
the closing region is created by projecting the points C ∩ R(h) onto the hand closing

plane: I(C , h) = S12F(h)T (N ∩ C(h)), where S12 =
(
1 0 0
0 1 0

)
selects the first two

rows of F(h)T . We call this the grasp hypothesis image. We encode it using the
HOG descriptor, HOG(I(C , h)). In our implementation, we chose a HOG cell size
such that the grasp hypothesis image was covered by 10 × 12 cells with a standard
2 × 2 block size.

4.3 Creating the Training Set

In order to create the training set, we obtain a set of objects that have local geometries
similar to what might be expected in the field. In our work, we selected the set of 18
objects shown in Fig. 5a. Each object was placed in front of the robot in two config-
urations: one upright configuration and one on its side. For each configuration (36
configurations total), let C1 and C2 denote the voxelized point clouds obtained from
each of the two sensors, respectively, and let C12 = C1 ∪ C2 denote the registered
two-view cloud.

The training data is generated as follows. First, we extract hand hypotheses from
the registered cloud, C12 using the methods of Sect. 3. Second, for each h ∈ H,
we determine whether it is a positive, negative, or indeterminate by checking the
conditions ofDefinition 3. Indeterminate hands are discarded from training. Third, for
each positive or negative hand, we extract three feature descriptors:HOG(I(C1, h)),
HOG(I(C2, h)), and HOG(I(C12, h)). Each descriptor is given the same label and
incorporated into the training set. Over our 18 object training set, this procedure
generated approximately 6500 positive and negative labeled examples that were
used to train an SVM. We only did one round of training using this single training
set.

Fig. 5 a Training set comprised of 18 objects. b–d Illustration of the three grasp hypotheses images
incorporated into the training set per hand. The blue triangles at the bottom denote positions of the
two range sensors. c, d Illustrate training images created using data from only one sensor



Using Geometry to Detect Grasp Poses in 3D Point Clouds 317

The fact that we extract three feature descriptors per hand in step three above is
important because it helps us to capture the appearance of partial views in the training
set. Figure5b–d illustrates the three descriptors for an antipodal hand. Even though
the closing region of this hand is relatively well observed in C12, the fact that we
incorporate HOG(I(C1, h)) and HOG(I(C2, h)) into the dataset means that we are
emulating what would have been observed if we only had a partial view. This makes
our method much more robust to partial point cloud information.

4.4 Cross Validation

Weperformed cross validation on a dataset derived from the 18 training objects shown
in Fig. 5a. For each object, we obtained a registered point cloud for two configurations
(total of 36 configurations). Following the procedure described in this section, we
obtained 6500 labeled features with 3405 positives and 3095 negatives. We did
10-fold cross validation on this dataset using an SVM for the various Gaussian and
polynomial kernels available inMatlab.We obtained 97.8% accuracy using a degree-
three polynomial kernel and used this kernel in the remainder of our experiments.

In the cross validation experiment described above, the folds were random across
the labeled pairs in the dataset. This does not capture the effects of experiencing
novel objects or the expected performance when only single-view point clouds are
available. Therefore, we did the following. First, we trained the system using the
degree-three polynomial kernel on the 6500 labeled examples as described above.
Then, we obtained additional single-view point clouds for each of the 30 novel
test objects shown in Fig. 6 (each object was presented in isolation) for a total of
122 single-view points clouds. We used the methods described in this section to
obtain ground-truth for this dataset. This gave us a total of 7250 labeled single-view
hypotheses on novel objects with 1130 positives and 6120 negatives. We obtained
94.3% accuracy on this dataset. The fact that we do relatively well in these cross

Fig. 6 The 30 objects in our
test set
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validation experiments using a relatively simple feature descriptor and without
mining hard negatives suggests that our approach to sampling hands and creating
the grasp hypothesis image makes the grasp classification task easier than it is in
approaches that do not use this kind of structure [4, 5, 8, 12, 16].

5 Robot Experiments

We evaluated the performance of our algorithms using the Baxter robot fromRethink
Robotics. We explore two experimental settings: when objects are presented to the
robot in isolation and when objects are presented in a dense clutter scenario. We
use the Baxter right arm equipped with the stock two-finger Baxter gripper. A key
constraint of the Baxter gripper is the limited finger stroke: each finger has only 2cm
stroke. In these experiments, we adjust the finger positions such that they are 3cm
apart when closed and 7cm apart when open. This means we cannot grasp anything
smaller than 3 cm or larger than 7 cm. We chose each object in the training and test
sets so that it could be grasped under these constraints. Two-view registered point
cloudswere created usingAsusXtion Pro range sensors (see Fig. 3).We implemented
our algorithm in C++ on an Intel i7 3.5GHz system (four physical CPU cores) with
16GB of system memory. On average, learning the SVM model on the 18 object
training set shown in Fig. 5a takes about five minutes, while online grasp detection
and selection given a single point cloud takes about 2.7 s (with 4000 hand samples). It
should be possible for anyone with a Baxter robot and the appropriate depth sensors
to replicate any of these experiments by running our ROS package at http://wiki.ros.
org/agile_grasp.

5.1 Grasp Selection

Since our algorithm typically finds tens or hundreds of potential antipodal hands,
depending upon the number of objects in the scene, it is necessary to select one to
execute. One method might be to select a grasp on an object of interest. However,
in this paper, we ignore object identity and perform any feasible grasp. We choose a
grasp to attempt as follows. First, we sparsify the set of grasp choices by clustering
antipodal hands based on distance and orientation. Grasp hypothesis that are nearby
each other and that are roughly aligned in orientation are grouped together. Each
cluster must be composed of a specified minimum number of constituent grasps. If a
cluster is found, then we create a new grasp hypothesis positioned at the mean of the
cluster and orientedwith the “average” orientation of the constituent grasps. The next
step is to select a grasp based on how easily it can be reached by the robot. First, we
solve the inverse kinematics (IK) for each of the potential grasps and discard those
for which no solution exists. The remaining grasps are ranked according to three
criteria: (1) distance from joint limits (a piecewise function that is zero far from the

http://wiki.ros.org/agile_grasp
http://wiki.ros.org/agile_grasp
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arm joint limits and quadratic nearby the limits); (2) distance from hand joint limits
(zero far from the limits and quadratic nearby limits); (3) workspace distance traveled
by the hand starting from a fixed pre-grasp arm configuration. These three criteria
are minimized in order of priority: first we select the set of grasps that minimize
Criterion #1. Of those, we select those that minimize Criterion #2. Of those, we
select the one that minimizes Criterion #3 as the grasp to be executed by the robot.

5.2 Objects Presented in Isolation

We performed a series of experiments to evaluate how well various parts of our
algorithm perform in the context of grasping each of the 30 test set objects (Fig. 6).
Each object was presented to the robot in isolation on a table in front of the robot.
We characterize three variations on our algorithm:

1. NoClassification:We assume that all hand hypotheses generated by the sampling
algorithm (Algorithm 2) are antipodal and pass all hand samples directly to the
grasp selection mechanism without classification as described in Sect. 5.1.

2. Antipodal: We classify hand hypotheses by evaluating the conditions of Defini-
tion 3 directly for each hand and pass the results to grasp selection.

3. SVM: We classify hand hypotheses using the SVM and pass the results to grasp
selection. The system was trained using the 18-object training set as described in
Sect. 4.4.

In all scenarios, a grasp trial was considered a success only when the robot success-
fully localized, grasped, lifted, and transported the object to a box on the side of the
table. We evaluate No Classification and SVM for single-view and two-view regis-
tered points clouds over 214 grasps of the 30 test objects. Each object was placed in
between 6 and 8 systematically different orientations relative to the robot.

Figure7 shows the results. The results forNo Classification are shown in columns
NC, 1V and NC, 2V. Column NC, 1V shows that with a point cloud created using
only one depth sensor, using the results of sampling with no additional classification
results in an average grasp success rate of 58%. However, as shown in Column
NC, 2V, it is possible to raise this success rate to 73% just by adding a second
depth sensor and using the resulting two-view registered cloud. The fact that we
obtain a grasp success rate as high as 73% here is surprising considering that the
sample strategy employs rather simple geometric constraints. This suggests that
even simple geometric constraints can improve grasp detection significantly. The
results for Antipodal are shown in the column labeled A, 2V. We did not evaluate this
variation for a one-view cloud because a two-view cloud is needed for Definition 3
to find any near antipodal hands. Compared to the other two approaches, Antipodal
finds relatively few positives. This is because this method needs to “see” two sides
of a potential grasp surface in order to verify the presence of a grasp. As a result, we
were only able to evaluate this method over three poses per object instead of six or
eight. In fact, Antipodal failed to find any grasps at all for four of the 30 objects.
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Object
number Succ. Rate number Success Rate
of poses A, 2V of poses NC, 1V NC, 2V SVM, 1V SVM, 2V

Plush drill 3 100.00% 6 50.00% 66.67% 100.00 66.67%
Black pepper 3 100.00% 8 62.5% 62.50% 75.00 100.00%
Dremel engraver 3 100.00% 6 33.33% 50.00% 66.67 100.00%
Sand castle 3 100.00% 6 50.00% 33.33% 83.33 83.33%
Purple ball 0 NA 6 66.67% 100.00% 83.33 100.00%
White yarn roll 3 100.00% 8 87.50% 87.50% 87.50 75.00%
Odor protection 0 NA 8 50.00% 87.50% 87.50 75.00%
Neutrogena box 3 66.67% 8 25.00% 87.50% 87.50 87.50%
Plush screwdriver 3 100.00% 6 83.33% 87.50% 83.33 100.00%
Toy banana box 3 100.00% 8 100% 83.33% 87.50 75.00%
Rocket 3 100.00% 8 50.00% 87.50% 100.00 87.50%
Toy screw 3 100.00% 6 100.00% 100.00% 83.33 100.00%
Lamp 3 100.00% 8 62.50% 83.33% 87.50 87.50%
Toothpaste box 3 66.67% 8 87.50% 100.00% 87.50 87.50%
White squirt bottle 3 66.67% 8 25.00% 12.50% 75.00 87.50%
White rope 3 100.00% 6 66.67% 83.33% 83.33 100.00%
Whiteboard cleaner 3 100.00% 8 62.50% 75.00% 100.00 100.00%
Toy train 0 NA 8 87.50% 100.00% 87.50 100.00%
Vacuum part 3 100.00% 6 33.33% 66.67% 100.00 83.33%
Computer mouse 0 NA 6 33.33% 33.33% 66.67 83.33%
Vacuum brush 1 100% 6 50.00% 83.33% 66.67 50.00%
Lint roller 3 100.00% 8 75.00% 75.00% 87.50 100.00%
Ranch seasoning 3 100.00% 8 50.00% 75.00% 100.00 100.00%
Red pepper 3 100.00% 8 75.00% 75.00% 100.00 100.00%
Crystal light 3 100.00% 8 25.00% 37.50% 75.00 75.00%
Red thread 3 100.00% 8 75.00% 100.00% 100.00 100.00%
Kleenex 3 100.00% 6 33.33% 33.33% 83.33 83.33%
Lobster 3 66.67% 6 16.67% 83.33% 66.67 83.33%
Boat 3 100.00% 6 83.33% 100.00% 83.33 100.00%
Blue squirt bottle 2 100% 8 25.00% 50.00% 75.00 62.50%

Average 94.67% 57.50% 72.92% 85.00% 87.78%

Fig. 7 Single object experimental results. Algorithm variations are denoted as: A for antipodal
grasps (see Sect. 4.1), NC for sampling without grasp classification (see Sect. 3), and SVM for our
full detection system

Although Antipodal appears to be effective (94.7% grasp success rate), it is not
very useful in practice since it works only for a small subset of possible object
orientations. The results for SVM are shown in columns SVM, 1V and SVM, 2V
(results for one-view and two-view point clouds, respectively). Interestingly, there
is not much advantage here to adding a second depth camera: we achieve an 85.0%
success rate with a one-view point cloud and an 87.8% success rate with a two-
view registered cloud. Drilling down into these numbers, we find the following three
major causes of grasp failure: (1) approximately 5.6% of the grasp failure rate in
both scenarios is due to collisions between the gripper and the object caused by arm
calibration errors (i.e. an inaccurate kinematic model that introduces error into the
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Fig. 8 Hard-to-see objects

calculation of forward/inverse kinematics) or collisions with observed or unobserved
parts of the environment; (2) approximately 3.5% of the objects were dropped after a
successful initial grasp; (3) approximately 2.3%of grasp failures in the two-view case
(3.7% in the one view case) were caused by perceptual failures by our algorithm.
The striking thing about the causes of failure listed above is that they are not all
perceptual errors: if we want to improve beyond the 87.8% success rate, we need to
improve performance in multiple areas (Fig. 8).

In the experiments described above, we eliminated seven objects from the test
set because they were hard to see with our depth sensor (Asus Primesense) due to
specularity, transparency, or color. We characterized grasp performance for these
objects separately by grasping each of these objects in eight different poses (total of
56 grasps over all seven objects). Using SVM, we obtain a 66.7% grasp success rate
using a single-view point cloud and a 83.3% grasp success rate when a two-view
cloud is used. This result suggests: (1) our 87.8% success rate drops to 83% for
hard-to-see objects; (2) creating a more complete point cloud by adding additional
sensors is particularly important in non-ideal viewing conditions.

5.3 Objects Presented in Dense Clutter

We also characterized our algorithm in dense clutter as illustrated in Fig. 9. We
created a test scenario where ten objects are piled together in a shallow box. We used
exactly the same algorithm (i.e. SVM) in this experiment as in the isolated object
experiments. We used a two-view registered point cloud in all cluttered scenarios.
The 27 objects used in this experiment are a subset of the 30 objects used in the single
object experiments. We eliminated the computer mouse and the engraver because
they have cables attached to them that can get stuck in the clutter. We also removed
the vacuum brush because the brush part cannot be grasped by the Baxter gripper in
some configurations due to the 3–7cm aperture limits. At the beginning of each run,
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Fig. 9 Dense clutter scenario. a RGB image. b Output of our algorithm

we randomly selected 10 out of the 27 objects and placed them in a small rectangular
container. We then shook the container to mix up the items and emptied it into the
shallow box on top of the table. We excluded all runs where the sandcastle landed
upside down because the Baxter gripper cannot grasp it in that configuration. A run
was terminated when three consecutive localization failures occurred. In total, we
performed 10 runs of this experiment.

Over all 10 runs of this experiment, the robot performed 113 grasps. On average,
it succeeded in removing 85% of the objects from each box. The remaining objects
were not grasped because the system failed to localize a grasp point three times in a
row. Over all grasp attempts, 73% succeeded. The 27% failure rate breaks down into
the following major failure modes: 3% due to kinematic modelling errors; 9% due to
perceptual failures caused by our algorithm; 4% due to dropped objects following a
successful grasp; and 4% due to collision with the environment. In comparison with
the isolation results, these results have a significantly higher perceptual failure rate.
We believe this is mainly due to the extensive occlusions in the clutter scenario.

6 Discussion

This paper proposes a new approach to localizing grasp poses of novel objects pre-
sented in clutter. Themain contributions are: (1) a method of using grasp geometry to
generate a set of hypotheses that focus grasp detection on relevant areas of the search
space; (2) a method of using grasp geometry to label a training set automatically,
thereby enabling the creation of a large training set grounded in grasp mechanics.
As a result of these contributions, our method stands out from the existing work (for
example [3, 4, 7, 11, 12]) in a couple of different ways. First, our method can detect
6-DOF hand poses from which a grasp is expected to succeed rather than detecting
grasp points (typically 3-DOF) in a depth image or heightmap such as in [4, 12]. Sec-
ond, our method of automatic training set generation should enable us to train better
classifiers because we can generate as much training data as we want and reduce



Using Geometry to Detect Grasp Poses in 3D Point Clouds 323

label noise because labels are generated based on objective mechanical conditions
for a grasp. It should also be noted that our grasp hypothesis generation mechanism
might be used independently of the grasp classification strategy. It is striking that
the proposal mechanism alone (without any classification but with outlier removal)
can yield a 73% grasp success rate when grasping objects presented in isolation.
Essentially, this sample set constitutes a proposal distribution that should boost the
performance of any classifier. Finally, the fact that we document a drop in grasp suc-
cess rate from 87.8% for objects presented in isolation to 73% for objects presented
in clutter suggests that clutter is a significantly more difficult problem that needs to
be studied more closely.
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Grasping with Your Brain: A
Brain-Computer Interface
for Fast Grasp Selection

Robert Ying, Jonathan Weisz and Peter K. Allen

1 Introduction

People with restrictedmobility currently require significant infrastructural support in
order to perform activities of daily living (ADL), including things like manipulating
objects, opening doors, and other basic actions that able-bodied people often take
for granted. With the current state-of-the-art robotic arms, hands, and perception
systems, it is clear that robotic grasping systems could help reduce the dependency
severely disabled individuals have on live-in caretakers, and provide them with the
ability to actively interact with their environment.

However, the robotic grasping systems which show the greatest promise in per-
forming ADL tend to be highly complex, involving high degree of freedom manip-
ulators and precise control to achieve their objectives. It is therefore important to
present users with a high-level interface to these grasping systems that can operate
with relatively little training.

In previouswork [21–23],we have presented a shared-control online grasp planner
that collaboratively determines feasible grasps under the active direction of a user
through a low-bandwidth interface.We have demonstrated the efficacy of this system
using a variety of facial EMG-based devices inmoderately cluttered scenes.However,
this interface depends on the ability of the user to trigger relevant facial muscles
repeatably and reliably.

R. Ying · J. Weisz · P.K. Allen (B)
Department of Computer Science, Columbia University, 500 W. 120th Street,
M.C. 0401, New York, NY 10027, USA
e-mail: allen@cs.columbia.edu

R. Ying
e-mail: robert.ying@columbia.edu

J. Weisz
e-mail: jweisz@cs.columbia.edu

© Springer International Publishing AG 2018
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 2, DOI 10.1007/978-3-319-51532-8_20

325



326 R. Ying et al.

In this work, we extend this system to an EEG-based system, which has a number
of advantages. Firstly, the neurological phenomena used in the system is a subcon-
scious reaction to visual stimuli, and therefore needs very little relevant user expertise
to operate. Secondly, the planner can take advantage of visual ambiguity between
functionally similar grasps to achieve fast convergence in the shared-control par-
adigm. The user acts as a filter for the planner, directing it to a desired approach
direction and filtering proposed candidates until a reasonable one is found. Three
users were able to use this system with minimal training to pick up a variety of
objects in a semi-cluttered scene.

2 Prior Work

Brain-Computer Interface (BCI) control over prosthetic and assistive manipulators
has been the subject of a great deal of research, through many different strategies and
input modalities. Recently there has been a resurgence of interest in this field. One
widely cited recent advance was reported by Vogel et al. [19], who showed that a
subjectwith aBrainGate cortically-implanted electrode can use a roboticmanipulator
to retrieve a drink container by controlling the end-effector location and the opening
and closing of the hand. However, this approach requires an invasive device capable
of recording a large number of high quality signals.

Noninvasive EEG systems have been demonstrated in a number of simpler tasks.
In [15], surface electrode signals related to eye gaze direction are used to control
2D arm position and EEG signals are used to detect eye blinks to control gripper
closing. In [9], hand opening/closing and elbow flexion/extension are controlled by
EEG signals.

The majority of previous work using EEG control concentrates on trajectory
control. However, it has been shown that users find BCI control easier using even
higher-level, goal-oriented paradigms [16]. We have begun to see work that attempts
to exploit higher-level abstractions to allow users to perform more complex tasks
with robotic arms. In [2], EEG signals were used to select targets for pick and place
operations for a small humanoid robot. In [20], the authors used EEG signals to
control pick and place operations of a 4-DOF Staubli robot. Bryan et al. [3] presented
preliminary work in extending this approach to a grasping pipeline on the PR2 robot.
In that work, a 3D perception pipeline is used to find and identify target objects for
grasping and EEG signals are used to choose between them.

Recently, some authors including [11, 12] have explored shared control paradigms
which integrate computer vision, intra-cortical EEG recording, and online planning
to perform reaching, grasping, and manipulation tasks. These works are promising,
but rely on the higher fidelity control available from implanted devices. In [4], the
planner presented in our work, which is focused on acquiring an appropriate grasp
of the object with arbitrarily complex hands, was integrated with a similar system.
In this work, we introduce an interface to the user which allows them to control
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higher level, more abstract goals with lower throughput devices, which could be
made complimentary to these other shared controlled paradigms.

3 Methods

3.1 Overview

We present here a prototype of an assistive grasping system which integrates a BCI
drivenuser interfacewith a perceptionpipeline, a lightweightmountablemanipulator,
in this case the 6-DOF Mico arm with a two-finger underactuated gripper [10], and
an online grasp planning system to allow a user to grasp an object in moderately
cluttered scenes. It decomposes the grasping task into a multi-step pipeline where
each step generates a visual representation of the options the user can take. Some
options which cannot be visually represented, such as returning to a previous state,
are presented as white text on a black background. At each stage, the online planning
system derives a set of reasonable possible actions and presents them to the user,
reducing the complex task of grasping an object in cluttered scenes to a series of
decision points that can be navigated with a low throughput, noisy input such as
an EEG headcap. Figure1 shows a healthy subject in our validation study using the
system to grasp a bottle of laundry detergent in a typical scene.

3.2 Grasp Planning

This system uses the Online Eigengrasp Planner introduced by Ciocarlie et al. in [5].
This planner uses simulated annealing to generate grasp candidates by projecting
desired contacts points on to the target object to find grasps likely to result in a force
closed grasp. In order tomake this task computationally tractable, a reduced subspace
of the hand’s full configuration is sampled. In the case of the a simple gripper such
as that on the Mico, this may not be necessary, but the use of this planner makes the
computational cost of using a more complex hand nearly the same as this simpler
hand. Candidate grasps in near contact positions are refined to completed grasps by
kinematic simulation of closing the hand at a predefined set of joint velocities.

The resulting contacts are ranked by the maximum wrench perturbation force
they are capable of resisting, as described in [6], and the closeness of the alignment
between the hand and the object’s surface. If the quality metric is above 0.2 and
all of the dot products of the normal direction of the hand and object is above
0.8 for all of the contact points, the grasping pose is tested for reachability using
the PRM planner of MoveIt! [18]. When the scene is cluttered, the motion planner
for the reaching motion is slow and likely to fail. In order to make this problem
more computationally tractable, we cache previous solutions as grasps are planned.
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Fig. 1 The subject guiding the system through the active refinement phase. On the left side is the
robotic manipulator and three containers in the grasping scene. On the right is a subject using the
system through the B-Alert EEG cap, which is relatively unobtrusive and can be worn for long
periods of time. The options for the active refinement stage are presented on the monitor in front
of the subject in a grid to allow the subject to pick the one they intend to select during the serial
presentation. In this example, at least one of the grasps found in the database for the object was
reachable, and is highlighted in blue in the upper left corner of the grid. The user may choose to
execute the highlighted grasp, or to re-seed the planner with one of the other nine grasps and then
re-enter the active refinement phase with a new highlighted grasp

Whenever a previous solution ends near the new candidate grasp pose, we plan
from its end point to the new grasp candidate. Since the nature of our grasp planner
produces many nearby solutions, this makes the reachability filter significantly faster
and more robust. Grasps are ranked first by reachability, then by the grasp quality,
and finally by the maximal surface misalignment.

The neighbor generating function of the simulated annealing planner is biased
towards a configuration demonstrated by the user. By controlling this seed configu-
ration, the user controls the resulting set of candidates that will presented to them.
This allows the user to find a grasp for a particular purpose by iteratively picking the
grasp whose pose is nearest to the grasp that they are looking for.

3.3 One-of-Many Selection

TheEEG interface presented in this paper is based on an “interest” detectorwhich can
be used to provide a one-of-many selection between various options. This “interest”
signal paradigm is based on the work in [14]. The options are presented as a stream of
images, and the subject is primed to look for particular images that suit some criterion.
This paradigm is known as Rapid Serial Visual Presentation (RSVP). Spikes in
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Fig. 2 The grasp planning system compiles a set of images representing potential actions, for
example a set of grasps as seen in this image. The image options are tiled together to form the
summary pane seen on the left, which lets the user pick out the one that reflects their desire. The
images are then shuffled, with repetitions, into a stream that is serially presented to the user as
described in Sect. 3.3.3

EEG activity which correlate with “interest” are connected with the image that was
presented at the time the EEG activity was evoked, which is then used to derive the
user’s desired input.

Previous work with this paradigm has asked the subject to look for objects of a
particular category. In our system, the images represent actions that are suggested by
the grasp planner, which the subject may not have had previous experience with. In
this case, the subject must be given time to analyze the options and primed to find the
features which make their desired option visually distinct from similar options. In
Fig. 2, we illustrate the summary pane containing a grid of all of the options, which
are then shuffled and presented to the user. In Fig. 1, you can see the subject reviewing
the options in a summary pane before the serial presentation of them begins.

One major advantage of this paradigm is that it generalizes a single interaction
across all phases of the grasp planning pipeline. The systemonly needs to be trained to
recognize the “interest” signal for each subject. Afterwards, the subject’s interaction
with each phase is the same, and the system does not require phase-specific training.

3.3.1 EEG Input

Our current implementation uses a B-Alert X10 EEG system from Advanced Brain
Monitoring (Carlsbad, CA), which provides 9 electrodes positioned according to
the 10–20 system and a pair of reference channels. The EEG data is acquired at
256Hz, with 60Hz notch and 0.5Hz high-pass filters applied before any additional
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processing. The EEG interest metric is based on that described in [8, 14, 17], with
some additional normalization and post-processing.

More information on this systemcan be found online at themanufacturer’swebsite
[1]. As can be seen in Fig. 1, the cap and device are relativelyminimalistic, and can be
comfortably worn for an hour at a timewithout requiring rewetting or reseating of the
electrodes. With the advent of the OpenBCI project [13] and similar efforts towards
low cost, open hardware EEG devices, a low cost solution with similar capabilities
may be on the horizon.

3.3.2 EEG Interest Metric

The EEG interest metric is based on the one used in [8, 14, 17]. In essence, it assumes
that the P300 signal resulting from a particular image varies with a resolution of
100ms. For each block, it examines the time period from 100 to 1200ms after the
input stimulus as separate 100ms blocks, combined in a linear model:

ysn =
∑

i

wi xin y =
∑

n

vn ysn (1)

where each xin is the reading at a specific electrode i at some time period n, ysn is
the weighted total score over a single 100ms block and y is the combined score for
the 1100ms time period following the stimulus. The weights wi are learned from the
training data so as to maximize the difference between target and non-target images
in each time block using Fisher linear discriminant analysis [7]. Then, the weights
vn are determined by applying logistic regression on the training data.

In training, we additionally compute summary statistics for both target and non-
target images, which are used later to normalize the individual readings per trial.

3.3.3 Option Generation

To generate the RSVP sequence, the system randomly selects each option to appear
between three and seven times. The sequence is then randomly shuffled, with the
constraint that the same option does not appear in two consecutive image presenta-
tions. This method has, in experimental data, been sufficient to trigger the “oddball”
response that is necessary for the P300 signal.

If there are less than five options, the system will automatically fill in distractor
image options to make this constraint more feasible. The images are dependent on
the phase and attempt to minimize the visual difference between the distractor and
the original, so as to avoid unintentionally triggering the P300 signal. For example,
in the object selection state, the distractor options are of the scene with no objects
selected; whereas in the active refinement state they are images of the object with no
visible grasp.
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More formally, the grasp planner generates a set of options Q = T ∪ G, where T
is a set of strings representing textual options (e.g. “Rerun object recognition”), and
G is a set of potential grasp or object images. If |Q| < 5, the selection system then
adds 5 − |Q| distractor images d to result in Q′.

From Q′, we generate the sequence of images I as follows:

I = shuffle(Iq11, Iq12, . . . , Iq1c1 , Iq21, . . . , Iqkck ) (2)

where k = |Q′|, qi ∈ Q′ and c j ∼ U (3, 7) ∀ j ∈ [1, k].
The images are eachpresented at 4Hz, andpreliminaryEEGscores ei are assigned.

We then aggregate each of the n = ∑k
j=1 c j images by their option, and determine

whether or not the user has made a selection.
To test if the user has consciously selected any of the images, we sort the images

by their EEG scores, and then split it into a group of size x and n − x . We vary x so
as to maximize the change in the average measured EEG score:

x∗ = arg max
x∈[1,n]

(
1

n

n∑

i=1

ei − 1

n − x

n∑

i=x+1

ei

)
(3)

If x∗ > max(0.2n, 7), we determine that the user had not made a choice. In practice,
this is a highly reliable means of checking whether the user was paying attention and
attempting to make a selection.

If x∗ ≤ max(0.2n, 7), we compute a smoothed similarity score using the top x∗
positions.

3.3.4 Option Scoring

Theoptions are scoredusing a smoothed similaritymetric, represented as a symmetric
matrix S ∈ Rk×k , computed such that Sii = 1 and Si j = Sji ∈ [−1.0, 1.0].

We can then construct the weighted score vector W as

Wq =
x∗∑

i=0

Sqi q (4)

where qi is the option corresponding to Ii , and return

q∗ = argmax
q∈Q′ Wq (5)

This scoring method introduces a bias towards groups of similar options, and
in essence allows a near-miss selection to nonetheless help select the desired
option. From our experiments, this is particularly helpful with subjects who are less
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experienced with the system, as they often make minor mistakes during the selection
process.

We note that this is equivalent to a simple voting scheme if S = Ik×k , i.e. the
identity matrix of size k. Thus, for options where there is no obvious similarity
metric, such as textual or distractor options, we use the corresponding rows and
columns from the identity as default.

3.4 Grasping Pipeline

There are four states that the user progresses through when attempting to formulate a
grasp, Object Selection, Grasp Selection, Grasp Refinement, and Confirmation. The
pathway is illustrated in Fig. 3.

3.4.1 Object Selection State

In this stage, an object recognition system is used to retrieve models from a database
that fit the scene. An image representing selection of each object is generated as
shown in the “summary pane” in Fig. 4a, with the target object highlighted green
in each potential selection. Between the various images only the highlighted object
changes. An additional state is presented that allows the user to run the recognition
system again. If fewer than eight objects are detected, additional distractor images of
the scene with no highlighted object are generated to act as distractor images which
help establish the background level of EEG activity. The user is instructed to just
look for the object they want to grasp as the image stream is shown. In this state,
the similarity matrix is the identity matrix over the viable options, as the objects are
highly dissimilar.

3.4.2 Grasp Selection and Refinement State

Once the object is selected, the system moves into the grasp selection state. The
user’s interaction with the grasp selection state and refinement states are very similar.
Examples of the “summary pane” for these phases are shown in Fig. 4b, c.

In the grasp selection state, the set of preplanned grasps is retrieved and placed
in an arbitrary order. Each of the grasps is visually distinct, and supplies the planner
with an approach angle to start with. One additional text option is presented, which
sends the user back to the object selection stage. When any grasp is detected as a
valid selection, the system enters the grasp refinement state, setting the seed grasp gs
to the one just selected. If fewer than eight grasps are available, images of the object
without a visible grasp are used as distractors.

In the grasp refinement state, the online planner begins populating the grasp list
with more grasps that are similar to gs . After allowing the planner to run for fifteen
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Fig. 3 A diagram outlining the EEG RSVP-driven grasping pipeline. In each phase, a series of
images is generated representing the available options, as described in Sect. 3.4. A summary pane
of the image options generated at each phase is presented in more detail in Fig. 4a–d

seconds, the available grasps are presented to the user. In most cases, this will be
a list of at least ten potential grasps. As each grasp is generated, it is checked for
reachability– while even non-reachable grasps are sent to the user, the grasp refine-
ment state cannot be exited until a reachable grasp has been selected. The highest
quality reachable grasp gp is highlighted in blue in the user interface (Fig. 4c), so
that the user has feedback as to what the planner is deciding between.
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(a) Object Selection State (b) Grasp Selection State

(c) Grasp Refinement State (d) Confirmation State

Fig. 4 a The three objects visible in the planning screen are presented to the user, with the object
to be selected highlighted in green. The scene is overlaid with the pointcloud data from the Kinect,
so that the user can verify that the objects have been recognized and positioned correctly within the
scene. b The initial set of pre-computed grasps from a database. The user may choose to go back to
the previous phase and choose a different object, or to seed the online grasp planner using one of
the available grasps. c An updated set of grasps in the active refinement state, generated from grasp
number 8 from Fig. 4b. The selected grasp gs is reachable and highlighted in blue. Note that the
generated grasps are visually distinct, but still have small groups of functionally identical grasps.
d There are effectively only two options in the confirmation state, which acts as a final check to
determine whether the selected grasp gs is the one that the user would like to execute

Once the user selects a grasp, the planner updates gs to the new grasp’s hand state
and approach vector. If the updated gs = gp, then the user exits grasp refinement and
enters the confirmation state.

In this phase, we also take advantage of visual ambiguity. We compute the simi-
larity matrix S as follows:

Si j = 〈ûi , û j 〉 = cos θi j (6)

where ûi and û j are the approach directions for the grasps under consideration.
As per usual, for distractor images and text, we set all of the rows and columns

representing non-grasp options to the default identity matrix.
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This reduces the number of ambiguous selections that occur when the user has no
strong preference among a subset of very similar grasps, which is a fairly common
outcome under experimental conditions.

Furthermore, within any 20◦ cone, we allow only five grasps to be added to the
option set.Whenmore than five are found, the oldest grasp (least-recently-generated)
is penalized and moved to the end of the list, behind grasps with a more different
approach direction. This forces some heterogeneity to remain in the grasps that are
presented to the user, while additionally allowing the user to “walk” the grasping
point and direction to a new approach direction, even if it is not presented in any of
the previous options.

In the confirmation state, the user is shown an image corresponding to the selected
grasp gs , alongwith a set of distractor images presenting just the target object without
a grasp. The user also has the text option “GoBack-Replan”, which returns the user to
the object selection phase. Selecting the grasp again confirms the grasp for execution
and sends the desired grasp to the robot.

3.4.3 Execution State

In the execution state, the user is presented with only three text options: “Restart
Execution”, which restarts the execution if it has failed, telling the robot to return
to its home position and attempt to grasp again; “Stop Execution”, which stops the
robot from continuing the execution and returns to the confirmation state, and a set
of distractor images which say “Distractor Image.”

4 Experiment

We have validated this system on three subjects, asking them to lift each of three
objects visible in Fig. 5: a shaving gel bottle, a detergent bottle, and a shampoo bottle.
The three objects are placed arbitrarily within the field of view of the Kinect camera,
such that they do not fully occlude each other. In each case, we have verified that the
object is within the reachable working area of the Mico arm, so there is at least one
feasible grasp.

The subject is given the opportunity to inspect the scene, and is then asked to lift
each of the objects three times from either the top, from the side, or at their own
discretion. All testing was approved by the Institutional Review Board of Columbia
University under Protocol IRB-AAAJ6951.

The experimental setup can be seen in Fig. 1, and a video of a subject going
through the pipeline is available online.1

1http://isrrvideo.wc.aeturnalus.com/.

http://isrrvideo.wc.aeturnalus.com/
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Fig. 5 A typical grasp of the shampoo bottle from the side in the cluttered scene. Note that the
hand is just able to fit between the other objects to grasp the desired target. Note that the ability to
plan this grasp in such a restricted environment is an indication that this system is very successful
at handling the cluttered scene

4.1 Training

To demonstrate the various stages in the pipeline, the user is shown the system
running under keyboard control, where each option can be selected by pressing its
corresponding key. We allow the subject to walk through the stages of the grasping
procedure as many times as they ask, (always less than five), while explaining what
is being visualized at each step.

The EEG classifier weights described in Eq.1 must be retrained each time the
headset is placed on the user’s head. This process takes approximately ten to fifteen
minutes, and also serves to help familiarize the user with the RSVP paradigm.

During the training phase, the user is shown a “block” of 42 images. 40 of these
images are selected uniformly from a set of fifteen object models similar to those
presented during the object selection phase, while the remaining two are marked as
“target” images and selected from a set of four images of bowls. Unlike the object
selection phase, however, these object images are presented one at a time, without
the other objects visible. There is also no “summary pane”, as the images would be
too small to practically see. Instead, the subject is shown the set of four potential
target images.

In each block, the subject is told that there will be exactly two target images,
and is asked to search for them in the sequence. After a block of images has been
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Table 1 Experimental results from three subjects

Grasp Subject Misselections Refinement
iterations

Time(s)

Detergent bottle
top

1 0 1 120

2 2 3 150

3 1 2 135

Detergent bottle
side

1 0 1 120

2 1 2 135

3 0 1 120

Detergent bottle
choice

1 0 10 270

2 0 2 135

3 3 5 180

Shampoo bottle top 1 0 1 135

2 0 1 120

3 0 1 150

Shampoo bottle
side

1 0 1 120

2 1 1 135

3 0 2 135

Shampoo bottle
choice

1 1 1 210

2 1 3 120

3 0 1 150

Shaving gel top 1 0 2 180

2 1 1 120

3 0 2 135

Shaving gel side 1 1 2 135

2 0 1 120

3 0 2 150

Shaving gel choice 1 0 2 120

2 0 1 120

3 0 2 180

presented, the user is also shown the location of the two target images in the sequence
and, separately, where the classifier placed those images in a list sorted by detected
interest level.
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The user is presented blocks at a self-paced rate until at least 20 blocks have been
presented, and the user is able to consistently place the two target images in the top
three sort positions. The latter condition is usually fulfilled before the former.

4.2 Results

The results of this experiment are summarized in Table1. In all cases, the subjects
were successful in selecting reasonable grasps that lifted the object. However, the
system did not always detect the option that the subject wanted correctly. In the table,
the third column describes the number of misselections, which represents the number
of times that the user inadvertently selected an option. Because the pipeline allows
stepping back through each phase, this is not fatal, though it does result in a longer
task duration (shown in the fifth column in fifteen-second increments). Detected
selections of known “distractor” images are not considered misselections, as they do
not elicit any actual action that changes the state of the system. The fourth column
describes the number of iterations of the “grasp refinement” stage the user stepped
through in order to find an acceptable grasp.

When grasping the detergent bottle, Subject 1 chose to attempt to grasp the handle
of the object starting from a top grasp, eliciting the “walking” behavior described
in Sect. 3.4.2. This necessitated a correspondingly large number of iterations of the
refinement state.

The largest number of misselections came from the users accidentally selecting
the option to rerun object detection in the “object selection” phase. Misselections of
the wrong grasp during the “grasp refinement” stage when the user actually wanted
to accept the current best grasp (gs , above) and continue to the confirmation state
also occurred, but these mistakes were quickly recoverable because similar grasps
were very likely to be present in the next set of presented grasps.

5 Conclusions

These results are encouraging, and demonstrate that a relatively fast and effective
pipeline based off of only EEG data is workable. The experiment revealed some
issues, specifically in terms of how images are generated when representing abstract
concepts (e.g. text-based image options, and the “selected” grasp in the “grasp refine-
ment” stage).

The most common misselection was the command to redo the object detection
during the “object selection” phase. This is probably because the difference between
the images representing object selections and the text option image is large and
somewhat startling, which elicits a reaction from the subject. A similar issue was
seen in the initial attempt to use the system with Subject 2, who selected the blue
image option every time it was presented in the “grasp refinement” stage, until the



Grasping with Your Brain: A Brain-Computer Interface … 339

brightness of the backgroundwas reducedby50%.After thismodification, the subject
had no trouble making the correct selection in the “grasp refinement” stage. Subject
2 sometimes had trouble making the correct selection in the “confirmation” stage,
possibly because the distractor images were too similar, which makes the task too
different from the one that the classification system is trained on.

There is an enormous space of design parameters that can be explored to poten-
tially resolve some of these issues to produce a more robust system. One option
would be adapting the thresholds used by the classifier based on the content of the
image options. Another option would be to modify the training set of images to be
more similar to the images presented in the task stage. While the current training
regime has proven to be somewhat generalizable, it may not be adequately represen-
tative of the responses that are elicited by large stimuli like the blue background of
the “selected image.” Finally, some calibration procedure for modifying the images
based on the responses they elicit from the user may need to be incorporated into the
training regime.

The extension of the online Human-in-the-Loop planner to this EEG based image
streaming paradigm has just begun. In its current implementation, the subject deci-
sions are elicited at fixed points of the pipeline. Future work will move towards
attempting to integrate the EEG data in a more real-time strategy, perhaps being
fully embedded into the augmented reality environment. Although this system is
primarily designed as a component of an assistive robotic manipulation platform,
the real time system would be useful even for able-bodied users as a fast, passive
filter for eliciting feedback from the user.

Finally, another approach to be explored in the future may be to combine this
method with the sEMG method from [21]. This multimodal strategy would incor-
porate an EEG-based classifier for directing the planner towards the user’s prefer-
ences while a facial EMG input is used to signal discrete decisions. Such a system
would address the shortcomings of each individual modality – allowing the system
to quickly filter reasonable options, where accuracy may be less important so long
as it is somewhat conservative, while making the final selections, which affect the
state of the robot and may result in inappropriate or potentially damaging behaviors,
more robust.
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Spine Balancing Strategy Using Muscle
ZMP on Musculoskeletal Humanoid
Kenshiro

Yuki Asano, Soichi Ookubo, Toyotaka Kozuki, Takuma Shirai, Kohei Kimura,
Shunichi Nozawa, Youhei Kakiuchi, Kei Okada and Masayuki Inaba

1 Introduction

Several studies have been conducted on the development of a stabilizer for humanoids,
as this is a very important component for humanoids that are unstable under bipedal
conditions. Some of these studies focus on posture stabilization during bipedal walk-
ing [2, 9]. Others concentrate on the development of balancing strategies with force
control [4, 11]. In such stabilizer studies, the concept of Zero Moment Point(ZMP)
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is often used as an indicator to prevent humanoids from falling. In general, a normal
ZMP-based stabilizer often depends on 6DOF force sensors installed on both feet of
the robot, which are used for computing ZMP. A malfunction of these 6DOF force
sensors is not rare as they are subjected to impact loadings caused by humanoid leg
movements. The breakdown of such a non-redundant sensor would be fatal because
the humanoid would then fall into an uncontrollable situation. However, it is not real-
istic to install redundant sensors considering the sensor size and the limited design
space. Moreover, the sensors restrict humanoid design flexibility as high-rated 6DOF
force sensors tend to be large and this leads to a size constraint in the design process.
Therefore, balancing control depending on 6DOF force sensors is an issue that should
be discussed in humanoid research as a redundant installation of these sensors is dif-
ficult and the sensors malfunction.

On the contrary, musculoskeletal humanoids with human-inspired structures can
adopt a new balancing strategy by utilizing their musculoskeletal structures, such
as redundant sensor systems imitating the human muscle, tactile and proprioceptive
receptors, or skeletal structure represented by the spine and the spherical joints. Fur-
ther, balancing studies on musculoskeletal humanoids utilizing their musculoskele-
tal bodies have been conducted. In these studies, the researchers have attempted to
achieve balancing by using the muscle reflex along with ankle and hip joints, which
are joints used in human balancing strategy [7, 10].

We believe that we can build a stabilization indicator corresponding to the normal
ZMP by utilizing a redundant force sensor system composed of muscle tension
sensors. In other words, we can use joint torques calculated from muscle tensions
instead of torques measured by 6DOF force sensors to obtain a ZMP-corresponding
stabilization indicator independent of the 6DOF force sensors. Therefore, in this
paper, we propose “muscle ZMP” as a stabilization indicator instead of the normal
ZMP for musculoskeletal humanoids and implement the stabilizer utilizing the spine
on the basis of this muscle ZMP. Further, we validate the effectiveness of muscle
ZMP and the spine stabilizer by demonstrating several balancing movements of the
musculoskeletal humanoid Kenshiro as shown in Fig. 1.

Fig. 1 Spine balancing by musculoskeletal humanoid Kenshiro
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The rest of this paper is organized as follows: Sect. 2 describes the concept of
the balancing strategy proposed in this paper and the musculoskeletal humanoid
Kenshiro used in this study. Section 3 discusses the derivation of muscle ZMP and
its verification in detail. Section 4 explains the implementation of the spine stabi-
lizer based on muscle ZMP for musculoskeletal humanoids. Section 5 describes the
balancing experiments conducted using the musculoskeletal humanoid Kenshiro to
demonstrate effectiveness of the proposed balancing strategy. Section 6 presents the
conclusion and briefly discusses the future research direction.

2 Balancing Strategy for Musculoskeletal Humanoids

2.1 Musculoskeletal Humanoid Kenshiro

We have developed several musculoskeletal humanoids with the purpose of building
more humanlike humanoids with complex and flexible structures [5, 6, 8]. In this
study, we use our latest musculoskeletal humanoid Kenshiro. Kenshiro has 64 joint
DOFs in its body (excluding the DOFs of hands and the face); in particular, the
spine joint is one of the unique characteristics of Kenshiro. Each joint is actuated
by redundant muscle actuators. The total number of muscle actuators in Kenshiro is
105 (50 for the legs and 55 for the upper body). In terms of muscle arrangement, we
selected human primal muscles that are important for fundamental motions. These
muscles have the same arrangement as in humans. The left image in Fig. 2 shows
the muscle arrangement in the upper body of Kenshiro, and the right one illustrates
Kenshiro’s spine structure. The musculoskeletal structure of Kenshiro’s legs is shown
in Fig. 3. Tables 1 and 2 present a list of names of the muscles in Kenshiro’s upper
body and legs, respectively. The joint movement range is given in Table 3.
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Fig. 2 Left Upper body of Kenshiro including the muscles [3]. Right Spine structure of Kenshiro.
The spine is composed of five vertebrae with a combination of springs and aluminum parts [6]
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Fig. 3 Joint configuration and muscle arrangement of Kenshiro’s legs

Table 1 Names of muscles in Kenshiro’s upper body

# Muscle Name Joint

1 Longus colli Neck

2 Sternocleidomastoid Neck

3 Scalenus Neck

4 Trapezius(upper) Neck, blade

5 Splenius capitis Neck

6 Obliquus capitis
superior

Neck

7 Rhomboid Blade

8 Infraspinatus Shoulder

9 Posterior deltoid Shoulder

10 Medial deltoid Shoulder

11 Anterior deltoid Shoulder

12 Subscapularis Shoulder

13 Trapezius(bottom) Blade

14 Pectoralis major Shoulder

15 Serratus anterior Blade

16 Latissimus dorsi Spine, shoulder

17 Brachialis Elbow

18 Triceps brachii Elbow

19 Rectus abdominis Spine

20 Erector spinae Spine

21 Internal oblique Spine

22 External oblique Spine
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Table 2 Names of muscles in Kenshiro’s legs

# Muscle Name Joint

1 Iliopsoas Hip

2 Tensor fasciae latae Hip

3 Rectus femoris Hip, knee

4 Sartorius Hip, knee

5 Vastus lateralis Knee

6 Vastus medialis Knee

7 Tibialis posterior Ankle

8 Peroneus longus Ankle

9 Tibialis anterior Ankle

10 Pectineus Hip

11 Adductor longus Hip

12 Adductor brevis Hip

13 Adductor magnus (lateral) Hip

14 Adductor magnus (medial) Hip

15 Gluteus medius (front) Hip

16 Gluteus medius (back) Hip

17 Gluteus maximus (upper) Hip

18 Gluteus maximus (lower) Hip

19 Piriformis Hip

20 Biceps femoris short Knee

21 Semimembranosus/Semitendinosus Hip, knee

22 Biceps femoris longus Hip, knee

23 Gastrocnemius (lateral) Knee, ankle

24 Gastrocnemius (medial) Knee, ankle

25 Soleus Ankle

Table 3 Joint movement range of Kenshiro

Joint∗1 Movement range (deg)

Spine R −63–63

P −57–90

Y −10–10

Hip R −55–70

P −85–35

Y −60–60

Knee P −4–160

Y −30–40∗2

Ankle R −25–12

P −20–60
∗1 R = roll, P = pitch, Y = yaw
∗2 Knee pitch angle = 100 (deg)
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2.2 Problem of 6DOF Force Sensors in Musculoskeletal
Humanoid

Only few 6DOF force sensors have both a high rating and a compact size that satisfy
the installation requirements of Kenshiro designed to have humanlike proportions.
We adopted a compact 6DOF force sensor (FTSens produced by Istituto Italiano
di Tecnologia) with a diameter of 45 mm that fit the design of Kenshiro. However,
this sensor has relatively low moment ratings for whole-body humanoids, and it is
difficult for such compact sensors to measure high moment loads. Fig. 4 shows an
example of a moment load on an ankle joint exerted when Kenshiro is standing on
both legs. The sensor stops for the duration of the application of a high moment load
(60–90 s). One of the reasons that the sensor stops is believed to be the hypothesis that
the combination of the vertical force and the moment load is greater than the rated
value during body inclination. In contrast, joint torques calculated by muscle tensions
are observed normally during this period. The sensing mechanism for muscle tension
does not have a problem with such loading because it has a measurable rate of about
100 kgf.

Therefore, in a musculoskeletal humanoid that requires compact 6DOF force
sensors, sometimes, torques calculated by muscle tensions are more effective than
those calculated by 6DOF force sensors.
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Support 
polygon

COGleg

COGupper

COGwhole

With out spine stabilizer
(only hip and ankle motion)

With spine stabilizer
(spine compensates for COG position)

COGwhole is outside 
the support polygon

COGwhole is inside 
the support polygon

Fig. 5 Spine stabilizer approach proposed in this paper

2.3 Spine Utilization for Balancing Stabilizer

A humanoid does not fall down when its projected center of gravity (COG) is inside
a support polygon composed of foot positions and lengths. A stabilizer has to control
the entire body to keep the projected COG inside the support polygon. In this study,
as illustrated in Fig. 5, we compensate for the whole-body COG movement derived
from the leg motion by controlling the spine to move the upper body COG so that the
projected whole-body COG is inside the support polygon. It is possible to compensate
for large COG movements of the leg by utilizing a wide spine movement range.

3 Muscle ZMP for Musculoskeletal Humanoid

3.1 Muscle ZMP Principle

3.1.1 Joint Torque in Musculoskeletal Humanoid

We describe joint torques on the basis of muscle tensions in a musculoskeletal
humanoid. In the case of a musculoskeletal humanoid with n muscles in its ankle
joint, a joint torque vector T (∈ R2) around the x and y axes is computed as follows



348 Y. Asano et al.

with the condition of the muscle tension vector in the ankle F(∈ Rn) and the muscle
Jacobian G(∈ Rn×2).

T = GT F (1)

[
τm,x

τm,y

]
= GT

⎡
⎢⎢⎢⎣

f1

f2
...

fn

⎤
⎥⎥⎥⎦

where a muscle Jacobian denotes a Jacobian matrix associating the muscle length
vector L with the joint angle vector θ. The muscle Jacobian is obtained from the
following equation: G(θ) = ∂L/∂θ.

3.1.2 Computation of Muscle ZMP

In general humanoids, ZMP is computed using 6DOF force sensors installed on the
robots’ foot links. ZMP derivation is clearly described in [1]. Moment around the
point p can be described as shown below. Its geometrical condition is illustrated in
Fig. 6.

τ ( p) =
N∑

j=1

{( p j − p) × f j + τ j } (2)

where p represents the ZMP position and p j indicates the position of force sensor.
The ZMP position is calculated by solving the above equation for px and py under the
condition that the right-side x and y components are zero; this condition represents a
moment equilibrium around the point p. The ZMP position px , py can be described
as follows:

Foot
Foot

Fig. 6 Geometrical configuration for computing ZMP



Spine Balancing Strategy Using Muscle ZMP on Musculoskeletal … 349

px =
∑N

j=1{−τ j y − (p jz − pz) f j x + p jx f j z}∑N
j=1 f j z

(3)

py =
∑N

j=1{τ j x − (p jz − pz) f j y + p jy f j z}∑N
j=1 f j z

(4)

In order to obtain the muscle ZMP, we eliminate the horizontal forces at the force
sensors, which are difficult to measure by using muscle tensions. In other words, we
use the assumption that fx ≈ 0 and fy ≈ 0. Further, we assume that when the force
sensor is close to the ground, these influences decrease. As an additional condition,
we can use the ground reaction force fz as it is needed to compute ZMP and can be
measured easily by using simple an axis or three axes force sensor. Moreover, we use
joint torques obtained from muscle tensions (τm) instead of torques obtained by the
6DOF force sensor (τ ). Using these conditions, we obtain the muscle ZMP position
pm,x , pm,y as follows by rewriting Eqs. (3) and (4). The condition for the ankle is
illustrated in Fig. 7.

pm,x =
∑N

j=1{−τm, j y + p jx f j z}∑N
j=1 f j z

(5)

pm,y =
∑N

j=1{τm, j x + p jy f j z}∑N
j=1 f j z

(6)

We consider the case of N = 2 for both leg force sensors, and the measurement
center of fz is located on the force sensors. The reference frame is at the middle point
of the sensors. Thus, we can obtain the muscle ZMP position as follows:

fz

x

z

y
z

Right view Back view

fz

O O

Muscle wire

FTsensor

fmuscle

Ankle joint

fmuscle fmuscle fmuscle

Fig. 7 Ankle geometric condition to derive muscle ZMP
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Fig. 8 Ankle muscle arrangement and 6DOF FTsensor configuration of Kenshiro. Muscle numbers
correspond to those used in Fig. 3 and Table 2

pm,x = −τm,Ly + pLx fLz − τm,Ry + pRx fRz

fLz + fRz
(7)

pm,y = τm,Lx + pLy fLz + τm,Rx + pRy fRz

fLz + fRz
(8)

pm = [pm,x , pm,y, pm,z]T (9)

In this paper, we define pm as muscle ZMP, which is obtained using joint torques
based on muscle tensions and only the ground reaction force. We use it as an indicator
of stabilization control.

Kenshiro’s feet have six muscles in the ankle joint and a 6DOF force sensor, as
shown in Fig. 8. The ankle joint torques are obtained from these six muscles, and the
6DOF force sensor is used for obtaining only the ground reaction force fz .

3.2 Validity of Muscle ZMP

We validate the characteristics of muscle ZMP by comparing it with a normal ZMP
computed using 6DOF force sensors. First, we compare joint torques based on muscle
tensions, with the torques obtained from the 6DOF force sensors. In an experiment,
we seize one of the Kenshiro’s feet in the air with tensioned muscles and load it for
various directions. The result is shown in Fig. 9. Both torque values are almost the
same for the entire period. Therefore, we can use the joint torques obtained from
muscles instead of the torques obtained using the force sensors.

Next, we conduct an experiment to the validity of muscle ZMP against that of
the normal ZMP obtained from the force sensor. In the experiment, we compare
both ZMP values during Kenshiro’s movement in the standing position, which is
generated as its COG trajectory move along a circle. The left subfigure of Fig. 10
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Fig. 9 Comparison of ankle joint torques obtained using muscle tensions and those obtained using
FTsensor
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Fig. 10 Left Comparison of ZMP values obtained using muscle tensions and those obtained using
FTsensor. Right The plot in the xy plane

shows the result, and thus, we can confirm that both ZMP values are almost the same.
The right subfigure of Fig. 10 shows the plot of the result in the xy plane. It should
be noted that low position accuracy against the target trajectory is caused by entire
body flexibility of musculoskeletal humanoid.

3.3 Horizontal Force Influence to Muscle ZMP

In fact, normal ZMP includes moment components of horizontal forces fx and fy . In
contrast, muscle ZMP does not take into account horizontal forces as in the current
Kenshiro configuration including the muscle arrangement or the sensor system with-
out the 6DOF force sensor, it is difficult to measure horizontal forces. We discuss
the validity of the elimination of the moment components in this system.

We compare the torques obtained from the 6DOF force sensor and moment com-
ponents calculated using horizontal forces obtained from the same force sensor.
Figure 11 shows a plot of the comparison for the experiment described in Sect. 3.2.
With respect to the y axis, we can eliminate the moment component generated
from the horizontal force from the ZMP calculation as the y-axis torque is dom-
inant. A percentage of the absolute min-max value between T y_ f rom_sensor and
Moment_ f rom_ f x is 0.0833. With respect to the x-axis, the moment component
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Fig. 11 Moment influence generated from fx and fy against FTsensor torques

is relatively large against the x-axis torque. The percentage of the absolute min-max
value between T x_ f rom_sensor and Moment_ f rom_ f y is 0.265. Therefore, as a
characteristic of the muscle ZMP, the x position can be calculated with high accuracy.
There is a possibility of low accuracy of its y position calculated using the x-axis
torques. However, our motivation is to achieve humanoid motion in spite of a rela-
tively low ZMP accuracy or not precise joint position control derived from flexible
and redundant humanlike structures. In order to obtain more accurate muscle ZMP,
one of the methods is to use three axes force sensors for taking horizontal forces into
the calculation process of the muscle ZMP.

4 Spine Stabilizer for Balancing Control

4.1 Spine Stabilizer Overview

We now present an overview of the spine stabilizer system implemented in this study
in Fig. 12. At the beginning of the stabilizer sequence, the humanoid is set in a
standing position on the ground and we obtain muscle ZMP as the reference ZMP.
There is a component to estimate joint torques in the upper part of the control cycle.
This component estimates the joint torques of each joint on the basis of relative muscle
variations and muscle tensions. In the layer of the spine stabilizer, the stabilizer
computes the muscle ZMP and the target spine angle. The humanoid moves according
to the decided spine angle, and then, the muscle lengths, muscle tensions, and ground
reaction forces are updated. Further, the spine stabilizer can compensate for humanoid
motions generated from joint angle commands sent from the upper layer.
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Fig. 12 Flowchart of the
spine stabilizer sequence

Update spine angles: 

Joint angles

Compute muscle ZMP: 

Spine stabilizer layer

Robot hardware Muscle tensions
Muscle lengths
Ground reaction force

PI control based on 

Start sequence.
Decide reference ZMP position: 

Estimate joint torque: 

8 [ms] cycle

Muscle lengths

Hip angles
Ankle angles
etc…

Convert angle to length

4.2 Implementation of Spine Stabilizer

The spine stabilizer is implemented to compensate for humanoid imbalance by mak-
ing spine roll or, pitch movement. The movement is generated by the PI control of
the spine angle on the basis of an error between the reference ZMP and the muscle
ZMP of this cycle. Muscle lengths related to the decided spine angles are computed
and sent to the humanoid. Thus, we control the spine as follows:

θspine = K pe(t) + Ki

∫
e(t)dt (10)

θspine =
[

θroll

θpitch

]
(11)

e(t) =
[

pre f
y − py(t)

pre f
x − px (t)

]
(12)

where e(t) denotes the ZMP error at each control cycle. Further, pre f
x and pre f

y

represent the x and y components of reference ZMP, respectively. As the reference
ZMP, we use values at the beginning of the stabilizer sequence. Then, we implement
this sequence in the layer of the 8 ms control cycle.
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5 Balancing Experiment with Spine Stabilizer Based
on Muscle ZMP

We conducted balancing experiments utilizing the two components proposed in the
previous sections. The first is component is the muscle ZMP used as a balancing
indicator instead of the normal ZMP. The other is the spine stabilizer based on the
PI control of spine angles.

5.1 Forward and Backward Balancing

We conducted forward and backward balancing experiments in the sagittal plane. In
both experiments, the ankle and hip joint angles were commanded from the upper
layer and the spine stabilizer compensated for the imbalance of Kenshiro. The upper
layer command was determined by the operator. During the experiment, the head
and pelvis angles of Kenshiro could be measured from the IMUs installed on each
link.

The left image of Fig. 13 shows the setup of the forward balancing experiment,
and the right image illustrates the plot of the experimental data. We can confirm
that the spine stabilizer works well in terms of the behavior of the muscle ZMP,
which seemed to follow the reference ZMP. Moreover, we can confirm a large body
bending movement from the maximum head pitch angle of 54.0 deg. Figure 14 shows
the setup of the backward balancing experiment and a plot of the experimental data.
We can also confirm the stabilizer’s contribution to balancing by observing the similar
behavior of the muscle ZMP that followed reference ZMP. Further, we can confirm
a large body extension movement from the minimum head pitch of −54.4 deg.
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Fig. 13 Left Forward flexion movement by musculoskeletal humanoid Kenshiro. Right Experi-
mental data during the forward flexion movement of Kenshiro
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Fig. 14 Left Backward extension movement by musculoskeletal humanoid Kenshiro. Right Exper-
imental data during the backward extension movement of Kenshiro

Fig. 15 Left Weight addition experiment with the spine stabilizer. A 15-kgf weight is added, and the
result are shown in the right image. Right Experimental data during the weight addition experiment

5.2 Balancing with Weight

We conducted an experiment to validate the loading durability. We added weights
to the bags attached to the end effectors of Kenshiro. Kenshiro could remain in a
standing position with a 15 kgf weight.

The left image of Fig. 15 shows the experimental setup, and the right shows a
plot of the experimental data. We can confirm that the spine stabilizer works well.
In terms of the ground reaction force, we can confirm that a load of about 15 kgf
(147 N) is exerted on Kenshiro because the total ground reaction force is 477 N at 0 s
and 622 N at 110 s.
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6 Conclusion and Future Works

In this paper, we proposed a new balancing strategy for musculoskeletal humanoids
with redundant force sensors. The purpose of this study was the exploration of a new
humanoid control strategy compared to an ordinary strategy based on an accurate
ZMP measurement and precise position control.

We proposed the use of muscle ZMP as a stabilization indicator instead of the
normal ZMP based on 6DOF force sensors by utilizing muscle tensions acquired
from the robot’s muscle actuators. From the validation experiment of muscle ZMP,
we confirmed that torques obtained from muscle tensions are almost the same as
those obtained from 6DOF force sensors. Moreover, we validated the muscle ZMP
value by comparing it with a normal ZMP. Furthermore, we implemented a muscle
ZMP-based spine stabilizer for compensating humanoid imbalance. By using the
stabilizer, we demonstrated the forward and backward bending motions of Kenshiro
and its loading durability with about 15 kgf weights. Although a musculoskeletal
humanoid is seemingly complex with redundant body structures, we demonstrated
that it is possible to construct a novel whole-body control strategy for humanoids by
using their complexity effectively.

In the future, we would like to extend the use of muscle ZMP as a more robust
indicator for stabilization by considering the friction between a robot’s feet and
the ground. Moreover, we would like to conduct the verification not only under
static conditions but also in dynamic situations. We would also like to integrate the
balancing strategy with a whole body motion generation software program on the
basis of the abovementioned attempts. We believe that this will lead to the formulation
of a new humanoid control strategy based on humanlike flexibility or redundant
body structures that allow low-accuracy joint position control or robot motion under
uncertain environmental conditions.
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How to Think About Grasping
Systems - Basis Grasps and Variation
Budgets

Leif P. Jentoft, Qian Wan and Robert D. Howe

1 Grasping Systems and Variation

Creating versatile grasping capabilities is a longstanding challenge in robotics.
Although robots grasp effectively in structured factories, they need to be more versa-
tile to handle objects in unstructured environments where many factors affect grasp
success, including awide range of object shapes and sizes, incomplete and frequently
inaccurate perception, uncertainties in surface friction and mass, and robot position-
ing errors. The high-dimensionality of the problem makes it difficult to understand
the capabilities and limitations of grasping systems. Analytical methods (such as
grasp simulation and manipulability analysis) are limited because real environments
contain too many objects described by too many parameters for tractable evaluation.
Standardized object sets enable experimental comparison of the performance of dif-
ferent systems, but it is not straightforward to extrapolate from such experiments to
predict performance on novel objects. Thus there is a lack of effective system-level
metrics, and this poses a major barrier to progress because understanding the capa-
bilities and limitations of grasping systems is essential for comparing the benefits of
different approaches, and for evaluating design tradeoffs within and between robot
subsystems. As a result, robotics researchers must currently direct their efforts based
on intuitive analysis of prior results.

The goal of this paper is to develop a framework for understanding grasping
system performance and for designing capable systems. In the first half of this paper,
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we cast the grasping problem as overcoming variation and project it onto a traditional
robot subsystem decomposition. This forces explicit examination of which sources
of variation matter, and provides a way to understand the tradeoffs between alternate
ways to address the variation,which is particularly useful to compare the performance
of disparate systems.

In the second half of this paper, we use this approach to build a methodology
for designing grasping capabilities. First, we start with a basis grasp: a specific fin-
ger configuration on a specific object. Second, we design a combination of motion
sequences, sensing, and passive mechanics to make grasp acquisition robust to vari-
ations in object shape and pose, perception, and robot control. Third, we analyze the
basis grasp’s robustness to local variation to determine the basin of attraction, the
range of variation it can tolerate while still achieving a good grasp. Finally, we treat
this basin of attraction as a variation budget that can be distributed across subsystems
to inform system tradeoffs between perception errors, robot inaccuracies, and object
variation. To extend system capabilities to a greater range of objects and variations,
additional basis grasps can be added. The principle advantage of this approach is that
within such a specific context, the effects of local variations can be understood, as
well as quantified and therefore compared across disparate systems.

2 Posing the Grasping Problem as Overcoming Variation

The ultimate goal is to build grasping systems that work everywhere, on everything.
The challenge is overcoming variation, which comes from a wide range of sources,
including object diversity in shape, friction, mass, and pose; perceptual variability
due to limited camera resolution, segmentation errors, and occlusion; robot arm and
finger positioning errors; noise and sensitivity limits in force sensors; and many
others. In this section, we present an overview of how the subsystems of a robot
grasping system work together to deal with variability. This provides a consistent
way to understand the relative advantages of different approaches and to understand
the tradeoffs within subsystems, enabling incremental progress in the development
of grasping systems.

2.1 System Breakdown

As a foundation for analysis, it is helpful to break out the typical subsystems of a
robotic grasping system as described in Fig. 1. This, of course, shows only the major
interactions (real systems have more complex information flow), roughly following
the classical “sense - think - act” structure.

The Task Interface presents the robot’s general capabilities to a user so they can
engage it to perform a specific task. This can be very simple – how tomove individual
robot joints – or more complicated – what objects are perceived by the robot, how



How to Think About Grasping Systems - Basis Grasps and Variation Budgets 361

Fig. 1 A typical system breakdown for a grasping robot. The task interface is used to direct the
robot’s general capabilities to a specific task, setting the required parameters. The perception and
modeling system takes raw sensor data from the real world and uses it to synthesize an internal
model. The planning and reasoning system uses this model to map the task parameters to the
sequence of commands executed by the low-level control, and (if necessary) change the plan based
on new feedback from the perception/modeling system

to grasp them, etc. Robots do not need to autonomously compensate for all sources
of variation to be useful, but the more they can overcome automatically, the simpler
the task interface is and the better they can function outside static environments.

The Perception System gathers and interprets data from the messy real world to
create an internal model of the object to be grasped and the surrounding environment.
This can both remove variation by creating an accurate internal model, and introduce
variation through perceptual inaccuracies. The more detailed the model, however,
the more difficult or time-consuming it is to create: a simple 2D view of the facing
side of an object is easier to obtain than a precise 3D geometric model that includes
the object’s far side.

The Planning-Reasoning System plans low-level actions such as where to place
fingers on an object to overcome variation in shape or pose, and how to sequence
corrective actions. It bases these plans on themodel created by the perception system,
information from the task interface, and any a priori knowledge.

The Low-Level Control system is the interface to interactions with the external
world, such as arm and hand hardware and closed-loop controllers for joints, and
passive or compliant mechanisms that automatically adapt to limited ranges of exter-
nal variations. Choosing the appropriate basis for this control has a large impact on
the level of variation tolerated from the rest of the system – stiff position-controlled
actuators exert large forces in response to positioning errors from the perception sys-
tem, whereas force-control loops may require more nuanced reasoning about how to
use environmental affordances to maintain stability.

2.2 Robot Grasping Results Viewed in Terms of Variation

Using this framework, prior research in grasping, albeit on diverse and seemingly
unrelated topics, can all be seen as working towards coping with variation.
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Traditional industrial applications of robots use careful structuring of the envi-
ronment and heavy, stiff robots to eliminate variation in the object and in robot
motion. This severe restriction on object and environment variation allows industrial
application to use simple perception, planning, and control systems. Any variation
from one object to another, such as switching the production line to a new product,
must be addressed through the task interface. Typically, this requires a highly-trained
technician to use low-level programing or a teach pendant to reconfigure the system
for each new object.

Simulation-based planners such asGraspIt [22] andOpenRave [5] compensate for
variations in object geometry and pose by finding the right locations to place fingers
to achieve a good grasp. Many different hand poses are sampled, and their quality is
evaluated using grasp metrics such as as epsilon quality [10] and reachability. These
planning systems place a large burden on the perception system because they require
a precise, complete model of the object geometry, so, for example, the perception
system must fill in raw sensor data by fitting object models from a priori object
libraries to clusters of points. Most simulation-based planning approaches do not
compensate for variations due to inaccuracies in the perception or robot control
systems, though recent work by Weitz et al. [29] incorporates this into the grasp
quality metric.

Grasp site strategies compensate for variations in object pose and geometry by
searching for consistent grasp sites on varied objects. This simplifies the perception
system because it removes the need for detailed or a priori object models. Instead,
this approach attempts to find acceptable grasp sites directly in raw perception data.
Saxena et al. search for grasp sites directly in 2D image data [27]. By manually
labeling the grasp points for a parallel gripper on a set of objects in simulation, they
create visual classifiers for grasp sites by simulating scenes under a wide range of
poses and lighting conditions. These classifiers performwell on novel objects outside
of simulation.Working with laser range data, Klingbeil et al. use a template to search
for regions that match the shape of a parallel-jaw gripper [17]. Herzog et al. present
a more generalized approach in a similar vein [12] based on a general grasp site
template searched across orientations. This allows the re-use of more complicated
grasps from human demonstrations, and results are presented using both a parallel-
jaw gripper and a Barrett Hand in two different preshapes. The existing literature
does not show how much variation is tolerated in the identified grasp sites, but the
overall performance of such systems is strong.

Heuristic grasp planners use empirical rules to determine where to place a hand
to compensate for varied geometry and pose. For example, Hsiao et al. create a set of
candidate grasps around stereotyped poses and score them based on factors such as
the quality of perception data at the grasp site, their likelihood to cause the object to
be knocked over, and their proximity to the current position of the gripper [13]. This
approach also reduces demands on the perception system, as detailed object models
are not required. Understanding the capabilities and limitations of these systems is
challenging because it is difficult to connect the collection of heuristics to the range
of variation in object shape and pose where they are successful; most papers only
characterize system performance against ad hoc collections of objects.
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Anthropomorphic hands are perhaps the most complex examples of the low-level
control system inFig. 1. These hands attempt tomimic human functionalitywith three
to five highly-dexterous fingers that can exert contact forces in any direction [4, 20,
23]. In principle, themany degrees of freedom in these hands can be used to copewith
a wide range of object variation. Unfortunately, understanding how to use this com-
plexity in unstructured grasping has proved elusive. A number of factors contribute
to the challenges. The needed interactions with planning and perception systems
have not been successfully defined or implemented. There is a considerable body of
theoretical work that seeks to compensate for variations in object geometry and task
constraints by controlling contact forces; a good review is presented byShimoga [28].
However, although this provides an elegant way to understand the role of geometric
variation, low-level control of these complex machines has been limited by factors
such as friction, tendon dynamics, and poor contact sensing. Anthropomorphic hands
have rarely been used outside of controlled research settings.

Underactuated hands compensate for variations in object pose, object geometry,
perception errors, and arm positioning errors by mechanical design [1, 2, 8, 18].
Compliance in the fingers allows them to passively adapt to the details of the object
geometry, and thereby reduces the load on both the perception and planning sys-
tems. [7]. Recent work such as the coin-flip primitive presented by Odhner et al.
in [19] has extended this approach beyond grasping into manipulation.

The final examples examined here come from three teams in the DARPA
Autonomous Robot Manipulation competition that developed systems to perform
a set of pre-specified tasks with a known set of objects and tools [11]. These are
among the best-integrated and autonomous grasping systems presented to date, so
their approach to dealing with variability is of particular interest.

The system created by Hudson et al. [14] primarily used the perception system
to overcoming variations in robot arm positioning and camera registration. They
modeled the difference between the arm’s actual pose and expected pose using an
unscented Kalman filter, and made extensive use of a priori object models to com-
pensate for occluded camera views. This effectively compensated for variations from
both the low-level control system (which introduced positioning errors up to several
cm) and from the perception system, and the team achieved top scores in the compe-
tition. It provided only a limited solution to object variation; the grasp planner used
a full 3D model of each object to create a library of grasp candidates by simulating
which hand placements maximize contact surface, and the resulting grasp candidates
were manually pruned for each object.

The system created by Schaal et al. [26] primarily used the low-level control sys-
tem to overcome variation in the arm positioning and object geometry and pose. In
their approach, grasping is reformulated from the position domain to the force domain
using “Dynamic Motion Primitives” (DMPs). Because the DMP only requires a
few parameters, this formulation also enables the effective use of machine learning
to optimize the grasping plans. The plans themselves are created from demonstra-
tion. Because force-domain execution requires less information about the object
than position-domain execution, this approach is more readily adapted to unknown
objects. Although a priori object models are used in [26] in a manner similar to
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Hudson et al.’s approach (using iterative-closest-point matching to align model
and sensor data), the team was subsequently able to extend it to a model-free
approach [12]. An extensive calibration routine is required to compensate for varia-
tions in the response of the strain gauges used to measure force.

Bagnell et al. [3] overcame variation by detecting errors and sequencing correc-
tions using behavior trees implemented in a framework called the “Behavior Archi-
tecture for Robotic Tasks” (BART). This approach relied on creating a good task
interface to sequence and combine primitives in the planning-reasoning system.

Thus these three teams focused on different subsystems in their solutions, with
the first focusing on the perception system, the second on the low-level control
subsystem, and the third on the task interface and planning-reasoning subsystems.
By considering the mechanisms for coping with variability, we can understand why
these teams achieved roughly comparable performance despite the use of radically
different approaches.

3 Basis Grasps and Variation Budgets

We can also apply the framework prospectively to design and analyze new robot
grasping capabilities, again defining grasping capability in terms of the ability to
successfully execute a grasp across variation (in object geometry, perceptual noise,
etc.). Under this definition, the key challenge to creating broader functionality is
to understand what variation matters for achieving a successful grasp, and to design
systems that compensate for it. To do so, we invert the usual order: rather than starting
with an object and determining how to grasp it, we start with a basis grasp, a specific
finger configuration, and determine the range of object variation where it will work.
Second, we enlist the entire robot (perception, planning, low-level control systems)
to make this grasp tolerate local variation and still achieve a successful grasp. Third,
we analyze the bounds of this variation to determine the basin of attraction around the
template configuration. This is both ameasure of grasping capability, and ametric for
where the grasp can be successfully applied. To extend the range of object variation
that can be grasped, we can create a collection of basis grasps with different basins
of attraction.

The principle advantage is that variation is easier to understand when examined
locally as deviation from a basis grasp. This means it is faster to establish which
sources of variation are dominant in determining a grasp’s success. It is also easier
to see how to cope with variations using a robot’s full capabilities, and it is more
tractable to establish bounds for the system’s ability to grasp related objects. In the
following section, several examples are presented to illustrate the framework.
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3.1 Overhead Three-Fingertip Grasp

In the first example, we study the i-HY hand [25] (Fig. 2) in an overhead fingertip
grasp on a box-shaped object sitting on a table (Fig. 3). This hand has three compliant,
underactuated fingers, each controlled by a separate actuator, along with a fourth
actuator that controls the orientation of the two fingers. Tactile sensors are located
on the fingers, and the proximal joints are equipped with magnetic encoders; the
deflection of the distal joints can be determined from the excursion of the tendon
measured at the proximal joints and at the spools on the actuators. In this basis grasp,
the fingers are placed on antipodal surfaces of the object.

Determining the object variation range. Now, we analyze the dominant types of
variation that limit successful grasps. The point of this analysis is not to demonstrate
a method that overcomes any arbitrary source of variation, but to show how such
analysis canbeused to easily understand the capabilities and limits of a givengrasping

Fig. 2 The i-HY hand

Thumb Fingers

Object

Hand

Object

Thumb

Finger 1

Finger 2

(a) Side View (b) Overhead View

Fig. 3 An example basis grasp: the overhead fingertip grasp on a rectangular prism a side view b
overhead view
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(a) (b) (c)

Fig. 4 a The important part of an object’s geometry is the place where fingers contact the object.
This can be used to parameterize variations due to b object pose and robot registration and c object
geometry and imperfect visual segmentation

system. In this grasp (as in many), the dominant factor is object geometry and object
pose. The basis grasp is defined with the fingers well-aligned with the hand (Fig. 4a),
but if the object pose is rotated due to inaccuracies in the perception or control
systems, finger contact locations will be displaced and rotated (Fig. 4b). Simple
analysis of finger motions and surface normals can then reveal the range of pose
variation where this grasp will succeed.

Similarly, if the object shape is not a rectilinear box, the grasp may still succeed.
The key observation is that the only part of the object geometry that affects grasping
is the contact surface patches where the fingers make contact (Fig. 4c). Thus when
the grasp is used as the reference frame (rather than the object, as in traditional grasp
analysis), all geometric variations from object, robot control, and sensing can be
condensed into one quantity: the local variation in the surface patches where fingers
contact the object. Once again, analysis of finger motions and surface normals will
specify the range of shape variation (and combination of shape and pose variation)
where this basis grasp will succeed.

Extending the grasp variation range. To make this grasp more robust to local
variation, we then enlist the other subsystems of the robot, particularly the low-
level control system. One variation that is important to take into account is vertical
position of the object, due to errors in the perception system, mis-calibration of
the robot arm with respect to the vision system, robot control errors, etc. We can
compensate for vertical variation by referencing thefinger pose to the table supporting
the object (Fig. 5). This is done by with a guarded move from above (i.e. approach-
until-contact), using tactile sensors in the finger tips to determine when contact
occurs. This eliminates the need for precise estimation of the height of the object
from the perception system. We also slide the fingers along the table surface as they
close – this approach uses the compliance of the fingers to compensate for any minor
variation in vertical position that might allow thinner objects to slip underneath the
fingertips as they close.
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(a)

(b)

Fig. 5 Sensing, control, and targeted mechanical design can be used expand the basin of attraction.
For the surface grasp, a a guarded move against the supporting surface is used to compensate for
variation in the contact surface height, and b contact-relative motion around the object surface is
used to compensate for variation in the contact surface extent

We can extend the basis grasp’s tolerance to variation in the width of the object
(i.e. the contact surface patches) by again using a guarded move. After the fingers
contact the table surface, the hand is lifted incrementally while maintaining fingertip
contact. When the tactile sensors in the distal link signal contact with the side of
the object, the controller can shift from closing the fingers to increasing grasp force.
Alternatively (or in addition), the joint position signals can indicate that the fingertips
have stopped closing. Note that these strategies for dealing with variation in both
vertical height and width are based in strategic use of low-level control – neither
guarded moves or compliant contact require detailed information from the world
model created by the perception system.

Having defined the basis grasp in terms of finger configuration as well as low-
level control behavior, we can establish quantitative bounds on how much variation
can be tolerated for each important parameter of variation. The fingers must contact
the object as they close, which means the object width must fit inside the fingers in
order for the acquisition strategy to succeed (Fig. 6-left), and the object must extend
laterally past the two adjacent fingers (Fig. 6-right). This forms a performance bound
on how much variation in object size the grasp can tolerate, as shown in the shaded
region in Fig. 6. Similar analysis can be applied to variation in object orientation,
friction,mass, etc. –where selection of factors to include is a function of the dominant
balance in a given grasp.We propose the term basin of attraction to describe the range
of variation the grasp tolerates.

A simple experiment was performed to illustrate this approach, as shown in Fig. 7.
A small object (an allen key set, approximately 25 x 25 x 75mm) was placed on a
table and the hand executed the overhead fingertip basis grasp. This process was
repeated as the hand was shifted in each direction. Fig. 7-left shows the results for
shifting in the width direction, and Fig. 7-right shows the results for shifting laterally.
In each plot, the height of the red line above the displacement axis indicates the region
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Fig. 6 The basin of attraction for the overhead fingertip grasp when the object is centered in the
grasp

Fig. 7 Experimental validation of the basin of attraction closely matches predicted results. A small
object (allen key set) was grasped under a variety of positioning offsets to determine the bounds on
the basin of attraction

of grasp success, which closely corresponds to the simple analysis predicting grasp
success.

Variation budgets. Now that the limits to variation have been determined, this
basin of attraction can be treated as a variation budget that can be allocated to
the diverse sources of variation for a particular application (Fig. 8). For example, the
uncertainties due to limitations in the visual perception and robot control subsystems
can be determined, and subtracted from the total basin of attraction. The remaining
region then defines the range of object variation that the system will be able to deal
with effectively - i.e., the overall system’s variation performance. This approach
makes it possible to evaluate quantitative tradeoffs between different subsystems and
determine, for example, the impact of low-precision arm control or high-resolution
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Fig. 8 The basin of attraction serves as a variation budget that can be spent on different subsystems.
Here uncertainties due to perception and robot control are represented as the red regions that shrink
the shaded region that is available to deal with object variations

(a) (b) (c)

Fig. 9 Building a collection of basis grasps. a The Overhead Three-fingertip Grasp does not cover
sufficient object variation to grasp narrow objects. c A robot’s skills can be augmented by adding
additional basis grasps, such as the two-fingered pinch. b The central panel shows the basin of
attraction (circles) for each of the two grasps; the region of intersection includes objects that can
be successfully grasped with either basis grasp

RGB-D imaging on the range of objects that can be grasped. It can also be used to
compare different grasping strategies and grasping systems.

3.2 Other Basis Grasps

A single basis grasp spans only a limited (but defined) range of objects; a collection
of them can be used to provide wider capabilities. For example, the Overhead Three-
fingertip Grasp cannot grasp objects smaller than the spacing between the adjacent
fingers (Fig. 9a). However, another primitive can be constructed based around the
pinch configuration, with the two fingers rotated so that they meet in the center
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(the thumb is not used), as shown in Fig. 9c. This extends the hands capability for
grasping small objects. The same approaches can be used to generate tolerance
of local variation (guarded moves, compliance), but note that there is a different
dominant balance for which variation is important for this grasp. Two opposing
fingers are less able to resist moments caused by offset center of mass, so the object’s
mass and alignment with the center of mass matter more than with the three-fingered
grasp.

4 Discussion

Thegoal of this paper is to present away to reason about dominant effects in themessy
problem of robot grasping. Despite a significant effort to find a unified theoretical
framework for grasping, none has achieved widespread success. This is perhaps
not surprising given the complexity of the physical phenomena involved in robotic
grasping – it involves incomplete perceptual data, complex interaction mechanics
(varied surface friction, compliance, closed-loop kinematic chains), varied boundary
conditions (clutter, affordances), and an arbitrary range of object geometries. The
key to creating effective functionality in the near term is understanding where the
problem can be condensed, and how to quantify the condensed functionality.

The success of a number of specific grasp primitives in the literature reflects this
observation. Although they do not lay out the implications for overall system design,
they have achieved some of the most consistent functionality to date. The widespread
use of guarded moves can be seen as an example of using local context to narrow the
scope of variation so it can be effectively overcome, including work with parallel-
jaw grippers [13], compliant hands [21, 24], and more traditional rigid hands [9].
The overhead pinch grasp used by Jain and Kemp [15] is another example, where
the stereotyped action provides the ability to use “low-dimensional task-relevant
features” for control. Another example is the push-grasp primitive presented by
Dogar and Srinvasa [6]. In this case, sliding frictional contact is used to align a tall
object in a power grasp. In this case, the specific context of the grasp primitive makes
it possible to analyze the impact of friction on the motion of the object to calculate
the translational displacement necessary to align the object in the hand. Kazemi et
al. present a force-compliant grasping skill designed to lift small objects from flat
supporting surfaces into a power grasp [16] – the context of the surface makes it easy
to understand where to use compliance to correct interaction forces, and the basic
idea was used by most teams in the DARPA Autonomous Robotic Manipulation
Challenge [14, 26].

In all these cases, what is missing has been a good way to compare these differ-
ent primitives, and a framework to understand how to create more comprehensive
capabilities. It is important to note that in many cases, establishing an inner bound
for variation tolerance may be sufficient–such an approximation may underestimate
system performance, but will not lead to failed grasps.
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In conclusion, we present a framework that uses variation as a lens to understand
generality in robot grasping. First, we demonstrate that system’s ability to overcome
variation provides away to compare and evaluate the capabilities of different grasping
systems and apply it to a collection of leading examples. Second, we present a
methodology for designing grasping systems based on the observation that it is easier
to design around local variation than to create effective parameterizations of global
variation. Analyzing variation around specific grasp configurations provides a local
context that makes it tractable to create a set of basis grasps that span a quantifiable
range of object variation. This is an important step to move from ad hoc approaches
towards more rigorous system design and analysis.
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Using Fractional Order Elements
for Haptic Rendering

Ozan Tokatli and Volkan Patoglu

1 Introduction

The goal of haptic rendering is to synthetically recreate virtual environments as close
to reality as possible, while simultaneously ensuring safety of the interaction between
the human operator and the haptic display. However, there is a well-known trade-
off between stability robustness and transparency of interaction and there exists a
continual search for new approaches to improve the rendering quality of the haptic
systems, while ensuring coupled stability of interaction.

While the environments to be rendered can vary widely, ranging from rigid bodies
to elastic materials, and even to fluids, the stability robustness has been most com-
monly studied for the simple environment model that consists of a linear spring and
a damper. This model has been shown to capture many important aspects of haptic
rendering, from the sampled-data nature of the haptic systems to the presence of the
human operator in the loop.

While the classical linear elastic models can be used to capture the natural behav-
iour of many environments, these models fall short of capturing some other impor-
tant natural phenomenon, such as time dependent stress relaxation of viscoelastic
elements, a crucial aspect required to faithfully model mammal tissue. In particular,
viscoelastic materials display elasticity and viscosity properties simultaneously, gen-
eralizing the existing theories for solids and viscous materials. Modeling the complex
behaviour of viscoelastic materials is an active research area and it has been recog-
nized that fractional order calculus is an effective tool to model these materials with
fewer parameters and simple mathematical structures [5]. For instance, the standard
linear solid (SLS) model has been shown to faithfully model human prostate tissue
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[42], since this model is capable of capturing the time dependent creep compliance
property of the tissue.

Fractional order calculus is a generalization of the familiar integer order calculus in
that it allows for differentiation/integration, called differointegration, with orders of
any real number. Intuitively, a fractional order derivative behaves as an interpolation
between the neighboring integer order derivatives, due the continuous behavior of the
differointegration operator with respect to its order. For instance, considering position
signal as the input, continually varying the order of differentiation order from 1 to 0
acts as changing the properties of a linear mechanical element from a pure dissipation
element towards a pure potential energy storage (stiffness) element. Likewise, tuning
the differentiation order from 1 to 2 acts as continually transforming from a pure
dissipation element towards a pure kinetic energy storage (inertia) element. Note
that dissipation exits for all differentiation orders in the open interval (0, 2), while
pure energy storage takes place only for the integer orders.

Inspired by the existence of fractional order models in the nature, we propose
the use of fractional order models/controllers in haptic systems. We generalize the
existing results based on linear elastic and viscous mechanical elements to models
with linear fractional order elements. The fractional order model not only can recover
the classical virtual environment model of consisting of springs and dampers, but
also enable rendering of realistic viscoelastic materials thanks to the fractional order
differointegration term in its model.

The use of fractional order calculus in systems and control applications is known
to provide the user with an extra parameter, the order of differointegration, which
can be tuned to improve the desired behaviour of the overall system. This property
of fractional order controllers is widely employed for robust motion control appli-
cations. For haptic systems, introducing a proper amount of dissipation is essential
for achieving coupled stability, as well as improving their transient response during
interactions. However, dissipation can adversely affect the transparency of the ren-
dering by distorting the match between the desired and rendered impedance values.
Fractional calculus based control is a promising generalization in that it provides
an alternative means for tuning the characteristics of the dissipation supplied to the
system, through the adjustment of the order of differentiation. In particular, since
the fractional calculus generalization provides an additional degree of freedom for
adjusting the dissipation behaviour of the overall system, fractional order haptic
rendering has the potential to improve upon the stability robustness-transparency
trade-off dictated by the integer order analysis.

Along these lines, we study haptic rendering of fractional order impedances and
explore how the use of fractional order elements impacts the coupled stability of
the overall sampled-data system. Our results generalize the well-known passivity
condition to include fractional order impedances and demonstrate the effect of the
order of differointegration on the passivity boundary. We also characterize the effec-
tive stiffness and damping behavior of the fractional order impedance as a function
of frequency and differointegration order. Even though there has been an investi-
gation of haptic rendering of viscoelastic materials in [25], passivity and effective
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impedance analysis of fractional order models have not been studied to the best of
authors’ knowledge.

The rest of the paper is organized as follows: In Sect. 2, we review the literature
on the coupled stability of haptic systems (Sect. 2.1) and the fractional order control
(Sect. 2.2). In Sect. 3, we provide preliminaries on the analysis of haptic and frac-
tional order systems. The main results of the paper are given in Sect. 4, while their
implications are discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

2.1 Coupled Stability of Haptic Systems

A haptic system is desired to stay stable at all times, for any human operator, and
under any operation/grip conditions. The presence of the human operator in the loop
significantly complicates the coupled stability analysis and controller design of haptic
systems. The first and the foremost challenge is to find a simple and reliable model
for the human operator. Without a model of the human operator, determining the
coupled stability of the haptic system is not a trivial task. Furthermore, the sampled-
data nature of the haptic systems introduces an extra challenge to the analysis.

The coupled stability analysis of haptic systems can be loosely categorized into
two different approaches. The first approach assumes a model for the human operator
and checks for the overall stability of the system based on this model. On the other
hand, the second approach focuses on the haptic system alone and aims at robust
stability of the haptic system for a certain, but wide, range of human operator models.
Despite the conservative nature of the results obtained, the latter approach is widely
accepted as a more robust approach in designing haptic controllers.

The early literature commonly adopted modeling the human operator approach.
In these works, researchers have assumed simple, typically 2nd order linear time
invariant (LTI), models representing the human operator in the loop. The pioneering
work on the haptic system stability has been presented by Minsky et al. [33], where
the human operator is approximated with a second order LTI model, while the discrete
elements, the sampler and the hold, are approximated with continuous time models.
Nyquist stability criterion is used to determine the stability of the overall system. In
[19], Gillespie et al. adopted a similar approach and has shown that, the switching
nature of the virtual wall and its discrete time implementation causes energy leaks
and this leakage may cause instability. Stability analysis methods have also been
used to study the effects of various different aspects of a haptic system. In particular,
in [18], Routh–Hurwitz criteria is used to characterize the uncoupled stability of
the haptic system, where the human operator is not attached to the robot. A similar
analysis is conducted in [23] to investigate the effects of physical damping, time delay,
human operator on uncoupled stability. A Lyapunov based approach is introduced in
[15] to determine the stability of the haptic system and the effects of discretization,
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quantization, time delay and Coulomb friction on the stability of haptic systems are
explored.

Most of the studies on coupled stability analysis rely on methods that do not require
a specific model for the human operator. In this approach, stability is considered for
all possible human models within a certain class; therefore, the results obtained
are generally more robust, but also more conservative, compared to human model
based analysis. The pioneering method in this branch is based on passivity analysis.
The passivity based methods assume that the human operator is a passive element.
This widely accepted assumption is based on [22], where it has been shown that
within the frequency range required for the haptic applications, humans generally
act as passive network elements. In the teleoperation field, passivity analysis is first
applied by Anderson and Spong [2] on continuous time models. Later, in his seminal
work, Colgate introduced the passivity theorem for sampled-data system and applied
it to haptics [9]. Without the need for a human model, the overall haptic system is
rendered passive, so that any possible instabilities that might occur are avoided.
Colgate’s theorem had a profound impact in the field, since it handles the haptic
system as a sampled-data system. Later, the passivity approach is generalized for
interactions with unknown passive virtual environments through the idea of virtual
coupling [11]. Virtual coupling acts as a buffer between the virtual environment and
the robot; moreover, the parameters of the coupler are selected such that the robot-
coupler 2-port network is passive. The virtual coupler idea is further extended in [1]
with unconditional stability theorem for 2-port networks and to include admittance
type devices.

Several other approaches exist to ensure coupled stability of haptic interactions.
The time domain passivity approach by Hannaford and Ryu [21, 40] along with its
variations [24] and the bounded impedance analysis by Haddadi and Hastrudi-Zaad
[20] are among the most notable ones.

2.2 Fractional Order Control

Fractional order calculus has its roots in the late 17th century, in other words, it is
a peer of the celebrated calculus with integer order derivatives and integrals. Some
argue that the idea of fractional order calculus can be found in the letters of L’Hopital,
Leibniz and Bernoulli. However, the true development of fractional order calculus
falls into the 18th and 19th centuries.

The idea of differentiating/integrating a function with an arbitrary order is, at first
sight, counter-intuitve, but it is a phenomenon that has been observed in nature. For
instance, modeling viscoelastic materials using fractional order calculus is known
to yield better results than modeling these materials with integer order calculus. In
[3], it has been shown that using fractional order models can significantly reduce the
degree of the model. In [13], a fractional order model is proposed for red blood cells.

A fractional differointegral, fills the gap between the consecutive integer order
derivatives/integrals. In other words, in terms of the differentiation/integration,
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derivative/integral operator is not discrete; instead, there is a smooth transition
between successive integer orders of differentiation/integration.

Fractional order control has also found wide applications in the field of robot-
ics and controls. A fractional order controller, called CRONE, can be designed to
exhibit iso-damping behaviour, even if the parameters of the system are changed
significantly [37]. This control method has been successfully implemented in indus-
trial applications, such as in car suspensions. A fractional order counterpart of the
reputable PID controller is also commonly employed in motion control applications
[39]. Tilted integral derivative (TID) is another commonly used fractional calculus
based controller [30]. A quantitative comparison of these controllers with respect
to their integer order counterparts can be found in [41]. Fractional order controllers
are mostly used robust motion control [31]; however, they have been also applied to
position-force hybrid control in [17].

There exists many notable books covering fractional order control [4, 29, 34, 35,
38], as well as several tutorial/review papers [7, 16, 26, 27, 32].

From the point of view of this paper, the arbitrary differentiation order can be inter-
preted as an alternative means of adjusting impedance and dissipation characteristics
of the overall haptic system. To improve the stability robustness of haptic devices,
the conventional approach is to introduce viscous damping, that is proportional to
the first derivative of the position signal. However, with a fractional order control
approach, the dissipation can be supplied to the system with arbitrary differentiation
order. The order of differentiation defines the dissipation as well as other mechanical
impedance characteristics of the fractional order mechanical element. In particular,
a differentiation order less than 1 results in a dissipative mechanical element that
can store potential energy, while a differentiation order greater than 1 is a dissipative
element that can also store kinetic energy [28].

3 Preliminaries

The symbol s indicates that a transfer function is in continuous time domain, whereas
z indicates a discrete time transfer function. Subscript h denotes a human operator,
d refers to the haptic device and e signifies an environment.

3.1 The Haptic System

Figure 1 presents the block diagram of the haptic system in a sampled-data form. The
human is represented with the model φ, which is possibly nonlinear and assumed
to be passive. G(s) denotes the haptic display with m and b denoting the mass and
physical viscous damping of the robot. The feedback signal is chosen as the position
of the robot and it is sampled with a time period of T . H(z) represents the model
of the virtual wall that is implemented on a digital computer. Finally, the computed
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Fig. 1 The sampled-data
haptic system with ideal
sampler and zero order hold
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e is passed through a zero-order hold and fed back to the plant. The

following two subsections elaborate on the components of this sampled-data system.

3.2 The Rigid Body Model of the Robot

The haptic interface is modeled as a rigid robot and it is assumed that the human
operator firmly grasps the robot; hence, xh = xd . The equations of motion for this
system can be given as

mẍh + bẋh = fh + fe (1)

The corresponding transfer function of the haptic display from force to velocity in
continuous time is

G(s) = 1

ms + b
(2)

3.3 The Virtual Environment

The aim of this paper is to investigate the effect of a fractional order elements in the
virtual environment. Therefore, a simple virtual wall model consisting of a spring
and a fractional order linear element is considered.

H(z) = K + B

(
1 − z−1

T

)α

(3)

In this virtual wall model, K and B are respectively the virtual stiffness and the
fractional order linear element parameters of the virtual environment. Throughout
the analysis, the velocity of the robot is approximated using the backward difference
method. Although different velocity approximation methods can be employed for
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discrete time implementations of the virtual wall, the finite difference approach is
chosen due to its simplicity. Moreover, since this approach has been extensively used
in the literature, this choice enables a comparison of the performance for integer and
fractional order models. It is important to note that in this virtual wall model, the order
of the differentiator is not necessarily an integer number. In this paper, we conduct the
analysis for α ∈ [0, 2], where α = 1 corresponds to the classical backward difference
differentiator. We also consider positive values of K and B values for simplicity.

For the upcoming analysis, it is necessary to introduce nondimensional forms of
the system parameters, because as the differentiation order changes, the physical
meaning, as well as the unit of B changes. Nondimensional parameters enable com-
parison of virtual walls with different differential orders. The nondimensionalization
is achieved through the following transformations. Note that these transformations
are similar to ones noted in [23], except for the dissipation element of the virtual envi-
ronment. Here, we have generalize the nondimensionalization of virtual damping to
fractional order dissipative elements.

K → κ = KT 2

m
, B → β = BT 2−α

m
, b → δ = bT

m
(4)

3.4 Passivity of the Haptic Interface

The passivity analysis of a haptic display is first analyzed in [10]. Later in [8] the pas-
sivity condition is formalized. Since the analysis of this paper relies on this theorem,
the theorem is repeated from [9].

Theorem 1 (Passivity of a haptic interface [9]) A necessary and sufficient condition
for the passivity of the haptic interface model in Fig.1 is

b >
T

2

1

1 − cos(ωT )
Re

{(
1 − e− jωT

)
H(e jωT ))

}
(5)

for 0 ≤ ω ≤ ωN , where ωN = π/T is the Nyquist frequency.

One of the important aspects of this theorem is that it analyzes a haptic system as
a sampled-data system. Hence, the adverse effects of the sample and hold elements
are taken into consideration.

3.5 Fractional Order Calculus

In order to familiarize the concept of fraction order calculus and understand key
concepts, this section briefly introduces fractional order differointegration.
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In the literature, many definitions of fractional order differointegrals exits. The
most frequently used definitions are the Grunwald–Letnikov, Riemann–Liouville and
Caputo’s definitions. Riemann–Liouville is the most frequently used definition and
is defined as

aD
α
t f (t) = 1

Γ (n − α)

dn

dtn

t∫
a

f (τ )

(t − τ)α−n+1
dτ

for n − 1 < α < n, where Γ represents the gamma function.
Grunwald–Letnikov differointegral definition is important since it forms a basis

for the discrete implementation

aD
α
t f (t) = lim

h→∞ h−α

[ t−a
h ]∑

j=0

(−1) j
(

α

j

)
f (t − jh)

where [.] indicates the integer part of the real number.
Despite the frequent use of the previous definitions, in control systems, Caputo’s

definition is preferred, since handling of the initial conditions is more intuitive with
this definition.

aD
α
t f (t) = 1

Γ (n − α)

t∫
a

f (n)(τ )

(t − τ)α−n+1
dτ

for n − 1 < α < n. The analysis in this paper implicitly uses the Caputo’s definition,
due to its advantages in terms of computing the Laplace transformation of functions
with fractional order differointegrals.

The properties of fractional order differointegral operator is summarized in the
following list.

• The fractional order differointegral is a linear operator.

aD
α
t ( f (t) + g(t)) =a D

α
t f (t) +a D

α
t g(t)

• The fractional differointegral operator is causal. Assume f (t) = 0 for t < 0, then
aDα

t f (t) = 0.
• The fractional differointegral operator is shift invariant.

aD
α
t f (t − t0) =a D

α
t f (τ )|τ=t−t0

• If f (t) is an analytic function of t , then its derivative is also analytic in both t and
α, where α is the order of differentiation.

• For α ∈ Z, the result of the fractional order derivative operator is same as the
integer order one.
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• Fractional order differointegral operator has semi-group property.

aD
α
t f (t) aD

β
t f (t) =a D

β
t f (t) aD

α
t f (t) =a D

α+β
t f (t)

• Using the Caputo’s definition, the Laplace transform is defined as

L (aD
α
t f (t)) = sαL ( f (t))

Note that, according to all definitions, differointegration is a nonlocal phenom-
ena and is history-dependent. However, one can observe from the coefficients in
Grunwald–Letnikov definition that for large values of t , the role of the history of
the behaviour of the function f (t) near the initial condition (t = a) can be neglected
under mild conditions. This observation serves as the basis of the short memory prin-
ciple, where one takes into account the behavior of f (t) only in the recent past, that
is, in the interval [t − L , t], where L is defined as the memory length. According
to short memory principle, fractional order differointegration with initial condition
at a is approximated with the fractional order differointegration with moving initial
condition at t − L , where the desired level of accuracy with this approximation can
be achieved by adjusting the memory.

There exist two main approaches for discretization of fractional order differ-
ointegration operation. The first approach is direct discretization, where the exact
mathematical model of the fractional order differointegral is used for further analy-
sis. These direct discretization methods generally consider series expansions, such as
MacLaurin series expansion, power series expansion, and continued fraction expan-
sion. In [6], direct discretization is analyzed and polynomial approximations for
arbitrary order differointegration is introduced. For the indirect method, a math-
ematical model is fitted to the frequency domain response of the fractional order
differointegral. Details of different discretization schemes can be found in [14].

For further details of fractional order calculus, the reader is referred to
[7, 34, 36]. After understanding the haptic system and familiarizing with the frac-
tional order calculus, we can, now proceed to the results of this paper.

4 Results

4.1 Passivity Analysis

Corollary 1 Consider a haptic system with a robot model as given in Eq.2 and
a virtual environment model as described in Eq.3 inside the control architecture
introduced in Fig.1, where human is modeled as passive operator. For positive values
of B and K , the overall system is passive if the following inequality is satisfied.
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b >
KT

2
+ B

(
T

2

)1−α

(6)

The dimensionless form of Eq. 6 can be expressed as

δ >
κ

2
+ β

(
1

2

)1−α

(7)

where non-dimensionalization is performed according to Eq. 4.

Proof Corollary 1 follows Theorem 1 in Sect. 3.4. In particular, let the brach cut for
the analysis be chosen at −π and consider the first Riemannian sheet, which is
physically meaningful. Replace the virtual wall model of Eq. 5 with the virtual wall
model of Eq. 3 to obtain

b >
T/2

1 − cos(ωT )
�

{(
1 − e− jωT

) (
K + B

(
1 − e− jωT

T

)α)}
(8)

b >
KT

2
+ BT 1−α

2

�
{(

1 − e− jωT
)1+α

}
1 − cos(ωT )

(9)

Representing 1 − e− jωT in the phasor notation and substituting for 1 − cos ωT

1 − e− jωT = √
2(1 − cos ωT ) e− j ωT−π

2 (10)

1 − cos ωT = 2 sin2 ωT

2
(11)

one can further manipulate the equations as follows

b >
KT

2
+ BT 1−α

2

�
{(√

2(1 − cos ωT ) e− j ωT−π
2

)1+α
}

2 sin2 ωT
2

(12)

b >
KT

2
+ BT 1−α

2

(√
4 sin2 ωT

2

)1+α

�
{
e− j ωT−π

2 (1+α)
}

2 sin2 ωT
2

(13)

b >
KT

2
+ BT 1−α

2

(
2 sin ωT

2

)1+α
cos

(
ωT−π

2 (1 + α)
)

2 sin2 ωT
2

(14)

b >
KT

2
+ B

(
T

2

)1−α (
sin

ωT

2

)α−1

cos

(
ωT − π

2
(1 + α)

)
(15)

The system is passive if Eq. 15 holds for all frequencies 0 ≤ ω ≤ π/T . In order
to obtain Eq. 6, the worst-case scenario, or the maximum value of the frequency
dependent part of the previous inequality, has to be determined, since B is known to
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be positive. Let the frequency dependent part of the inequality be represented as

f (ω, α) =
(

sin
ωT

2

)α−1

cos

(
ωT − π

2
(1 + α)

)
(16)

The extremum of this function occurs at frequencies where ∂ f (ω, α)/∂ω = 0.
The first partial derivative of f (ω, α) with respect to ω can be expressed as

∂ f (ω, α)

∂ω
= −

(
sin

ωT

2

)α−1 [
(1 − α) cot

ωT

2
cos

(
ωT − π

2
(1 + α)

)
. . .

+ (1 + α) sin

(
ωT − π

2
(1 + α)

)]
(17)

After some manipulations, Eq. 17 can be transformed into

sin

(
ωT − π

2

)
− α sin

(
ωT − ωT − π

2
α

)
= 0 (18)

For an arbitrary α, this equation holds if both sine terms vanish and this condition
occurs at ω = π/T . Moreover, the second partial derivative of f (ω, α) with respect
ω to is negative for ω = π/T , ensuring that ω = π/T is where the function attains a
maximum value. Closely investigating the 3D plot of f (ω, α) confirms that the global
maximum is always attained at ω = π/T , the Nyquist frequency of the sampled-data
system. Substituting this value into Eq. 15 completes the proof.

Remark 1 Besides from the usual virtual wall parameters, K and B, fractional order
controller introduces a new design parameter, α, which can be set to any real number.
The new parameter explicitly shows up in the passivity condition and introduces
new opportunities to improve the overall performance of the haptic system. Figure 2
depicts the solution of Eq. 6 for various values of α.

Remark 2 Equation 6 is a generalization of the celebrated passivity condition for
haptic systems, introduced by Colgate in [9], to the fractional order case. A close
investigation reveals that, for α = 1, Eq. 6 can recover the familiar integer order
condition. Moreover, the other integer order cases of α = {0, 2} can also be easily
recovered from Eq. 6.

4.2 Effective Impedance of the Fractional Order Virtual Wall

Section 4.1 analyses the effect of using a fractional order controller for the virtual
environment on the passivity characteristics of the haptic device. In this section, we
investigate the effect of fractional order models on transparency of haptic rendering
by studying the effective impedance of the virtual environments as a function of
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Fig. 2 Nondimensional passivity regions for different values of differentiation order α

input frequency, as proposed in [12]. This analysis not only reveals how a fractional
order virtual wall behaves in the frequency range up to the Nyquist frequency, but
also may help decide on a proper differentiation order for a given task.

In order to perform the effective impedance analysis on the virtual environment
with fractional order model, the definitions of effective stiffness (ES) and effective
damping (ED) are adjusted for position feedback as

ES(ω) = �+{H(e jωT )} (19)

ED(ω) = 1

ω
	+{H(e jωT )} (20)

For the virtual wall model given in Eq. 3, the effective stiffness and damping are
read as

ES(ω) = K + B

(
2 sin

ωT

2

)α

cos

(
ωT − π

2
α

)
(21)

ED(ω) = −B

(
2 sin

ωT

2

)α

sin

(
ωT − π

2
α

)
(22)

Note that −π/2 ≤ (ωT − π)/2 ≤ 0 lives in the fourth quadrant; hence, for 0 ≤
α ≤ 1, (ωT − π)α/2 is always in the fourth quadrant, while for 1 ≤ α ≤ 2, (ωT −
π)α/2 can lie in the third or the fourth quadrants.
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5 Discussion

Calculus with integer order differointegrals has proved its ability to model the phys-
ical phenomena; but it is not the ultimate tool to model nature. In fact, fractional
order calculus is an effective tool that broadens the modeling boundaries of the
familiar calculus. Our proposition of using fractional calculus in haptics enables a
new potential of rendering unorthodox impedances, such as viscoelastic materials
that exhibit frequency dependent stiffness and damping characteristics within a sin-
gle mechanical element. Even though approximate models for such materials with
integer order differointegrals may exist, fractional order calculus is known to result
in simpler and more capable models, capturing the true nature of such materials.
Consequently, the use of fractional order calculus in haptics significantly extends the
type of impedances that can be rendered using the integer order models.

Inclusion of fractional order models/controllers into the human-in-the-loop sam-
pled data control loop has a direct consequence on the coupled stability characteristics
of the overall system. In particular, Eq. 7 generalizes the well known passivity condi-
tion, δ > κ

2 + β in the nondimensional form, to include factional order models. An
important observation from this equation is the fact that the size of dimensionless
κ-β passivity region can be modulated by tuning the order of the differointegral.
Figure 2 provides a visual demonstration of this result, where α = 1 represents the
virtual wall with integer order damping term. For α ∈ [0, 1), the fractional order
differointegral term increases the nondimensional area of the κ-β passivity region.
The minimum passivity region occurs as α → 2, where the fractional order element
acts as a kinetic energy storage element (inertia).

In Sect. 4.2 we have presented expressions for calculating effective impedance
of discrete time fractional virtual environments. This frequency dependent analysis
reveals that a fractional order element between consecutive integer orders inherits
the mechanical properties corresponding to those integer orders. Figure 3 depicts the
three frequency dependent coefficients in Eqs. 21 and 22 that shape the response of
effective spring and damping terms.

In Eq. 21 characterizing the effective stiffness, κ is a positive number, always con-
tributing positively to the effective stiffness. On the other hand, effective stiffness
also has a β dependent term that can increase or decrease its value as a continuous
function of ω and α. If 0 ≤ α ≤ 1, cosine term in Eq. 21 is always positive, indepen-
dent of ω; hence, the contribution of β on the effective stiffness is always positive.
However, if 1 ≤ α ≤ 2, then the cosine term can change sign; therefore, depending
of the frequency, the effective stiffness can also be lowered.

In Eq. 22 characterizing the effective damping, as expected, one can observe that
there is no contribution of κ . Effective damping should always be positive, and this
is indeed the case, since sin

(
ωT−π

2 α
)

is always in third or fourth quadrants. As a
result for α ∈ (0, 2), the effective damping is positive and there is dissipation in
the system. The magnitude of the effective damping is predominantly determined
by (2 sin(ωT/2))α term and by choosing 1 ≤ α ≤ 2 the effective damping can be
increased significantly at high frequencies, compared to 0 ≤ α ≤ 1.
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Fig. 3 Coefficients that scale effective stiffness and damping of the fractional order virtual envi-
ronment
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Fig. 4 Effective stiffness and damping of the fractional order virtual environment of Eq. 3

Figure 4 depicts the effective stiffness and damping of a sample fractional order
virtual environment with K = 10 N/mm, B = 0.1 Ns/mm and T = 0.001 s. From the
figure, the frequency and differointegration order dependance of the effective stiffness
and damping can be observed. Noting the frequency separation between human input
and noise, differointegration order can be put in good use to adjust the frequency
characteristics of effective impedance such that good transparency behavior can be
ensured within the human bandwidth, while better stability robustness is achieved at
higher frequencies.

6 Conclusions

We have proposed using fractional order models/controllers for haptic rendering
and explored the impact of fractional order elements to the coupled stability of
the overall sampled-data system. We also characterized the effective stiffness and
damping behavior of the fractional order impedance as a function of frequency and
differointegration order.
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Design of a Novel 3-DoF Serial-Parallel
Robotic Wrist: A Symmetric Space Approach

Yuanqing Wu and Marco Carricato

1 Introduction

Robot wrist design is a key technology in developing robot manipulators for dex-
terous manipulation. A comprehensive review can be found in [1]. Two common
kinematic designs of serial wrists are the ZYZ (roll-pitch-roll) and the XYZ (pitch-
yaw-roll) axis configurations [1]. The wrist orientation range can be characterized
by a pointing cone of the unit sphere S2 depicting the admissible directions of the
last roll axis [2]. Mathematically, this corresponds to a characterization of the spe-
cial orthogonal group SO(3) as a fibre bundle over S2, with typical fibre SO(2). A
modified Euler angle parametrization, relying on tilt and torsion angles, is proposed
in [3], which exactly reflects this topological model (see Fig. 1). So far, serial wrists
remain dominant in industrial robotics. However, for topological reasons [4], any
(non-redundant) serial wrist necessarily admits inverse kinematics singularities, or
stationary configurations [5], where the three axes of the wrist become coplanar [2].
Singular or near-singular configurations cause a rapid increase in joint rates and
should be avoided [6]. Consequently, the singularity-free pointing cone of a serial
wrist is usually restricted to 150◦ [2]. Besides, it is reported that the last roll axis
may suffer from a decreased stiffness due to backlash present in the transmission
gear train [7].

Parallel kinematics wristsmay have improved stiffness, but aggravated singularity
problems, and a smaller orientation range. Both are due to the presence of loop
constraints. Therefore, parallel wrists are only used in high-speed applications, when
a large orientation range is not required [8, 9]. The Agile Eye [8], for example,
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(a) tilt (b) torsion

Fig. 1 Tilt and torsion parameterization of SO(3). a Tilt: rotation of ψ about axis ω; b torsion:
rotation of σ about axis z′ (modified from Bonev’s original illustration [3], courtesy of Ilian Bonev)

(a) (b) (c)

Fig. 2 aMark Rosheim’s Omni-wrist III [10] (courtesy of Mark Rosheim). bKinematic scheme of
the Omni-wrist III, with four double-universal-joint chains. c The Culver joint [11] (source: www.
uspto.gov)

comprises threeRRR kinematic chains with concurrent axes (R denotes a revolute
joint). It attains a 140◦ pointing cone with a maximum of ±30◦ torsion.

Rosheim developed a different family of parallel wrists called the Omni-wrists
[1, 10] (see Fig. 2a, b forOmni-wrist III, which comprises four double-universal-joint
chains). They are known to be kinematically equivalent to a class of 2-DoF constant-
velocity (CV) couplings for intersecting shafts [11, 12] (see Fig. 2c for the Culver
joint, an “Omni-wrist” with three or more double-universal-joint chains). The yaw
and pitch axes cannot be defined for such wrists, since their motion pattern [13] is not
the same as that of a universal joint. Conversely, it is observed to have a constantly
zero torsion-angle parameter [3, 14]. The instantaneous kinematics of CV couplings
was systematically studied by Hunt in [12], and more recently in [15]. Hunt observed
that the joint screws of a CV kinematic chain must be mirror symmetric about the
plane�which perpendicularly bisects the angle formed by the input and output shaft
axes (see Fig. 3a, b for typical 3-DoF CV chains). The instantaneous twist space of

www.uspto.gov
www.uspto.gov
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(a) (b) (c) (d)

Fig. 3 a, b Typical CV kinematic chains of a plunging coupling. c, d Screw systems of a CV
coupling with intersecting shafts, where ω1 and ω2 are unit vectors along the input and the output
shaft axes, respectively: c non-plunging coupling, d plunging coupling

a CV coupling comprises, at a general configuration, either a pencil of zero-pitch
twists converging in one point of � (non-plunging type, see Fig. 3c) or a field of
zero-pitch twists in � (plunging type, see Fig. 3d). These special twist systems (i.e.
subspaces of se(3), the Lie algebra of the special Euclidean group SE(3)) are studied
in detail in [16]. Carricato considered applications of CV couplings in decoupled
and homokinetic closed-chain robotic wrists [15].

Despite having a large singularity-free orientation range, all Omni-wrists display
an undesirable parasitic motion [14]. As shown in Fig. 2b, as long as the distance d
between the centers of the two universal joints in each chain is nonzero, the motion
pattern of the Omni-wrist consists, at any configuration, of a 2-DoF instantaneous
rotation about a point whose location is not fixed [15]. Besides, since the links of the
Omni-wrists do not undergo pure rotations, mechanical design for link-interference
avoidance (see [8]) is more difficult. It is worth emphasizing that all Omni-wrist
designs have only tilt (yaw and pitch) capability; an additional roll axis can be
installed either at the base or at the end-effector to generate a third torsional DoF.

In this paper, we show that it is possible to eliminate the parasitic motion of
the aforementioned CV-coupling-equivalent 2-DoF parallel wrists through a closer
investigation of the motion pattern of CV couplings and their associated twist
systems. We propose a novel 2-DoF parallel kinematics wrist as a result of this
investigation. It is observed that the motion pattern of a CV coupling is exactly the
exponential image exp(m) of its screw system m. A recent investigation reveals
that exp(m) belongs to one of seven classes of symmetric subspaces of SE(3) [17],
namely submanifolds M of SE(3) containing the identity and closed under inversion
symmetry [18, 19]:

gh−1g ∈ M ∀g,h ∈ M (1)

The corresponding twist systems are Lie triple subsystems (LTS) of se(3) [20, 21],
namely linear subspaces m of se(3) that are closed under double Lie brackets (or
triple product):

[ξ , ζ , ς ] � [[ξ , ζ ], ς ] ∈ m ∀ξ , ζ , ς ∈ m (2)
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The mirror symmetry of the joint screws of a CV-coupling-equivalent parallel wrist
is shown to be a direct consequence of the involution symmetry of the corresponding
symmetric subspaces [18].

Recently, a systematic type synthesis methodology for symmetric subspaces of
SE(3) has been developed and the results are being prepared for publication at the
moment. Its full description requires the Lie theoretic tools presented in [18], which
will not be elaborated again in this paper. Instead, we give a brief review of the
main results, and apply them to the synthesis of a 2-DoF parallel wrist family with a
large singularity-free orientation range. The geometry of the novel parallel wrist is
described, and a screw-theory-based analysis is performed for a less systematic, yet
intuitive, understanding of the 2-DoF symmetric subspace generator. An additional
torsional DoF may be added to the base or the end-effector of the 2-DoF parallel
wrist, thus realizing the full SO(3) motion with a 180◦ pointing cone and unlimited
rolling (torsion). Much freedom for further design modifications is retained, as long
as the basic geometry of the underlying symmetric subspace is not violated.

2 A Brief Review of Symmetric Subspace Theory

SE(3) is a symmetric space under the inversion symmetry Sg(h) = gh−1g, ∀g,h ∈
SE(3) [20]. Its (connected) symmetric subspaces, i.e. subsets that are closed under
inversion symmetry and contain the identity, are given by the exponentials of LTSs,
which are vector subspaces of se(3) that are closed under the triple product [18, 19,
21]. There are seven conjugacy classes of (connected) symmetric subspaces of SE(3)
(excluding Lie subgroups as trivial symmetric subspaces) [18, 19]. In particular, the
2-dimensional subspace 〈̂x, ŷ〉1 of so(3), the Lie algebra of SO(3), is a LTS because:

[[̂x, ŷ], x̂] = [̂z, x̂] = ŷ ∈ 〈̂x, ŷ〉 , [[̂x, ŷ], ŷ] = [̂z, ŷ] = −x̂ ∈ 〈̂x, ŷ〉 (3)

Hence, M = exp〈̂x, ŷ〉 is a symmetric subspace of SO(3), and therefore of SE(3).
exp〈̂x, ŷ〉 is exactly the motion pattern of the human-eye movement and of non-
plunging CV couplings. Several theoretical properties of symmetric subspaces and
their corresponding LTSs have been systematically developed in [18]. Here, we give
a brief summary, without proof, for the special case of M = exp〈̂x, ŷ〉.
(SS 1) h〈̂x,̂y〉 := [〈̂x, ŷ〉, 〈̂x, ŷ〉] = 〈̂z〉 is a Lie subalgebra of so(3).
(SS 2) g〈̂x,̂y〉 := 〈̂x, ŷ〉 + h〈̂x,̂y〉 = so(3) is the completion algebra of 〈̂x, ŷ〉.
(SS 3) The (right pull-back) tangent space of exp〈̂x, ŷ〉 at eω̂, ω̂ ∈ 〈̂x, ŷ〉, obeys the

half-angle property:

1Here, the wedge operator ∧ takes a 3-dimensional vector ω ∈ R
3 into the corresponding skew-

symmetric matrix ω̂, so that ω̂v = ω × v,∀ω, v ∈ R
3. In this paper, we use x, y and z to denote

the unit coordinate axis vectors (1, 0, 0)T , (0, 1, 0)T and (0, 0, 1)T of R3. We also use the angled
bracket 〈, 〉 to denote a vector subspace spanned by a set of vectors.
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Teω̂ exp〈̂x, ŷ〉 = Adeω̂/2 〈̂x, ŷ〉 = 〈̂eω̂/2x, ̂eω̂/2y〉 , ∀ω̂ ∈ 〈̂x, ŷ〉 (4)

where AdR(·),R ∈ SO(3) is the Adjoint transformation on so(3) defined by
[22]

AdRω̂ = Rω̂RT (5)

(SS 4) 〈̂x, ŷ〉 is invariant under the Adjoint action of the subgroup exp〈̂z〉:

Adeλ̂z 〈̂x, ŷ〉 = 〈̂x, ŷ〉 , ∀λ ∈ R (6)

and similarly exp〈̂x, ŷ〉 is invariant under conjugation by elements of the
subgroup exp〈̂z〉:

eλ̂z exp〈̂x, ŷ〉e−λ̂z = exp〈̂x, ŷ〉 , ∀λ ∈ R (7)

(SS 5) g〈̂x,̂y〉 = 〈̂x, ŷ〉 + h〈̂x,̂y〉 provides a parameterization of the completion group
exp g〈̂x,̂y〉 = SO(3), namely

〈̂x, ŷ〉 × h〈̂x,̂y〉 → exp g〈̂x,̂y〉 ,

(ω̂, λ̂z) 
→ eω̂eλ̂z (8)

(SS 6) The symmetric subspace exp〈̂x, ŷ〉 can be generated by the symmetric move-
ment of a symmetric chain:

eθ1ω̂
+
1 eθ2ω̂

+
2 · eθ2ω̂

−
2 eθ1ω̂

−
1 = eθ1ω̂

+
1 eθ2ω̂

+
2 (e−θ1ω̂

−
1 e−θ2ω̂

−
2 )−1

= eω̂eλ̂z(e−ω̂eλ̂z)−1 = e2ω̂
(9)

for some ω ∈ 〈x, y〉, λ ∈ R, where each symmetric pair of joint axes
(ω+

i ,ω−
i ), i = 1, 2 is given by:

{

ω+
i = eûi ωi ,

ω−
i = e−ûi ωi

ω̂i , ûi ∈ 〈̂x, ŷ〉 (geometric condition) (10)

In other words, ω+
i and ω−

i are generated by rotating ωi about another axis
ui ∈ 〈x, y〉 with magnitude ‖ui‖ and −‖ui‖, respectively, thereby forming a
mirror symmetry about the XY plane. Alternatively,

{

ω+
i = ωi + λz,

ω−
i = ωi − λz

ω̂i ∈ 〈̂x, ŷ〉, λ ∈ R (algebraic condition) (11)
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with

〈ω̂+
1 , ω̂+

2 〉 ⊕ 〈̂z〉 = g〈̂x,̂y〉 or

〈ω̂−
1 , ω̂−

2 〉 ⊕ 〈̂z〉 = g〈̂x,̂y〉 or (12)

〈ω̂1, ω̂2〉 = 〈̂x, ŷ〉

(SS 7) The symmetric movement of a symmetric chain satisfies the half-angle prop-
erty, namely

Ad
eθ1 ω̂+

1 eθ2 ω̂+
2 eθ2 ω̂−

2 eθ1 ω̂−
1
z = Ade2ω̂z = e2ω̂z

Ad
eθ1 ω̂+

1 eθ2 ω̂+
2
z = Adeω̂z = eω̂z

(13)

3 A Novel 2-DoF Parallel Wrist

The wrist presented in this Section has a fully spherical architecture, with all hinge
axes converging in a common point. Accordingly, in order to ease notation, all axes
will be simply denoted by unit vectors parallel to them. As shown in Fig. 4a, b at
the initial configuration, the wrist consists of three (or more) RRR chains, with
the first and third joint axes ωi1 and ωi3 of each chain i being mirror symmetric
about a common bisecting plane �, and ωi2 lying in �. We denote the joint variable
about axis ωi j by θi j . Between the proximal link (connected to the base link via joint
ωi1, i = 1, 2, 3) and the distal link (connected to the end linkvia jointωi3, i = 1, 2, 3)
of each chain, an extra RR interconnecting link connects the pivot of joint ωi2 to
a central shaft having its axis ωc perpendicular to �. The plane of symmetry � is
highlighted by a pink dashed circle in Fig. 4a. If no interconnecting links are imposed,
themechanism is a 3-DoFSO(3) generator (as shown in Fig. 4b). The interconnection
is separately shown in Fig. 4c. According to the mirror symmetry, the proximal and
distal link in each chain are identical. For a symmetrical kinematic behavior, the
RRR chains share the same geometry, with each one being obtained from the
previous one, at the home configuration, by a 120◦ rotation about ωc. Therefore, the
geometry of the wrist is completely determined by two parameters, namely:

(1) the angle α between the two revolute joint axes ωi1,ωi2 (or ωi3,ωi2) of the
proximal link (or the distal link);

(2) the angle β, β = 0, formed by� and the plane spanned by ωi1,ωi2 (or ωi3,ωi2)
at the home configuration.

Without loss of generality, we define the two actuation joints to be those correspond-
ing to axes ω11 and ω21. We set up the reference frame at the initial configuration2

with the x-axis coinciding with ω0
12, and the z-axis coinciding with ω0

c . It is not

2We use a superscript 0 to distinguish a joint axis at the initial configuration from its value at a
generic configuration.
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(a) (b)

(c)

Fig. 4 Geometry and notation of the novel 2-DoF parallel wrist. a The joint screws of all chains are
mirror-symmetric about a common bisecting plane �; b the wrist without interconnecting links has
a 3-RRR architecture; c the interconnecting links are connected via revolute joints to a common
shaft with axis ωc perpendicular to �

difficult to see that the initial joint axes are given by:

ω11 = eβx̂e−α̂zx , ω21 = e2π/3̂zω11 , ω31 = e4π/3̂zω11 ,

ω0
12 = x , ω0

22 = e2π/3̂zω0
12 , ω0

32 = e4π/3̂zω0
12 ,

ω0
13 = e−βx̂e−α̂zx , ω0

23 = e2π/3̂zω0
13 , ω0

33 = e4π/3̂zω0
13 ,

(14)

where ωi1 and ωi3 respect the geometric condition (10), and ωi2 is located in the
bisecting plane �, thus being self-symmetric.

The motion pattern of the wrist shown in Fig. 4 is the 2-dimensional symmetric
subspace exp〈̂x, ŷ〉:
(1) according to (9) in (SS 6), it generates exp〈̂x, ŷ〉, as long as all three chains

undergo symmetric movement, i.e. θi1 = θi3, i = 1, 2, 3;
(2) according to (13) in (SS 7), for any end-effector displacement e2ω,ω ∈ 〈x, y〉,

the displacement of the central shaft (with axis ωc) is always eω when it fol-
lows any of the subchains (ω11,ω12), (ω21,ω22) and (ω31,ω32); therefore, the
interconnecting links do not interfere with the symmetric movement;

(3) it is possible to verify that, at the initial configuration, the wrist is constrained to
have an instantaneous mobility equal to 2, and this is necessarily full-cycle (see
for example the proof of [23]-Proposition 6), and represented by the symmetric
movement in (1).

The idea of adding interconnecting links comes from recent innovative designs
of CV shaft couplings [24, 25], for which we claim no originality. Our contribution
lies in a (non-instantaneous) validation of its full-cycle mobility using the half-angle
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property in (SS 7). The generality of properties (SS 1)–(SS 7) [18] also implies that
such a design procedure can be generalized to other symmetric subspaces.

4 Kinematic Analysis of the Novel Parallel Wrist

The kinematic analysis of the wrist described in Sect. 3, equipped with interconnect-
ing chains, is more complex than that of a simple 3-RRR spherical mechanism.
However, we can use the half-angle property and other properties introduced in
Sect. 2 to simplify the analysis.

4.1 Inverse and Direct Kinematics

The inverse and direct kinematics may be solved in closed form. Given the end
link orientation R = e2ψω̂, with ω = x cosφ + y cosφ, according to the algebraic
condition (11),ωi1 + ωi3 andωi2 are always included in the bisecting plane�, which
tilts half as much as the end link, and ωc is always perpendicular to �. Therefore,
from

(ωi1 + ωi3)
Tωi2 = 2 cosα (15)

we have:

ωc = eψω̂z , θ = cos−1

(

2 cosα

‖ωi1 + ωi3‖
)

, ωi2 = eθ ω̂c
ωi1 + ωi3

‖ωi1 + ωi3‖ (16)

where ωi1 and ωi3 are known. The unknown joint input variables θ11 and θ21 can be
easily derived by solving

ωi2 = eθi1ω̂i1ω0
i2 , i = 1, 2 (17)

When solving the direct kinematics, instead, the actuator variables θ11 and θ21 are
given, so that ω12 and ω22 can be immediately computed by (17). Again, using the
fact that ωc is perpendicular to ωi2, i = 1, 2, 3, we have

ωc = ω12 × ω22

‖ω12 × ω22‖ = eψω̂z (18)

The end link orientation is finally calculated asR = e2ψω̂, according to the half-angle
property.
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4.2 Singularity Analysis

The full-cycle mobility of the wrist is 2, which is characterized by the symmetric
movement of all RRR chains. The wrist may leave the symmetric movement at
either a passive-constraint singularity or a leg singularity [5]. When symmetric
movement is not violated, singularity analysis can be separately performed on the
proximal or distal half of the wrist, each forming a parallel mechanism with the
interconnecting links.

4.2.1 Singularities of the Proximal Half

As shown in Fig. 5a, the proximal half is a parallel mechanism comprising oneRR
chain with joint axes (ω11,ω12), and twoRRR chains with joint axes (ω21,ω22,ωc)

and (ω31,ω32,ωc), respectively. The proximal half can only admit a leg singularity
in leg 2 or 3. Since ωc is always perpendicular to ωi2, i = 2, 3, leg singularity occurs
whenωi1,ωi2 andωc become coplanar in a plane perpendicular to the bisecting plane
� (see Fig. 8b). This case is covered in Sect. 4.2.3.

A configuration of actuation singularity (or active-constraint singularity, [5])
corresponds to the mechanism increasing its mobility after the input joints ω11 and
ω21 are locked. This occurs when the three constraint torques τ 1, τ 2 and τ 3 shown
in Fig. 5b are linearly dependent. The constraint torques in each chain should be
perpendicular to all its joint axes (see for example [16]):

ωT
12τ 1 = 0 , ωT

12τ 2 = 0 , ωT
22τ 3 = 0 , ωT

c τ 3 = 0 . (19)

Since, without loss of generality, τ 1 and τ 2 may be chosen, respectively, perpendic-
ular and parallel to ωc, τ 2 and τ 3 are always perpendicular. It follows that τ 1, τ 2 and
τ 3 are linearly dependent when τ 1 and τ 3 are parallel, i.e.

(a) (b)

Fig. 5 a The proximal half of the novel wrist; b constraint torques of the mechanism with input
joint variables θ11 and θ21 locked
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Fig. 6 Plot of actuation singularity index iact against tilt angle 2ψ ∈ [−120◦, 120◦] (α = 60◦, β =
25◦). The red level curve denotes the actuation singularity loci. iact taking a negative value is due
to failure to acquire an inverse kinematics solution

ω12 = ±ω22 (20)

An immediate actuation singularity index iact can be defined as follows:

iact = 1 − |ωT
12ω22| (21)

Figure6 shows the variation of iact with respect to different tilt axis ω = x cosφ +
y sin φ and angle 2ψ in Cartesian coordinates, i.e. X = 2ψ cosφ,Y = 2ψ sin φ, for
a kinematic geometry of α = 60◦, β = 25◦.

4.2.2 Singularities of the Distal Half

The distal half of the wrist is shown in Fig. 7. Out of actuation singularities, when
the input joint variables are locked, the interconnecting joints with axis ωc are not
movable. Therefore, the three interconnecting links become a single link, which
can be considered as the base link of an equivalent parallel mechanism. This distal
mechanism comprises three RR chains with joints axes (ω12,ω13), (ω22,ω23) and
(ω32,ω33). A configuration of static singularity [5] emergeswhen the three constraint
torques τ 4, τ 5, τ 6 become linearly dependent, or equivalently:

det(ω12 × ω13,ω22 × ω23,ω32 × ω33) = 0 (22)

An instance of static singularity is shown in Fig. 8a. In the figure, the joint screws
of chains 1 and 2 collapse into the bisecting plane �. Consequently, their constraint
torques, denoted τ 4, τ 5, become linearly dependent.
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(a) (b)

Fig. 7 a The distal half of the novel wrist; b constraint torques of the mechanism with input joint
variables (θ11, θ21) locked

(a) (b)

Fig. 8 a A static singularity configuration and b a stationary configuration of the wrist

4.2.3 Stationary Configurations

Again by the half-angle property, the wrist is at a stationary configuration [5] when
ωi1 + ωi3 and ωi2 become linearly dependent for one or more chains i . This occurs
when |θi2| = 180◦ − 2β (see Fig. 8b). Therefore, in order to achieve a singularity-
free pointing cone of 180◦, 180◦ − 2β must be larger than 90◦, or β < 45◦.

Stationary singularity also occurs when ωi1 = ωi3 for all RRR chains. The leg
twist spaces degenerate into three planar pencils of zero-pitch screws spanned by
(ω11,ω12), (ω21,ω22) and (ω31,ω32), respectively. If the three pencils have trivial
intersection (as shown in Fig. 9a), the end-link becomes immobile. Nevertheless, the
proximal half of the wrist still admits 2 DoFs. Since ωi1 and ωi3 remain collinear
after finite displacement of the interconnecting links for i = 1, 2, 3, the stationary
singularity is necessarily finite.

It can also be shown that the above case occurs only when β = 0, where at the
initial configuration (as shown in Fig. 9b) all leg twist spaces are identical to the same
planar pencil of zero-pitch screws, namely 〈x, y〉. In this configuration, the revolute
joints aligned with ωc are transitorily inactive, so that the three interconnecting links
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(a) (b)

Fig. 9 aAstationary configuration of thewrist, with the end-link beingmotionless and the proximal
half having 2 freedoms; b the collapsing of proximal and distal links at initial configuration with
β = 0

have no relative motion and can be instantaneously considered as a single link. The
twist space of the latter, being the intersection of three copies of 〈x, y〉, is equal
to 〈x, y〉. Similarly, the end-link twist space is also equal to 〈x, y〉. The wrist has
an instantaneous mobility of 4, gaining an increased instantaneous mobility [5] of
order 2.

4.3 Jacobian of the 3-DoF Serial-Parallel Wrist
(With an Additional Roll Axis)

An extra rolling axis can be added to the base link of the parallel wrist to provide a
complete 3-DoF rotation capability. Aside from the aforesaid singularities, the serial-
parallel wrist may experience an additional stationary singularity when the roll axis
ωr (see Fig. 10) is linearly dependent with the bisecting plane� of the parallel wrist.
However, according to the half-angle property, � tilts only up to 45◦ within the 180◦
pointing cone of the parallel wrist. Therefore, ωr can never be linearly dependent
with �, and the stationary singularity of the 3-DoF wrist as a whole is eliminated.

By applying both the half-angle property (SS 7) and the kinetostatic analysis
method introduced in [26], the Jacobian analysis of the 3-DoF parallel wrist can be
carried out as follows.

• The constraint torque τ c is parallel to ωc, which is always perpendicular to the
bisecting plane �;

• The actuation torques of ω11 and ω21 are given by:

τ a1 = ω12 × ωc , τ a2 = ω22 × ωc. (23)
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Fig. 10 A serial-parallel
3-DoF wrist with constraint
torque τ c always
perpendicular to � and
actuation torques τ a1, τ a2
lying in � begin
perpendicular to ω12 and
ω22, respectively

• The generalized velocity equation of the 2-DoF parallel wrist is given by (see
Fig. 10):

⎛

⎝

τ T
a1

τ T
a2

τ T
c

⎞

⎠

︸ ︷︷ ︸

Jdir

ωe =
⎛

⎝

τ T
a1(ω11 + ω13) 0

0 τ T
a2(ω21 + ω23)

0 0

⎞

⎠

︸ ︷︷ ︸

Jinv

(

θ̇11
θ̇21

)

(24)

where ωe is the instantaneous velocity of the end link. Note that the direct kine-
matics Jacobian Jdir is degenerate when ω12 × ωc, ω22 × ωc and ωc are linearly
dependent, in particular when eitherω12 = ±ω22 (see Sect. 4.2.1) or τ c = 0. Also,
the inverse kinematics Jacobian Jinv is singular, and thus a stationary configuration
occurs, when τ ai is perpendicular to (ωi1 + ωi3), i.e. when (ωi1 + ωi3) and ωi2

are linearly dependent, as shown in Sect. 4.2.3.
• Away from a static singularity, the end link velocity ω̃e of the 3-DoF serial-parallel
wrist is given by:

ω̃e = zθ̇r + eθr ẑωe = zθ̇r + eθr ẑJ−1
o Jθ

(

θ̇11
θ̇21

)

= (

z, eθr ẑJ−1
o Jθ

)

⎛

⎝

θ̇r
θ̇11
θ̇21

⎞

⎠ (25)
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5 Tentative Designs with Gear Transmission

Unlike Omni-wrists that have a parasitic motion, the links of the novel wrist
undergo pure rotations and move within spherical shells. Therefore, design for link-
interference avoidance [8] becomes significantly easier. So long as two physical links
are located on different spherical shells, no interference will occur for any config-
uration. Two tentative designs with bevel gear transmission, one with three and the
other with four chains, are is shown in Fig. 11. Both designs locate the roll axis at
the base of the 2-DoF parallel wrist, in order to simplify its actuation, thus forming
a 3-DoF serial-parallel spherical robotic wrist. Nevertheless, it is possible to locate
the roll axis on the end-link of the 2-DoF wrist. In this case, the roll axis may be
actuated by a constant-velocity transmission (see for example [15]) passing through
the center of the wrist.

(a) (b)

(c) (d)

Fig. 11 3-DoF serial-parallel wrist with bevel gear transmission: a, b three chains; c, d four chains
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6 Conclusions

In this paper, we presented a novel class of 2-DoF parallel wrists based on the 2-
dimensional symmetric subspace exp〈̂x, ŷ〉. In comparison to 3-DoF purely parallel
wrists and 2-DoF double-universal-joint type parallel wrists, the novel wrist is purely
rotational and can be designed in a more compact way. The existence of intercon-
necting links reduces the occurrence of constraint singularities, without jeopardizing
the orientation range. It may also provide a better force distribution within the wrist,
and also eliminate joint clearance via an overconstrained design.
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A Taxonomy of Benchmark Tasks
for Robot Manipulation

Ana Huamán Quispe, Heni Ben Amor and Henrik I. Christensen

1 Introduction

A common theme among recent workshops and symposia on grasping and manipu-
lation, is that there exists an “increasing difficulty in comparing the practical applica-
bility of all new algorithms and hardware” [47]. Among the reasons that have led to
this impasse are (a) the lack of standardized benchmark tasks, (b) a lack of suitable
metrics to evaluate the integral performance of a robot, (c) the lack of compara-
tive data that allows us to broadly categorize robot performance, and (d) the lack of
guidelines for a realistic experimental setup.Hence, themethodology used to perform
and evaluate robot manipulation experiments greatly varies in different publications,
often rendering a comparison infeasible. Under these circumstances it is difficult to
document and evaluate the progress made in the development of robot manipulation
skills over the years. Although during the last years, important efforts have been
made to evaluate robotic performance, there is still progress to be made (Fig. 1).

In this paper, we lay groundwork to formally establish a taxonomy of bench-
mark tasks for bimanual manipulators. We review literature concerning dexterity
and functional capacity tests developed for medical purposes and extract guidelines
to define clear methodologies to evaluate manipulation tasks. We also analyze the
existing efforts towards benchmarking in the robotics literature and determine the
commonalities, advantages and shortcomings among them. Our goal is to discuss
both the possibility of standardizing robot manipulation benchmarks, as well as the
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Fig. 1 How to compare different robots performing the same manipulation task?

difficulties that are hampering these efforts.We (1) propose a taxonomyof benchmark
manipulation tasks and its corresponding metrics, (2) justify the need for evaluation
frameworks that consider the robot as a whole and not as the sum of its parts, (3)
discuss the strong need of realistic assumptions for robot experiments.

Our work focuses on service robots, although some of the sections can be consid-
ered useful for industrial robot evaluation as well. The rest of this paper is structured
as follows: Sect. 2 presents a review of existing work in manipulation tests in both
robotics and related fields. Section3 presents the benchmark taxonomy proposed and
examples of representative tasks and a brief discussion of each type. In this section
we also discuss the guidelines proposed for realistic testing. Finally, Sect. 4 presents
our concluding remarks.

2 Revisiting Manipulation Tests

Arguably, there is a deep relationship between human intelligence and dexterous
manipulation. In [44], Williams presented experimental evidence showing that man-
ual ability is highly correlated with the level of independence in elderly population.
In this context, manual ability refers to the ability to perform actions involving object
manipulation in order to achieve a goal.Wewill refer to this concept as hand function.

Definition 2.1 (Hand Function) The ability to use the hand(s) in everyday activities,
which involves dexterity, manipulation skills and task performance skills.

Hand function then refers to using the hand(s) to accomplish a useful task, such
as writing, cutting meat, pouring a drink or opening a door. All the tasks mentioned
require dexterity, defined loosely here as the ability to manipulate an object with the
hand. Dexterity can further be described by two related terms:

Definition 2.2 (Manual Dexterity) The ability to make skillful, well directed arm-
hand movements in manipulating fairly large objects under speed conditions.

Definition 2.3 (Fine-Motor Dexterity) The ability to make rapid, skillful, controlled
movements of small objects where the fingers are primarily involved.
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As it was mentioned in Definition2.1, hand function requires no one but a com-
bination of multiple abilities such as motor, perceptual and cognitive skills, which
constantly interact with each other.

Definition 2.4 (Manipulation Skills)
Motor Skills: Ability to actuate in the environment.
Perceptual Skills: Ability to gather information from the environment.
Cognitive Skills: Capacity to elaborate plans to achieve a goal, taking into account
both motor and perceptual knowledge.

There has been acute interest in developing tests to evaluate the manipulation
capabilities of both humans and robots. Regarding humans, testing is important in
order, for example, to investigate the existence and degree of impairments caused by
an injury, accident, or illness. In robotics, evaluation is important in order to compare
quantitatively different research approaches.

Designing a unique test to evaluate hand function for robots (and for humans) is
hard. As it was explained, manipulating an object involves the interaction of diverse,
well-defined capabilities. Should these components be evaluated per separate? What
metrics should be used? How should the tests be selected?

In the following section we analyze the most relevant tests we found in litera-
ture related to hand evaluation from a purely human perspective. Afterwards, we
review robotics literature regarding benchmarking and common manipulation tasks
performed by physical robots. We finish this section summarizing the similarities,
differences and lessons learned from both types of tests.

2.1 Manipulation Tests for Humans

There is not an universal definitive test for hand function, hence diverse manipulation
tests have appeared during the last 200 years under different names, such as hand
function tests, dexterity tests and motor assessment evaluations. We reviewed 18
representative tests (Table1). The procedure to select these tests was the following:

• Tests appearing in recent Physical Therapy surveys [27, 38] and whose original
sources were available in English.

• Tests referenced by the ones above.
• Tests found through Google Scholar using the following search keywords:manip-
ulation, dexterity test, hand and function.
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Table 1 Reviewed manipulation tests

Test Aspect measured

1. Kapanji test [21] Thumb opposition

2. Hand strength [29] Grip and pinch strength

3. Box and blocks dexterity test (BBT) [30] Manual dexterity

4. Moberg pickup test (MPT) [35] Finger dexterity & Sensory assessment

5. Nine-hole peg test (NHPT) [36] Finger dexterity

6. Functional dexterity test (FDT) [1] Finger dexterity

7. Purdue pegboard test (PPT) [31] Finger dexterity

8. Minnesota rate of manipulation test
(MRMT) [15]

Manual dexterity

9. Grooved pegboard test (GPT) [5] Visuomotor aptitude & Speed

10. Jebsen hand function test (JHFT) [20] Hand function

11. Sequential occupational dexterity
assessment (SODA) [43]

Hand function

12. Wolf motor functional test (WMFT) [46] Motion dexterity & Hand function

13. Chedoke arm and hand activity inventory
(CAHAI) [3]

Hand function

14. Action research arm test (ARAT) [48] Arm dexterity

15. Sollerman hand function test [40] Hand function

16. Upper extremity performance test for the
elderly (TEMPA) [10]

Hand function

17. Southampton hand assessment procedure
(SHAP) [26]

Hand function

18. Arm motor ability test (AMAT) [23] Hand function

Due to space constraints, we only give a general overview of some of the tests on
Table1 (A more detailed description can be found in our supplementary material1).

2.1.1 Manipulation Tests Through the Years

Pioneering studies on hand function focused on motor skills with emphasis on hand
strength and joint mobility. Regarding the former, Mathiowetz et al. [29] analyzed
4 measures of strength: grip, palmar pinch, key pinch and tip pinch. Regarding the
latter, in [21] the Kapandji Thumb Opposition scale is presented, which measures
the range of motion of the hand by evaluating if the thumb is able to reach the other
4 fingers at their fingertips and at their joints.

The justification to use motor-skill tests was the high correlation between these
skills and hand function. However, it was noted that these tests do not involve inter-
action with objects, which is a fundamental part of manipulation. This fact inspired

1www.cc.gatech.edu/~ahuaman3/docs/papers/supplementaryMaterial.pdf.

www.cc.gatech.edu/~ahuaman3/docs/papers/supplementaryMaterial.pdf
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the development of tests involving simple manipulation actions, such as pick-and-
place operations. In [30] Mathiowetz proposed the Block and Box Test (BBT) to
measure manual dexterity. The test consists of picking up wooden blocks from a
bin and throwing them into another bin as fast as possible. Another test, used for
selective evaluation of assembly workers, is the Purdue Pegboard Test (PPT) [31],
which requires the use of a board with rows of holes. The task consists on placing
thin pegs into the holes with the left arm, then the right arm and then both arms at
the same time. The test also included a final bimanual assembly task, where after
placing the peg, 3 small objects are placed on top of it (two washers and a collar). In
this case, the test emphasizes fine-motor dexterity.

The tests mentioned above involve the manipulation of pegs or cubes. Given the
extensive variety of objects to be potentially grasped, additional tests were proposed
to evaluate the ability of the hand to perform different grasps for objectswith different
geometry (cylindrical, spherical, three-jaw). An example of these is the ARAT test
[48], composed of 4 sections, 3 of them related to grasping, gripping and pinching
objects such as a wood cube, a cricket ball, a small metallic tube and a marble.

So far, the test reviewed are informative. However, it has been questioned if they
truly measure the ability of the subjects to use their hand functionally. Take as an
example stroke patients. It has been observed that, althoughmany of them performed
poorly in fine-dexterity tests, they nonetheless are capable of performing ordinary
everyday tasks. The challenges in motor skills are faced with a better use of their
cognitive skills. Given this, tests featuring functional tasks were introduced. The
Jebsen Hand Function Test (JHFT) [20] consists on 7 tasks chosen as representative
of common activities of daily living such as picking up cans, scooping beans with a
spoon (simulated feeding) and stacking checkers. All of these tasks are unimanual.
However, most manipulation tasks involve the use of two arms. Successive tests
took care of including both type of tasks. In [40], the Sollerman test was proposed,
consists of 20 tasks from which 14 are bimanual. An interesting aspect of this test
is that the tasks were chosen such that the grasps used were proportional to their
frequency. Recently, the SHAP test [24], inspired heavily by the Sollerman test, has
been presented. This test is particularly interesting because it present tasks for both
dexterity and functional evaluation (Fig. 2).

Fig. 2 Different samples of manipulation tests items used in occupational therapy: Left Kapandji
test.Middle Peg-and-board generic test. Right Jebsen hand function test
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2.2 Manipulation Tests for Robots

In this section we review manipulation tests from a robotics perspective. Similar to
the case of human tests, there is not an evaluation tool unanimously embraced by the
community. As a result, the research literature shows a myriad of robotic systems
capable of executing heterogeneous tasks under varying assumptions. During the
last years, though, there has been a growing interest in designing common tasks to
compare the performance of different robot systems. Most of the existing tests for
robot manipulators can be classified in two types, namely (1) Component Bench-
marking and (2) System Benchmarking. Component benchmarking evaluates a
single component of the robot system, while system benchmarking tests evaluate the
robot system as a whole, considering the interactions between its components. In
this section we only address tests of the second type.

In 1985, Collins proposed a test for industrial manipulators, commonly known as
the Cranfield Assembly Benchmark [7], which consists on assembling 17 parts to
form a mechanical pendulum. As it was noted in the paper, the goal of this test was
to examine the software and control features applied in the assembly process. Given
the structured nature of the assembly environment, perception was not considered as
an element to be evaluated.

Home environments pose challenges far different from industrial settings: Each
house is different, there exists many different household tasks, and each of them can
potentially require a different set of skills from the robot. Therefore, it should not
come as a surprise that designing a set of benchmark tasks is considered a daunt-
ing task. Nonetheless, through the years researchers have used common sense to
choose tasks to evaluate their systems, such as window cleaning, fetching and pour-
ing drinks and folding laundry, to name a few. Table2 shows a sample of tasks cur-
rently performed by state-of-the-art bimanual manipulators along with the inherent
assumptions.

With the advent of both affordable robotic manipulators and RGB-D sensors, the
interest in benchmark tasks to compare robot performance was spurred. In 2008,
Grunwald et al. [17] presented a set of benchmark tasks for dual-hand manipulators,
as part of the DEXMART project [39]. The tests were targeted to bimanual manipu-
lators and were chosen considering a cafeteria environment, so tasks such as carrying
a tray with two hands and clearing a table were proposed.

Table 2 Common tasks presented in robots

Task Robotic platform Assumption

Making coffee Rollin Justin [25] 3D model of objects is known

Capping a pen Golem Crichton [8] 3D model of object is known

Picking up a human RIBA [34] Constant human guidance

Insert a plug into a socket PR2 [32] Fiducial marker in plug
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Table 3 Manipulation tasks in recent robot competitions

Event Task Event Task

DARPA ARM I 1. Grasp 12 objects:
radio, rock, ball,
flashlight, hammer,
case, floodlight,
shovel, screwdriver

RoboCup @Home 1. Hand an object to a
human

2. Staple a stack of
paper

2. Grasp a cup and a
bottle

3. Turn on flashlight 3. Pick up objects
from shelf

4. Open door (handle) 4. Pick up 5 unknown
tabletop objects

5. Unlock a door (key) DEXMART 1. Empty a trash bin

6. Drilling 2. Open a screw cap

7. Hang up a phone 3. Solve a Rubick
Cube

DARPA ARM II 1. Change a tire 4. Pour water into a
glass

2. Open a bag, extract
pliers and cut a wire

5. Carry a box with
two hands

6. Insert a battery into
a drill

DRC 1. Carry and connect
fire hose

APC 1. Bin-picking a single
object

2. Open series of doors 2. Bin-picking a single
object in light clutter

3. Drive and exit
utility vehicle

4. Locate and close
leaking valves

In order to foster research advancement, robotic competitions featuring manipu-
lation tasks have notably flourished in the last decade. In 2010, DARPA organized
the Autonomous Robotic Manipulation (ARM) program, a 4-year project aimed to
develop software and hardware to enable a robot to autonomously manipulate, grasp
and perform complicated tasks with humans providing only high-level supervision.
More recently, the Amazon Picking Challenge (APC) [41] has been proposed and
aims to evaluate bin-picking skills in an industrial environment. Multiple other com-
petitions exists that involve manipulation as one of the evaluated aspects. On 2013,
the DARPA Robotics Challenge (DRC) took place in Miami and 4 out of its 8 tasks
directly involvedmanipulation.Amore traditional competition, theRobocup@Home
[45], has been running since 2005. Its main goal is to evaluate the progress of mobile
manipulators in a home environment. Navigation, manipulation and human-robot
interaction were among other features evaluated. Table3 shows the details of the
tasks involved in the competitions mentioned above.
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In order to define benchmark tasks, we must first define the methodology to
follow. Efforts to establish standard practices for benchmarking manipulation have
been shown by different authors however no clear answers have been delineated. The
closest attempt, in our view, to ground clear protocols for manipulation benchmarks
is the work presented in [19], in which the author suggests that benchmarking tests
should be defined by two aspects: Test Description, which specifies the conditions
under which the tests will be performed; and Test Evaluation, which describes how
the task performance will be measured. Both of these aspects will be discussed in
Sects. 2.3 and 2.4.

2.3 Test Evaluation

In order to compare reported results in robot manipulation, well-defined evaluation
metrics are needed. Evaluationmetrics can be of qualitative or quantitative nature and
can address different sub-topics of manipulation. Robot hands and arms are typically
first assessed through their physical characteristics and low-level performance indi-
cators, e.g. degrees-of-freedom, applicable forces, number of fingers, etc. However,
these performance indicators can not be used to infer better or worse manipulation
capabilities, since this depends on the design of the hand, as well as the interplay
of the components when put to test. In [9, 16] taxonomies are used to evaluate the
range of executable grasps. Given a grasp taxonomy and a specific robot hand, the
set of executable grasps can be identified and compared to other robots. To assess
the range of grasps in a more quantitative manner, Feix et al. [13] introduced a so-
called anthropomorphism index which compares reachable fingertip poses between
a human hand and a robot hand. An anthropomorphism index is a continuous vari-
able and can therefore be used to assess even small changes in the hand. Yet, it only
compares feasible hand shapes and does not include contacts with objects. In con-
trast to that, the graspability map introduced in [37] explicitly analyses the contacts
between a hand an object. A graspability map represents the set of poses that might
lead to a precision force closure grasp on an object. Comparing the size and quality
of graspability maps for different robot hands can indicate which hand is more likely
to produce stable precision grasps.

The above performance metrics mainly target the mechanical design and hard-
ware properties of a robot manipulator. Grasp planning algorithms, in contrast, are
compared using a different set of metrics. A common approach is to evaluate the
grasp quality using specific grasp quality metrics [4], such as the ε-metric, which
measures the total and maximum finger force [14]. Yet, as was noticed in recent pub-
lications [2], grasp quality measures are typically calculated in simulations and often
do not reflect the grasp executed by a robot. Hence, the most prominent approach for
evaluations is to analyse the success rate in an object lifting task. Typically, a set of
representative objects is grasped, then lifted, and the number of successful trials is
documented. While such lifting tests are more informative, they still do not provide
complete information about the degree of stability of the grasp. In [22] Kim et al.
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suggested using both visual inspection, as well as interactive, physical inspection to
evaluate the success of grasps. In interactive inspection, a human subject touched the
object while it was grabbed by the robot, applied physical perturbations (jiggling it),
and then evaluated its stability. In a similar vein, Morales et al. [33] used shaking
movements after grasping in order to estimate the stability of a grasp.

While grasp stability is necessary for many tasks, it is not a sufficient condition
for manipulation tasks. Many tasks that go beyond pick-and-place require additional
dexterous capabilities. Benchmarking of manipulation skills has therefore moved
towards functional tests, such as opening a series of doors, removing a screw cap, or
inserting a battery into a drill. Functional tests can evaluated by assessing whether
the complete task was successfully achieved and by counting the success of indi-
vidual sub-tasks. Table3 contains a list of functional tasks that have recently been
used in major competitions and projects on grasping and manipulation. The simple
interpretation of achieved results and the embedding in real-world scenarios, makes
functional tests particularly appealing for robot competitions. In addition, functional
tests do not come with an inherent assumption about the robot hardware. In contrast
to the Kapanji test, grasp quality measures or taxonomic evaluations of dexterity,
functional tests do not assume a specific morphology and can be performed with a
wide range of different manipulators, e.g. jamming grippers, deformable hands, or
anthropomorphic hands.

2.4 Test Description

In practice, it is often challenging to compare achieved manipulation performance
with reported values in the literature, or even replicate a result reported in a different
paper. Comparison of robot experiments can only be reasonably performed, if the
involved tests are conducted under the same or sufficiently similar conditions. To
overcome this challenge, we can design benchmarks in such a way as to minimize
the variance in the inherent assumptions.

One approach to do this, is by clearly specifying reasonable assumptions. For
example, as done in recent competitions, e.g. theAmazon PickingChallenge, specific
benchmark objects alongwith their 3Dmodels can be provided. Given a restricted set
of objects to manipulate, it is also possible to provide a shared software framework
for object detection. This would reduce the effect of perception on the manipulation
benchmark. However, it also bears the risk of over-specialization; the design of very
specific, brittle solutions that do not generalize to new situations.

Another approach to minimize variability is to use a standard robot hardware and
software platform. For example, various publication on manipulation use the PR2
robot in conjunctionwith ROS formanipulation. This allows different research teams
to share algorithms at the code level, thereby facilitating benchmarking different
manipulation methods. However, standardizing the robot platform also limits the
range of possible research questions that can be addressed. In the case of the PR2,
for example, no in-hand manipulation can be studied.
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In this paper, we propose two different measures to ensure a fair comparison of
grasping and manipulation methods. The first measure we propose is the inclusion
of inherent stochasticity into grasping benchmarks. Instead of specifying a set
of conditions under which an experiment is performed, e.g. a set of locations and
orientations of the object at the start of the experiment, we can design our benchmarks
such that the conditions are determined by the stochasticity in the task. In the case
of grasping and lifting an object, for example, we can introduce stochasticity by
repeatedly dropping the object into a bin and then performing the task again. The
configuration of the object in consecutive trials will depend on the resting position
after dropping. As a result the variation in posewill be imposed by the task rather than
ahumanexpert. The secondmeasurewepropose for fair comparisons ofmanipulation
capabilities, is the focus on longterm multi-step evaluations. Instead of executing
a task only one time after which the human tester resets the environment, we run
the experiment in a loop without human intervention. In the case of the above lifting
example, we can have the robot repeatedly lift an object from a bin and throw it into a
second bin in alternation. Since no human intervention is allowed, these tests capture
the robot’s ability to repeatedly deal with stochasticity inherent to these tasks.

3 Taxonomy of Benchmark Tasks

Section2 provided an overview of the current status of benchmarking as well as
insights to specify relevant test descriptions and test evaluations. In this section we
present our proposed taxonomy of benchmark tasks for robot manipulators. Several
criteria was considered in order to design the high-level taxonomy and the sample
tasks that will be presented. In the following lines we will summarize these consid-
erations, which we consider vital for a proper methodology of benchmark design:

1. Hardware-agnostic: Tests should not be designed with a specific platform in
mind. In order for benchmarks to be widely accepted, they should be realizable
under minimum hardware capabilities assumptions.

2. Flexibility: A lesson learned from the review of human tests is that there is not
an unique “right way” to solve a task. The robot should be allowed to apply a
strategy that better suits its particular situation (i.e. a robot equippedwith a gripper
might have to adopt a different approach to grasping an object than a robot with
a 3-fingered hand).

3. Time efficiency: Benchmarking is not a goal by itself. Rather, it should be seen as
a diagnostic tool to be applied regularly, to make sure our systems are comparable
(or within reasonable distance) to the state-of-the-art. Accordingly, since bench-
marks are a sidestep tool, they should be selected such that they can be evaluated
in a rapid manner, without the need of a complex setup or highly constrained
rules.

4. Relevant metrics: A metric is only useful if it can be compared against a stan-
dard value. Tasks should be selected such that the evaluation can be objective,



A Taxonomy of Benchmark Tasks … 415

numerically expressed and important for both the researcher and, eventually, for
the end-user. From the discussion in Sect. 2.3 we believe that (1) Task completion
time and (2) Success rate are the two objective, informative metrics that can more
easily be used.

5. Statistically relevant: Evaluation should consider aminimumnumber of attempts
to be considered valid. This has already been seen in theARMproject evaluations,
in which 5 trials were performed and the average results were evaluated.

6. Realistic assumptions:While a Laboratory environment is not the same as a real-
home space, we should stress the importance of avoiding to rely on assumptions
that in no way will exist in the real world. For instance, assumption of markers
placed in objects or off-board visual sensors are very unlikely to occur, so their
use might not translate into a realistic evaluation of capabilities.

7. User-focused tests: Service robots will be deployed at human homes, so it is rea-
sonable to take into account feedback from the end-users to evaluate our systems.
Studies in assistive technologies have shown that the main objective performance
measures used by humans with assistive robotic arms are: Their capacity to per-
form activities of daily living and time to task completion [42].

Based on the reasons exposed, we designed the taxonomy of benchmark tests
shown in Fig. 3. Details of each level in the classification follows.

3.1 Physical Tests

The tests in this sectionmeasure fundamentalmotor skills in a robot system, requiring
very limited or null perceptual and cognitive skills. The purpose of this battery of
tests is to evaluate the potential of the robot’s hardware, which is related to its ability
to solve a task. We further divide these tests in two types explained below. Examples
of representative tasks are shown in Table4.

Hand Tests

Tests that measure exclusively the hand physical capabilities. Given that a hand itself
is often a complex system on its own, this decision seems reasonable. An important
observation for this section is that these tests effectively evaluate the hand potential,

Benchmark Tests

DexterityPhysical Functional

Hand Limb Motion Finger Unimanual Bimanual

Fig. 3 Taxonomy of benchmark tasks
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Table 4 Sample physical tasks

Sublevel Examples Sublevel Examples

Hand 1. Maximum finger
aperture

Limb 1. Position the palm on
a table surface

2. Maximum payload
when picking up a
high-friction object

2. Open a screw cap

3. Perform static
grasps from existing
taxonomies

3. Point at diverse
objects on a table

4. Perform static
grasps of benchmark
objects [6, 28]

4. Sequentially point
at a moving target

rather than the hand’s actual ability to manipulate, which requires the additional
evaluation of both perception and cognitive skills jointly with the motor skills. An
example of a hand test commonly found in robotics literature is the use of grasp
taxonomies for hand evaluation [9].

Limb Tests

Tests that measure capabilities of both hand and arm interacting together. Evaluation
of simple online control is tested, such as capability to follow a workspace trajectory
and capability to follow an end-effector pose. These abilities can be considered basic
building blocks for the tests in the following sections.

3.2 Dexterity Tests

This type of tests evaluatemotor skills, moderate perceptual skills and basic cognitive
skills to solve simple tasks involving picking-up an object from a table, in-hand
reconfiguration, or hand-eye coordination. A further subdivision of such tests is
explained below.

Manual Dexterity Test

This type of tests measure the robot’s ability to manipulate objects mainly for trans-
port operations, in which in-hand manipulation is not required. In [11], Feix et al.
found out - after analyzing video data of daily activities of 2 household workers and
2 machinists - that for many cases, power grasps were more vastly used instead of
precision grasps, even for small objects. Hence, the geometry of the object play less
a factor in the grasp selection when the task is simply pick and place. In other words,
for this type of test tasks, an accurate 3D model should not be required.

Another interesting result from [12] is the fact that most of the objects (used by
the subjects in the video) presented characteristics that made them easy to grasp:
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Table 5 Sample dexterity tests

Sublevel Examples Sublevel Examples

Manual 1. Pick-up an object on
a clear table

Finger 1. Unscrew a bottle
using fingers only

2. Pick an object from
a table and place it on
a cupboard

2. Rotate a chopstick

3. Pick an object from
a box and set it at an
adjacent box

3. Grab a short
cylinder from the table
and rotate it such that
its supporting face
ends up facing
upwards.

Object mass was normally less than 500g and the grasps required less than 7cm
in width. This information is corroborated by previous studies reporting the most
common characteristics of manipulated objects [6, 28].

Fine-Motor Dexterity Test

In contrast to the manual tests, the fine-motor dexterity tests evaluate in-hand manip-
ulation: The ability tomodify an object configurationwithout using arm’smovement.
Fine-motor skills are challenging since they usually require more sophisticated sens-
ing capabilities, such as tactile. Also, perceptual errors, which can be more or less
tolerated and corrected whenmanipulating regular objects, can affect more adversely
in this case.

The following table shows some sample tasks. In the manual examples, object is
a generic term referring to objects of generic geometry (cylinder, cube, sphere) and
weight no bigger than 500g (Table5).

3.3 Functional Tests

The tests in this section require the full interaction of motor, perceptual and cognitive
skills in order to solve the task at hand, which presents the following characteristics:

• Functional tasks usually require more than one step to be accomplished, hence
task planning at the cognitive level should be addressed.

• Task-specific constraints must be considered. Of particular importance are object’s
pose constraints.

• When faced with a household task, humans possess knowledge from previous
experience. In particular, object information is usually available at some abstract
level. Given this, and following the inspiration of [18], it is acceptable to assume
that the robot have previous available knowledge regarding the object and how it
can be used to solve the task.
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Table 6 Sample functional tests

Sublevel Examples Sublevel Examples

Unimanual Open a door
(handle/knob)

Bimanual Cut a piece of
Play-Doh on a table

Plug in a power plug Rotate a steering
wheel 45 degrees

Press level on an
electric kettle

Empty a trash can
(turn it upside down)

Pick up a glass from a
full dish rack

Pick up a tray with a
glass on it and
transport it

Push an emergency
button

Open a jar with screw
lid

Pour a liquid in a wide
container

Grab an open tetrapak
and pour liquid in a
cup for 2 s.

Stir slowly in a pot

Spray from a bottle

Stack cans

Spoon beans
(simulated feeding)

• In a similar manner to the previous consideration: Information should be available
but not overly specific: Tests should evaluate reasonable generalization of abstract
knowledge (i.e. ability to grasp similar objects).

In these tests we include tasks involving the use of one and both arms, as a good
fraction of household tasks involve the interaction of 2 limbs actuating either on the
same object or on two objects interacting on the same task (Table6).

4 Conclusion

In this paper, we have presented a taxonomy of benchmark tasks for robot manipu-
lators. Using as inspiration the lessons learned from robotics and related fields we
analyzed and proposed basic concepts as groundwork to formally define a standard
manipulation benchmark methodology with 3 general levels describing robot capa-
bilities with increasing levels of complexity. We emphasized the vital importance
of system evaluation in contrast to component-wise testing, since it allows a more
realistic assessment of a robot functional abilities. Our next step, which is part of
our ongoing work, is to implement more of our proposed tasks and to make our
performance evaluation publicly available for comparative studies. As is the case in
other fields, benchmarking is not an static process. Rather, it is an evolving procedure
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that is shaped, improved and redefined after constant evaluation. We think this is an
exciting challenge for our community and a step towards achieving more capable
robotic manipulation systems.

References

1. Aaron, D., Jansen, C.: Development of the functional dexterity test (FDT): construction, valid-
ity, reliability, and normative data. J. Hand Ther. 16(1), 12–21 (2003)

2. Balasubramanian, R., Xu, L., Brook, P., Smith, J., Matsuoka, Y.: Physical human interactive
guidance: identifying grasping principles from human-planned grasps. The Human Hand as an
Inspiration for Robot Hand Development. Springer, Switzerland (2014)

3. Barreca, S., Gowland, C., Stratford, P., Huijbregts, M., Griffiths, J., Torresin, W., Dunkley, M.,
Miller, P.,Masters, L.: Development of the chedoke arm and hand activity inventory: theoretical
constructs, item generation, and selection. Topics Stroke Rehabil. 11(4), 31–42 (2004)

4. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis—a survey. IEEE
Trans. Robot. 30, (2013)

5. Bryden, P., Roy, E.: A new method of administering the grooved pegboard test: performance
as a function of handedness and sex. Brain Cogn. 58(3), xxx (2005)

6. Choi, Y., Deyle, T., Chen, T., Glass, J., Kemp, C.: A list of household objects for robotic
retrieval prioritized by people with ALS. In: IEEE International Conference on Rehabilitation
Robotics (2009)

7. Collins, K., Palmer, A., Rathmill, K.: The development of a European benchmark for the
comparison of assembly robot programming systems. Robot Technology and Applications.
Springer, Heidelberg (1985)

8. Dantam, N., Ben Amor, H., Christensen, H., Stilman, M.: Online multi-camera registration for
bimanual workspace trajectories. In: HUMANOIDS (2014)

9. Deimel, R., Brock, O.: A novel type of compliant, underactuated robotic hand for dexterous
grasping. In: Proceedings of Robotics: Science and Systems, pp. 1687–1692 (2014)

10. Desrosiers, J., Hébert, R., Dutil, E., Bravo, G.: Development and reliability of an upper extrem-
ity function test for the elderly: the TEMPA. Can. J. Occup. Ther. 60(1), 9–16 (1993)

11. Feix, T., Bullock, I., Dollar, A.: Analysis of human grasping behavior: correlating tasks, objects
and grasps. IEEE Trans. Haptics 7, 430–441 (2014)

12. Feix, T., Bullock, I., Dollar, A.: Analysis of human grasping behavior: object characteristics
and grasp type. IEEE Trans. Haptics 7, 311–323 (2014)

13. Feix, T., Romero, J., Ek, C., Schmiedmayer, H., Kragic, D.: Ametric for comparing the anthro-
pomorphic motion capability of artificial hands. IEEE Trans. Robot. 29(1), 82–93 (2013)

14. Ferrari, C., Canny, J.: Planning optimal grasps. In: ICRA (1992)
15. Gloss, D., Wardle, M.: Use of the minnesota rate of manipulation test for disability evaluation.

Percept. Mot. Skills 55(2), 527–532 (1982)
16. Grebenstein,M.: The awiwi hand: an artificial hand for theDLRhand arm system.Approaching

Human Performance, pp. 65–130. Springer, Switzerland (2014)
17. Grunwald, G., Borst, C., Zöllner, J.E.A.: Benchmarking dexterous dual-arm/hand robotic

manipulation. In: IROS Workshop on Performance Evaluation and Benchmarking (2008)
18. Hackett, D., Pippine, J., Watson, A., Sullivan, C., Pratt, G.: An overview of the DARPA

autonomous robotic manipulation (ARM) program. J. Robot. Soc. Jpn. 31(4), 326–329 (2013)
19. Iossifidis, I., Lawitzky, G., Knoop, S., Zöllner, R.: Towards benchmarking of domestic robotic

assistants. Advances in Human-Robot Interaction. Springer, Heidelberg (2005)
20. Jebsen, R., Taylor, N., Trieschmann, R., Trotter, M., Howard, L.: An objective and standardized

test of hand function. Arch. Phys. Med. Rehabil. 50(6), 311 (1969)
21. Kapandji, A.: Clinical test of apposition and counter-apposition of the thumb. Annales de

chirurgie de la main: organe officiel des societes de chirurgie de la main 5(1) (1985)



420 A. Huamán Quispe et al.

22. Kim, J., Iwamoto, K., Kuffner, J., Ota, Y., Pollard, N.: Physically based grasp quality evaluation
under pose uncertainty. IEEE Trans. Robot. 29, 1424 (2013)

23. Kopp, B., Kunkel, A., Flor, H., Platz, T., Rose, U., Mauritz, K., Gresser, K., McCulloch,
K., Taub, E.: The arm motor ability test: reliability, validity, and sensitivity to change of an
instrument for assessing disabilities in activities of daily living. Arch. Phys. Med. Rehabil.
78(6), 615–620 (1997)

24. Kyberd, P., Murgia, A., Gasson,M., Tjerks, T., Metcalf, C., Chappell, P.,Warwick, K., Lawson,
S., Barnhill, T.: Case studies to demonstrate the range of applications of the Southampton Hand
Assessment Procedure. Br. J. Occup. Ther. 72(5), 212–218 (2009)

25. Leidner, D., Borst, C., Hirzinger, G.: Things are made for what they are: solving manipulation
tasks by using functional object classes. In: HUMANOIDS (2012)

26. Light, C.M., Chappell, P.H., Kyberd, P.: Establishing a standardized clinical assessment tool of
pathologic and prosthetic hand function: normative data, reliability, and validity. Arch. Phys.
Med. Rehabil. 83(6), 776–783 (2002)

27. Lin, S., Chang, J., Chen, P., Mao, H.: Hand function measures for burn patients: a literature
review. Burns (J. Int. Soc. Burn Inj.) 39(1), 16–23 (2013)

28. Matheus, K., Dollar, A.: Benchmarking grasping and manipulation: properties of the objects
of daily living. In: IROS (2010)

29. Mathiowetz, V.,Weber, K., Volland, G., Kashman, N.: Reliability and validity of grip and pinch
strength evaluations. J. Hand Surg. 9(2), 222–226 (1984)

30. Mathiowetz, V., Volland, G., Kashman, N., Weber, K.: Adult norms for the box and block test
of manual dexterity. Am. J. Occup. Ther. 39(6), 386–391 (1985)

31. Mathiowetz, V., Rogers, S., Dowe-Keval, M., Donahoe, L., Rennells, C.: The purdue pegboard:
norms for 14-to 19-year-olds. Am. J. Occup. Ther. 40(3), 174–179 (1986)

32. Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich, P., Marder-Eppstein,
E., Muja, M., Eruhimov, V., Foote, T., et al.: Autonomous door opening and plugging in with
a personal robot. In: ICRA, pp. 729–736 (2010)

33. Morales, A., Chinellato, E., Sanz, P., Del Pobil, A., Fagg, A.H.: Learning to predict grasp
reliability for a multifinger robot hand by using visual features. In: AISC (2004)

34. Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., Hosoe, S.: Development
of a nursing-care assistant robot RIBA that can lift a human in its arms. In: IROS (2010)

35. Ng, C., Ho, D., Chow, S.: The Moberg pickup test: results of testing with a standard protocol.
J. Hand Ther. 12(4), 309–312 (1999)

36. Poole, J., Burtner, P., Torres, T., McMullen, C., Markham, A., Marcum, M., Anderson, J.,
Qualls, C.: Measuring dexterity in children using the nine-hole peg test. J. Hand Ther. 18(3),
348–351 (2005)

37. Roa, M., Hertkorn, K., Zacharias, F., Borst, C., Hirzinger, G.: Graspability map: a tool for
evaluating grasp capabilities. In: IEEE/RSJ IROS, pp. 1768–1774 (2011)

38. Schoneveld, K., Wittink, H., Takken, T.: Clinimetric evaluation of measurement tools used in
hand therapy to assess activity and participation. J. Hand Ther. 22(3), 221–236 (2009)

39. Siciliano, B.: Advanced Bimanual Manipulation: Results from The DEXMART Project, vol.
80. Springer, Heidelberg (2012)

40. Sollerman, C., Ejeskär, A.: Sollerman hand function test: a standardised method and its use in
tetraplegic patients. Scand. J. Plast. Reconstr. Surg. Hand Surg. 29(2), 167–176 (1995)

41. The Amazon Picking Challenge. http://amazonpickingchallenge.org/ (2014)
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The Robotic Sixth Finger: A Wearable
Compensatory Tool to Regain Grasping
Capabilities in Paretic Hands

Gionata Salvietti, Irfan Hussain and Domenico Prattichizzo

1 Introduction

Wearable robots are expected to work very closely, to interact and collaborate with
people in an intelligent environment [1]. Traditionally, wearable robotic structures
have been mainly used in substitution of lost limbs (e.g., prosthetic limbs) or for
human limb rehabilitation (e.g., exoskeletons). However, the progress in miniatur-
ization and efficiency of the technological components is allowing more light and
compact solutions, enhancing user’s safety and comfort, while opening new oppor-
tunities for wearable robot use [2]. Together with exoskeleton and prosthesis, a very
promising research direction seems to be that of adding robotic limbs to human,
rather than substituting or enhancing them [3]. This addition could let the humans
augment their abilities and could give support in everyday tasks to impaired peo-
ple. This paper investigates how to compensate the capabilities of the human hand,
instead of developing additional robotic extra-arms, as discussed for instance in [4].
The idea of using an extra-finger to support the human hand in grasping functions
was initially proposed in [5]. Then, independently both in [6–8], the authors proposed
the use of extra fingers to support the human hand to grasp objects whose size does
not fit a hand or in executing bimanual tasks with one hand. The main difference is
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that in [7, 8], the goal was to minimize the size and the weight of the unique extra
limb, while in [6], two extra fingers were used so to hold objects. While in [9] the
authors developed a control strategy to grasp and manipulate objects, in [10] the
authors mainly focused on the use of extra fingers for post-stroke patients.

Focusing on the hand, many wearable devices have been proposed in the last
decade, especially for hand rehabilitation and function recovery. A review on robot-
assisted approaches to motor neurorehabilitation can be found in [11]. In [12] the
authors presented a comprehensive review of hand exoskeleton technologies for
rehabilitation and assistive engineering, from basic hand biomechanics to actuator
technologies.

However, most of the devices proposed in literature are designed either to increase
the functional recovery in the first months of the rehabilitation therapy, when bio-
logical restoring and reorganization of the central nervous system take place, or are
designed to augment human hand capabilities of healthy subjects by coordinating
the device motion to that of the hand.

To the best of our knowledge, only few works target on the robotic compensation
of hand function in the latter phase of rehabilitation. This means that patients usually
after 6–9months of rehabilitation must rely only on compensatory strategies by
improving adaptations that increase the functional disparity between the impaired
and the unaffected upper limb [13].

This work focuses on the compensation of hand function in patients with paretic
limbs, e.g. chronic stroke patients. The final aim is to provide the patient with an
additional robotic finger worn on the wrist. The Robotic Sixth Finger is used together
with the paretic hand to seize an object, as shown inFig. 1. The systems acts like a two-
finger gripper, where one finger is represented by the Robotic Sixth Finger, while the
other by the patient paretic limb. The proposed device goes beyond exoskeletons:
it adds only what is needed to grasp, i.e. an extra thumb. We presented in [7] a
preliminary version of a robotic extra-finger showing how this wearable device is

Fig. 1 The Robotic Sixth
Finger. The device can be
worn on the forearm thanks
to an elastic band. When
activated, it interacts with the
paretic hand in grasping
tasks
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able to enhance grasping capabilities and hand dexterity in healthy subjects. In [8],
we also presented an object-based mapping algorithm to control robotic extra-limbs
without requiring explicit commands by the user. The main idea of the mapping was
to track human hand by means of dataglove and reproduce the main motions on the
extra-finger. This kind of approach is not suitable for patients with a paretic limb due
to the reduced mobility of the hand. Therefore, we developed a wearable interface
embedded in a ring to activate and use the finger [14].

In this work, we propose two possible designs of devices. The first model is a
modular fully actuated finger. The other design consists of an underactuated finger
which is compliant and consequently able to adapt to the different shapes of the
objects.

For validation purposes, pilot experiments with two chronic stroke patients were
performed. The experiments consisted in wearing the Robotic Sixth Finger and per-
forming a rehabilitation test referred to as Frenchay Arm Test [10, 15]. Finally, we
present preliminary results on the use of the extra-fingers for grasping objects for
Activities of Daily Living (ADL).

2 Designs of the Robotic Sixth Finger

In this work, we propose three different solutions for the realization of a wearable
extra-finger. The first is a fully actuated modular structure. The other two share a
similar underactuated design. In the following, the three models are described in
detail.

2.1 Fully Actuated Finger

The fully actuated finger consists of 1–DoF modules connected through screws.
Modularity of the device offers two main advantages. Firstly, the length of the device
and the number of actuated DoFs can be selected by choosing the total number of
modules. Secondly, the robustness of the device is increased considering that robot
parts are interchangeable. Eachmodule consists of a servomotor (HS-53Microservo,
HiTech, Republic of Korea) and a 3D printed plastic part with an overall dimension
of 42 × 33 × 16mm. The motor can provide a maximum torque of 1.5kgcm. The
modules can be connected in a pitch-pitch configuration, in order to replicate the
flexion/extension motion of the human finger. The modular part of the finger is
connected to a support base which contains also the electronic housing. A rubber
band allows to easily wear the device on the forearm. The fully actuated finger is
shown in Fig. 2. An external battery is used to provide power to all the circuits. All
the electronics is enclosed in a 3D printed box attached to the finger to make it
wearable. The module actuators are PWM controlled servomotors. The PWM signal
is generated by an Arduino Nano board [16].
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Fig. 2 The fully actuated
Sixth-Finger. The finger is
built using modules
connected to a wrist elastic
band

The user can command the finger motion by using the wearable switch placed on
a ring, see Fig. 6. The switch is used to start the robotic finger flexion procedure and
to move the finger back to an initial predefined position. The ring has been designed
to be worn on the index finger of the non-paretic hand. In this way, the user can press
the push button on the ring using his thumb.

We introduce a new control strategy that enables the finger to autonomously adapt
to the shape of the grasped object.When the switch is activated, the finger starts to flex
with a fixed joint angle increment, equal for eachmodule, from a predefined position.
We considered the completely extended finger as the starting position to enlarge the
set of possible graspable objects. Each module has been equipped with a Force
Sensing Resistor (FSR) (408, Interlink Electronics Inc., USA) able to detect contacts
with the grasped object, see Fig. 2. As soon as one module is in contact with the
object, that module stops its motion, while the others keep moving toward the object.
During the grasping phase, the FSR sensors are in charge of detecting the contact of
each module with the grasped object. In order to have suitable contact points, we set
different closing priorities per each module. If the fingertip module comes in contact
first, the remaining modules stop. If the second last comes in contact first, modules
below to it stop, while the fingertip module keeps moving. The same methodology
is followed for the other intermediate modules. Finally, if the module at the base of
the finger is the first to come in contact, two different behaviors can occur: (i) the
intermediate modules gets in contact before the fingertip; (ii) the fingertip module
comes in contact first. In case (i) the fingertip is left free to move to get in contact
with the object; in case (ii) the intermediate modules stop. The grasping procedure is
commanded by the user acting on the switch. When the grasp is complete, the finger
starts to autonomously keep the grasp stable. This grasp stabilization is obtained by
controlling the compliance of each module.
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Generally, in active compliance control framework, the motor torque is related to
its position error through a stiffness constant [17]. The compliant (or stiff) behavior
of the joint is achieved by virtue of the control, differently from what happens in
mechanical systems with a prevalent dynamics of elastic type. This controller is
typically used with actuators that can be torque controlled. In servomotors, it is not
possible to directly command the torque to be exerted by the joints. Therefore, we
modified the servomotors in order to read the joints position from the embedded
potentiometer and we introduced a scaling factor kd to modulate the displacement of
the joints related to the applied forces. The compliance decreases with the increase
of kd . Details on how to vary the compliance of a module acting on servomotors
control and simulating a variable stiffness can be find in [18].

The basic idea is that the module can change its compliance according to the
force observed by each module through the relative FSR sensor. Thus, when the user
pushes the object toward the extra finger to tight the grasp, the device becomes stiffer.
The possibility to independently regulate each module’s compliance allows to adapt
the finger to the shape of the grasped object also duringmanipulation tasks. Similarly
to what we did for the grasping procedure, we set the same priorities between the
four modules also regarding the compliance variation.

When the user wants to release the grasped object, he just needs to lower the
force exerted by his hand on the object and, automatically, the robotic device will
make its joints more compliant. Eventually, by pressing again the switch, the robotic
finger moves back to its home position by following a predefined trajectory. Note
that if the patient is not able to exert force on the object, due to the motor deficit or
to the position of the Robotic Sixth Finger on the forearm, the grasp tightness can be
controlled through the wearable switch. The more the button on the ring is pressed,
the more is the force exerted by the finger onto the object.

2.2 Underactuated Fingers

Underactuated robotic fingers are generally obtained using elastic elements in the
design of their “unactuated” joints [19], which are usually passively driven [20]. The
concept of underactuation in robotic fingers is different from that usually presented in
robotic systems [21]. In an underactuated finger, the actuation force is applied to the
input of the finger and is transmitted to the phalanges through a suitable mechanical
design, e.g., four-bar linkages, pulleys and tendons, gears, etc. Since underactuated
fingers have many DoFs, say n, and fewer than n actuators, passive elements are used
to kinematically constrain the finger and ensure the shape adaptation of the finger to
the grasped object [22].

We designed two underactuated Robotic Sixth Fingers to explore a passive com-
pliance solution to the problem of adapting the robotic finger to the shape of the
grasped object. The first version resembles the human finger shape. We placed in
the support base a servomotor (HS-485 HB HITEC RCD Inc., USA) which takes
care of the finger actuation. The motor has a stall torque of 6.0kgcm and it is used
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Fig. 3 Cad model of
complete underactuated
finger having servo motor
with pulley. The rubber band
is to wear the finger at
wrist/arm

for the flexion/extension of the whole finger. Also this prototype can be worn on
the forearm/wrist with the help of an elastic band. The finger’s drive mechanism is a
nylon wire, which connects the outermost phalanges with the motor through a pulley.
The CAD model of the finger is reported in Fig. 3.

All the phalanges are connected by screws. Bearings are used to reduce the friction
between phalanges. Also in this case we have pursued modularity and wearability
concepts in designing the device. Modules can be added at the base of the finger
structure depending on the required length of the finger.

If no torque is applied, the finger is completely straight. When the motor is acti-
vated, the wire is pulled and the finger bends to grab the object. The elastic rubber
parts placed on the back of the finger between each phalanx are used to bring it to
its original position when required. The control of the finger motion is simplified
with respect to the fully actuated version, since compliance and shape adaptation are
passively guaranteed by the finger structure. The user can regulate the finger flexion
and the related applied force, acting on the push button. The more the button is kept
pressed, the more is the flexion command through the servomotor.

In the second underactuated design proposed, we have duplicated the finger struc-
ture to improve the grasp robustness. We used different modules so to exploit the
underactuation and the passive adaptation to the grasped object, while reducing the
total weight of the device. So that, we considered modules that do not resemble the
shape of the human finger. The actuation and design are inspired by recent works on
underactuated robotic hands [19, 23]. Each module consists of a 3D printed poly-
meric part that acts as a rigid link and a 3D printed thermoplastic polyurethane part
that realizes the flexible joint. Soft rubber pads are glued to the rigid links to increase
the friction at possible contact areas. The modules can be linked by sliding the ther-
moplastic polyurethane part in the ABS part to speed up the assembling process. A
cable is used to achieve the tendon driven actuation. The tendon wire runs through
the two fingers and is attached to a lever rigidly connected to the actuator shaft. The
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Fig. 4 The Double Robotic
Sixth Finger. On the left side,
the CAD exploded view of
the device. On the right side,
the CAD assembled view

Table 1 The Double Sixth
Finger technical details

Module dimensions 4.2 × 2.0 × 0.9 cm

Module dimensions when
connected

3.4 × 2.0 × 0.9 cm

Module weight 5.8 g

Support base dimensions 6.4 × 7.0 × 0.35 cm

Actuator control unit box
dimensions

7.0 × 9.0 × 3.4 cm

Actuator control unit box
weight

0.146 Kg

Actuator max torque 17kgcm @ 12 V

Max. operating angles 0 − 180 deg

Max non-loaded velocity 5.1 rad/s

The Double-SoftSixthFinger
total weight

0.166 kg

CAD exploded and assembled views are reported in Fig. 4. Technical details of the
device are reported in Table1.

2.3 Positioning of the Devices on the Paretic Arm and
Activation Interface

We propose in this work three different prototypes of the Robotic Sixth Finger. All
the designs share a common principle of work which consists in opposing to the
paretic hand/wrist so to restrain the motion of the object. We will use the general
term Robotic Sixth Finger when referring to features common to all the proposed
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devices. All the robotic extra-fingers can be worn in the distal part of the forearm
(near, or on the wrist) since the grasp occurs by opposing the device to the paretic
hand.

However, the distal positioning of the Robotic Sixth Finger may fail when the
motor deficit is so advanced that a pathological synergism in flexion took place: in
this case, the wrist becomes too much flexed and fingers are too much closed towards
the palm to allow a successful grasping. When this pathological condition occurs,
the Robotic Sixth Finger may be positioned more proximal at the forearm, in a way
that the grasp can be achieved by the extra-finger opposition to the radial aspect of
the thenar eminence. An example of two possible positions for the Robotic Sixth
Finger are reported in Fig. 5. This flexibility in the positioning is achieved thanks to
the modularity of the structures and the fixing support. Modularity allows to regulate
the size and dexterity of the finger according to the position on the forearm and
according to each patient’s limb characteristics. The support base of the finger can
be translated or rotated along the arm to place the finger in a suitable orientation.
An elastic band and rubber spacers are used to increase the grip and comfort while
reducing the fatigue during continuous use of the finger.

Concerning the easiness of the use, the patient can activate the robotic extra-finger
motion through a switch. The switch is a push button placed on a ring worn on the
healthy hand, see Fig. 6. This dramatically simplifies the interaction with the device.
However, this simplification in the device command has to be compensated by an
increase of the autonomy of the robotic prosthesis. In fact, the robotic finger needs to

Fig. 5 The robotic extra
finger in two possible
configurations on the
forearm. a The grasp is
obtained at the wrist level. b
The grasp is obtained at the
hand level

Fig. 6 The CAD model of
the activating ring. The push
button is used to start/stop
the finger
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adapt to the shape of the grasped object and it needs to be able to stabilize the grasp
during the arm motion. We propose two different solutions to deal with these issues.
The first is to use a fully actuated device which can actively regulate the compliance
of its joints. The second, used in two of the proposed models, is to combine passive
compliance with underactuation.

3 Pilot Experiment

In the current proof of concept study, we tested with two subjects how the Robotic
Sixth Finger device can compensate for grasping capability. The aim was to verify
the potential of the approach and to understand how the subjects can interact with
the wearable device. In this direction, we performed a qualitative test, the Frenchay
Arm Test [15]. The test consists of five pass/fail tasks to be executed in less then
three minutes. The patient scores 1 for each of the successfully completed task, while
he/she scores 0 in case of fail. The subject sits at a table with his hands in his lap,
and each task starts from this position. He/she is then asked to use his/her affected
arm/hand to:

1. Task_1 Stabilize a ruler, while drawing a line with a pencil held in the other hand.
To pass, the ruler must be held firmly.

2. Task_2Grasp a cylinder (12mmdiameter, 5 cm long), set on its side approximately
15 cm from the table edge, lift it about 30 cm and replace without dropping.

3. Task_3 Pick up a glass, half full of water positioned about 15 to 30 cm from the
edge of the table, drink some water and replace without spilling.1

4. Task_4 Remove and replace a sprung clothes peg from a 10mm diameter dowel,
15 cm long set in a 10 cm base, 15 to 30 cm from table edge. Not to drop peg or
knock dowel over.

5. Task_5 Comb hair (or imitate); must comb across top, down the back and down
each side of head.

The subjects taking part to the experiment have been affected by stroke more
than two years before. The rehabilitation team have declared that no more functional
improvements are achievable with respect to the gained upper limb motor perfor-
mance. In particular, the patients showed the following characteristics based on the
National Institute of Health Stroke Scale (NIHSS) [24]: (1) normal consciousness
(NIHSS, item1a, 1b, 1c = 0), absence of conjugate eyes deviation (NIHSS, item
2 = 0), absence of complete hemianopia (NIHSS, item 3 ≤ 1), absence of ataxia
(NIHSS, item 7 = 0), absence of completely sensory loss (NIHSS, item 8 ≤ 1),
absence of aphasia (NIHSS, item 9 = 0), absence of profound extinction and inat-
tention (NIHSS, item 11 ≤ 1). Patients received the Robotic Sixth Finger in the
paretic hand, the left hand for one subject and the right one for the other. Thanks to
the flexibility of the devices, the same prototypes were used in both subjects. For

1Note that for safety reasons we did not use water in presence of electronic components.
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Fig. 7 Stabilize a ruler, while drawing a line with a pencil held in the other hand. The Sixth Finger
does not interfere with the task execution

being included in the experiment, patients have shown partial paresis of the upper
limb tested with the NIHSS item 5 “paretic arm” ≤2. Written informed consent was
obtained from all participants. The procedures were in accordance with the Decla-
ration of Helsinki.

The subjects performed the Frenchay ArmTest wearing in order the fully actuated
finger, the underactuated human-like version, the double finger version and finally
without any device. The Robotic Sixth Finger was placed on the paretic limb, while
it was activated using the switch placed on the index of the other hand. Figure7
reports a snapshot of the execution of Task_1, while Figs. 8 and 9 show the Task_2
and Task_3, respectively.

The results of the tests are reported in Tables2 and 3 for the two patients, respec-
tively. Both the subjects were able to grasp a cylinder and to pick up a glass with the
help of the robotic devices. In total, we got an improvement of 2 out of 5 points in
the test scale.

3.1 The Robotic Sixth Finger in ADL

The main target of the Robotic Sixth Finger is that of giving to the users a compen-
satory tool that can be used in common ADL so to improve their quality of life. As
a first example, we tested how the proposed devices could help the patients in an
unstructured kitchen. In particular, the patients were asked to take advantage of the
extra-fingers to open different cans and jars. These operations are typical bimanual
tasks, where one hand is used to restrain the motion of the object, while the other is
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Fig. 8 Grasp a cylinder (12 mm diameter, 5 cm long) using the underactuated compliant version
of the Sixth Finger

Fig. 9 Setup of the experiment. The subject wears the Sixth Finger device on the paretic limb and
activates its motion through a switch placed on a ring worn on the index of the other hand. Addition
batteries are used to guarantee complete portability of the device
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Table 2 Results of the Frenchay Arm Test for the first patient with and without using the Sixth
Finger versions

TASK No finger Fully-actuated Under-actuated Double finger

Stabilize a ruler 1 1 1 1

Grasp a cylinder 0 1 1 1

Pick up a glass 0 1 1 1

Remove a sprung 0 0 0 0

Comb hair 0 0 0 0

Table 3 Results of the Franchay Arm Test for the second patient with and without using the Sixth
Finger versions

TASK No finger Fully-actuated Under-actuated Double finger

Stabilize a ruler 1 1 1 1

Grasp a cylinder 0 1 1 1

Pick up a glass 0 1 1 1

Remove a sprung 0 0 0 0

Comb hair 0 0 0 0

Fig. 10 The Double Sixth Finger as compensatory tool for bimanual tasks. On the left, the paretic
hand and the device restrain the motion of a tomato jar so the user can unscrew its cap using the
healthy hand. On the right, the device works together with the paretic hand so to let the patient open
a can of beans

used to open it (e.g., unscrewing the cap). Chronic patients with an advanced motor
deficit are usually trained to use special tools and techniques so to let them open
some of the commercial cans using only one hand. However, this solution limits
the possibility of the patients to perform common activities outside their structured
kitchens and also reduce the number of products they can use. With the help of the
Robotic Sixth Finger the patients can grasp the cans/jars using their paretic limb and
then use the healthy hand to open them. In Fig. 10 an example with two different
objects is reported.
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4 Conclusion

In this paper, we presented the preliminary results concerning the use of a robotic
extra-finger for compensation of hand grasping function in patients with a paretic
limb.We developed three, one fully actuated and two underactuated, prototypes using
rapid prototyping techniques. We believe that at this stage of the research it is useful
to explore different solutions in terms of actuation and kinematic structures. Results
of the pilot tests showed that all the versions were able to successfully fulfill three
out of five tasks in the Frenchay Arm Test in both the patients. The fully actuated
finger can also be controlled so to perform different flexion trajectories. This could
be useful to achieve different types of grasps according to the task the patient has to
perform. Finally, the Double Robotic Sixth Finger showed the highest performance
when used in ADL. The two fingers guaranteed a higher grasp stability while the
patients were unscrewing the jar’s caps. However the encumbrance of the device
reduces its wearability and portability.

In general, passive compliance resulted to be more robust and suitable. In future
work, we will push in this direction and explore the possible designs of “soft” fingers
based on such principles. We are currently testing our devices involving a greater
number of subjects so to collect also interesting insights for the extra-finger devel-
opment. We are also investigating the possibility of using our robotic extra-finger
in patients affected by other neurological diseases possibly affecting hand grasping,
such as Multiple Sclerosis or Amyotrophic Lateral Sclerosis.

One of the limitations of this approach is the fine manipulation of objects. This
feature was out of the main purposes of the use of the Sixth Finger described here.
In fact, the extra-finger and patient limb work jointly as the two parts of a one DoF
gripper.

Although grasping objects with the paretic limb, without any specific training
phase, could already represent a great improvement in everyday life of chronic stroke
patients, we are investigating whether the Robotic Sixth Finger can be used also in
more complex manipulation tasks.
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Part IV
Multi-robot Systems



Towards Cooperative Multi-robot Belief
Space Planning in Unknown Environments

Vadim Indelman

1 Introduction

Autonomous operation under uncertainty is essential in numerous problem domains,
including autonomous navigation, object manipulation, multi-robot localization and
tracking, and robotic surgery. As the robot state is never accurately known due to
motion uncertainty and imperfect state estimation obtained from partial and noisy
sensor measurements, planning future actions should be performed in the belief space
- a probability distribution function (pdf) over robot states and additional states of
interest.

Belief space planning has been investigated extensively in the last two decades.
While the corresponding problem can be described in the framework of partially
observable Markov decision process (POMDP), which is known to be computation-
ally intractable for all but the smallest problems [17], several approaches that tradeoff
optimal performance with computational complexity have been recently developed.
These approaches can be segmented into several categories: point-based value iter-
ation methods, simulation based approaches, sampling based approaches and direct
trajectory optimization approaches.

Point-based value iteration methods (e.g. [14, 19]) select a number of represen-
tative belief points and calculate a control policy over belief space by iteratively
applying value updates to these points. Simulation-based approaches (e.g. [23, 24])
generate a few potential plans and select the best policy according to a given met-
ric. They are referred to as simulation-based approaches, since they simulate the
evolution of the belief for each potential plan to quantify its quality.

Sampling based approaches (e.g. [1, 6, 21]) discretize the state space using ran-
domized exploration strategies to explore the belief space in search of an optimal
plan. While many of these approaches, including probabilistic roadmap (PRM) [13],
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rapidly exploring random trees (RRT) [15] and RRT* [12], assume perfect knowl-
edge of the state, deterministic control and a known environment, efforts have been
devoted in recent years to alleviate these restricting assumptions. These include, for
example, the belief roadmap (BRM) [21] and the rapidly-exploring random belief
trees (RRBT) [1], where planning is performed in the belief space, thereby incorpo-
rating the predicted uncertainties of future position estimates. We note that similar
strategies are used to address also informative planning problems (see, e.g., [6]).

Direct trajectory optimization methods (including [9, 18, 20, 25]) calculate
locally optimal trajectories and control policies, starting from a given nominal path.
Approaches in this category perform planning over a continuous state and action
spaces, which is often considered more natural as the robot states (e.g., poses) and
controls (e.g., steering angles) are not constrained to few discrete values. For example,
Platt et al. [20] apply linear quadratic regulation (LQR) to compute locally optimal
policies, while Van den Berg et al. [25] develop a related method using optimization
in the belief space and avoiding assuming maximum likelihood observations in pre-
dicting the belief evolution. These approaches reduce computational complexity to
polynomial at the cost of guaranteeing only locally optimal solutions.

While typically, belief space planning approaches consider the environment is
known, in certain scenarios of interest (e.g. navigation in unknown environments)
this is not a feasible assumption. In these cases, the environment is either a priori
unknown, uncertain or changes dynamically, and therefore should be appropriately
modeled as part of the inference and decision making processes. Such a concept was
recently developed in [8, 9], where random variables representing the observed envi-
ronment have been incorporated into the belief and locally optimal motion plans were
calculated using a direct trajectory optimization approach. In [7], the approach was
extended to a multi-robot belief space planning centralized framework and was used
to facilitate active collaborative estimation in unknown environments. Simulation-
and sampling-based approaches that consider a priori unknown environments have
also been recently developed in the context of active SLAM (see, e.g. [4, 24]). A lim-
itation of these approaches is that the belief only considers the environment observed
by planning time and does not reason, in the context of uncertainty reduction, about
new environments to be observed in the future as the robot continues exploration.

In this work we alleviate this limitation, considering the problem of coopera-
tive multi-robot autonomous navigation in unknown environments. While it is well
known that collaboration between robots can significantly improve estimation accu-
racy, existing approaches (e.g. [3, 10, 22]) typically focus on the inference part,
considering robot actions to be determined externally. On the other hand, active
multi-robot SLAM approaches (e.g. [2]) typically focus on coordination aspects
and on the trade-off between exploring new regions and reducing uncertainty by
re-observing previously mapped areas (performing loop closures). In contrast, in
this paper we consider the question - how should the robots act to collaboratively
improve state estimation while autonomously navigating to individual goals and
operating in unknown environments?
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(a) (b)

Fig. 1 a Illustration of the proposed concept. Multi-robot indirect constraints representing mutual
future observations of unknown environments are shown in blue. b 3D view of the scenario from
Fig. 4b: Robots operate in an unknown environment and follow paths generated by PRM that have
been identified by the proposed approach to provide the best estimation accuracy upon reaching the
goals. One can observe the mutually-observed 3D points that induce indirect multi-robot constraints
involving different time instances; these constraints have been accounted for in the planning phase.
Robot initial positions are denoted by � marks (at the top of the figure); uncertainty covariances of
robot poses are represented by ellipsoids

Addressing this question requires incorporating multi-robot collaboration aspects
into belief space planning. To that end, we present an approach to evaluate the
probability distributions of multiple robot states while modeling future observa-
tions of mutual areas that are unknown at planning time (Fig. 1a). The key idea is
that although the environment may be unknown a priori, or has not been mapped
yet, it is still possible to reason in terms of robot actions that will result in the
same unknown environments to be observed by multiple robots, possibly at different
future time instances. Such observations can be used to formulate non-linear con-
straints between appropriate robot future states. Importantly, these constraints allow
collaborative state estimation without the need for the robots to actually meet each
other, in contrast to the commonly used direct relative pose observations that require
rendezvous between robots (e.g. [22]). We show how such constraints can be incor-
porated within a multi-robot belief, given candidate paths that can be generated by
any motion planning method. One can then identify the best path with respect to a
user-defined objective function (e.g. reaching a goal with minimum uncertainty),
and also refine best alternatives using direct trajectory optimization techniques
(e.g. [9, 18, 25]).

2 Notations and Problem Formulation

Let xri represent the pose of robot r at time ti and denote by Lr
i the perceived

environment by that robot, e.g. represented by 3D points, by that time. We let Zr
i

represent the local observations of robot r at time ti , i.e. measurements acquired by
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its onboard sensors, and define the joint state Θr over robot past and current poses
and observed 3D points as

Θr
k

.= Xr
k ∪ Lr

k, Xr
k

.= {
xr0, . . . , x

r
k

}
. (1)

The joint probability distribution function (pdf) over this joint state given local obser-
vations Zr

0:k
.= {

Zr
0, . . . , Z

r
k

}
and controls ur0:k−1

.= {
ur0, . . . , u

r
k−1

}
is given by

p
(
Θr

k |Zr
0:k, u

r
0:k−1

) ∝ p
(
xr0

) k∏

i=1

[
p

(
xri |xri−1, u

r
i−1

)
p

(
Zr
i |Θro

i

)]
, (2)

where Θro
i ⊆ Θr

i are the involved random variables in the measurement likeli-
hood term p

(
Zr
i |Θro

i

)
, which can be further expanded in terms of individual

measurements zri, j ∈ Zr
i representing observations of 3D points l j : p

(
Zr
i |Θro

i

) =
∏

j p
(
zri, j |xri , l j

)
. The motion and observation models in Eq. (2) are assumed to be

with additive Gaussian noise,

xri+1 = f
(
xri , u

r
i

) + wr
i , zri, j = h

(
xri , l j

) + vri (3)

where wi ∼ N
(
0, �r

w

)
, vi ∼ N

(
0, �r

v

)
, with �r

w and �r
v representing the process

and measurement noise covariance matrices, respectively.
We consider now a group of R collaborating robots, and denote by Θk the corre-

sponding joint state
Θk

.= Xk ∪ Lk, Xk
.= {

Xr
k

}R

r=1 (4)

comprising the past and current poses Xk of all robots, and where Lk represents the
perceived environment by the entire group. Assuming a common reference frame
between the robots is established, Lk includes all the 3D points in Lr

k for each r ,
expressed in that reference frame.

The joint pdf over Θk , the belief at planning time tk , can now be written as

b (Θk)
.= p (Θk |Z0:k, u0:k−1) ∝

R∏

r=1

p
(
Θr

k |Zr
0:k, u

r
0:k−1

)
, (5)

where u0:k−1 represents the controls of all robots and is defined as u0:k−1
.={

ur0:k−1

}R

r=1.
The joint belief at a future time tk+l can now be similarly defined as

b (Θk+l)
.= p (Θk+l |Z0:k+l, u0:k+l−1) , (6)

where uk:k+l−1 are future actions for a planning horizon of l steps and Zk+1:k+l are
the corresponding observations to be obtained. We will discuss in detail how such a
belief can be formulated in the sequel (Sects. 3.1 and 3.2).
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We can now define a general multi-robot objective function

J (uk:k+L−1)
.= E

[
L∑

l=0

cl (b (Θk+l) , uk+l) + cL (b (Θk+L))

]

, (7)

that involves L future steps for all robots, and where cl is the immediate cost function
for the lth step. The expectation operator accounts for all the possible future observa-
tions Zk+1:k+l . While for notational convenience the same number L of future steps
is assumed for all robots in Eq. (7), this assumption can be easily relaxed.

Our objective is to find the optimal controls u�
k:k+L−1 for all R robots:

u�
k:k+L−1 = arg min

uk:k+L−1

J (uk:k+L−1) . (8)

3 Approach

In this work we show how to incorporate into belief space planning multi-robot
collaboration aspects such that estimation accuracy is significantly improved while
operating in unknown environments. Our approach extends the state of the art by
incorporating into the belief (6) multi-robot constraints induced by multiple robots
observing, possibly at different future time instances, environments that are unknown
at planning time. In lack of sources of absolute information (such as reliable GPS,
beacons, and known 3D points), these constraints are the key for collaboratively
improving estimation accuracy.

One can then identify best robot actions or motion plans, according to Eq. (8),
among those generated by existing motion planning approaches (e.g. sampling based
approaches), or resort to direct optimization techniques to obtain locally optimal
solutions in a timely manner. In this work, we focus on the former case, and consider
we are given candidate paths for different robots (generated, e.g. by PRM or RRT).
A schematic illustration of the proposed approach is shown in Fig. 1.

We start with a recursive formulation of the multi-robot belief (Sect. 3.1) and then
discuss in Sect. 3.2 our approach to incorporate into the multi-robot belief future
constraints that correspond to mutual observations of unknown scenes. Evaluating
the objective function (7) involves simulating belief evolution along candidate robots
paths.

3.1 Recursive Formulation of a Multi-robot Belief

We begin with a recursive formulation of the multi-robot belief (6), considering future
controls u0:k+l−1 for all robots to be given. These are determined from candidate robot
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paths that are being evaluated, or alternatively in the case of direct trajectory opti-
mization approaches, the controls are determined from either nominal or perturbed
robot paths (see, e.g. [9] for further details).

Given future controls for all robots, the multi-robot belief b (Θk+l) at the lth future
step can be written recursively as follows (see also Eq. (2)):

b (Θk+l)
.= p (Θk+l |Z0:k+l, u0:k+l−1)

= ηb (Θk+l−1)

R∏

r=1

p
(
xrk+l |xrk+l−1, u

r
k+l−1

)
p

(
Zr
k+l |Θro

k+l

)
, (9)

where η is a normalization constant, and p
(
xrk+l |xrk+l−1, u

r
k+l−1

)
and p

(
Zr
k+l |Θro

k+l

)

are respectively the motion model and measurement likelihood terms.
We now focus on the measurement likelihood term p

(
Zr
k+l |Θro

k+l

)
, noting that it

appears recursively in Eq. (9), for each look ahead step. As earlier, this term represents
sensor observations of the environment (represented e.g. by 3D points), see Eq. (2).
However, now, these are future observations of the environment to be made accord-
ing to robot r ’s planned motion. It therefore makes sense to distinguish between
the following two cases: (a) observation of 3D points from Lk ⊂ Θk representing
environments already mapped by planning time tk , and (b) observation of new areas
that were not previously explored by any of the robots.

The former case allows to plan single- and multi-robot loop closures (e.g. as in
[9]), i.e. to quantify the expected information gain due to re-observation of previously
mapped areas by any of the robots.

We focus on the latter case, which has not been investigated, to the best of our
knowledge, in the context of collaborative active state estimation and uncertainty
reduction. Since environments that are unknown at planning time tk are considered,
the key question is how to quantify the corresponding measurement likelihood term.

3.2 Incorporating Future Multi-robot Constraints

Despite the fact that the environments (or objects) to be observed are unknown
at planning time, it is still possible to reason in terms of mutual observations of
these unknown environments to be made by different robots, possibly at different
future time instances. We can then formulate constraints relating appropriate robot
states while marginalizing out the corresponding random variables representing the
unknown environments.

More specifically, let us consider robots r and r ′ mutually observing at future
times tk+l and tk+ j , respectively, an unknown environment represented, e.g., by 3D
points Lr,r ′

k+l,k+ j , with 1 ≤ j ≤ l. The joint pdf involving the corresponding states and
these 3D points can be written as
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p
(
xrk+l , x

r ′
k+ j , L

r,r ′
k+l,k+ j |zrk+l , z

r ′
k+ j

)
∝ p

(
zrk+l |xrk+l , L

r,r ′
k+l,k+ j

)
p

(
zr

′
k+ j |xr

′
k+ j , L

r,r ′
k+l,k+ j

)

We can now marginalize out the unknown 3D points Lr,r ′
k+l,k+ j to get

p
(
zrk+l , z

r ′
k+ j |xrk+l , x

r ′
k+ j

)
∝ p

(
xrk+l , x

r ′
k+ j |zrk+l , z

r ′
k+ j

)
= (10)

=
∫

p
(
xrk+l , x

r ′
k+ j , L

r,r ′
k+l,k+ j |zrk+l , z

r ′
k+ j

)
dLr,r ′

k+l,k+ j , (11)

which corresponds to a multi-robot constraint involving different time instances.
In the passive problem setting, i.e. controls and measurements are given, this

constraint is typically a nonlinear function that involves the robot poses, say xri and
xr

′
j , and the measured constraint zr,r

′
i, j which is obtained by matching the measure-

ments zri and zr
′
j . Typical examples include matching laser scans or images using

standard techniques (e.g. ICP, vision-based motion estimation). The corresponding
measurement likelihood term can thus be written as

p(zr,r
′

i, j |xri , xr
′
j ) ∝ exp

(
−1

2
‖zr,r ′

i, j − g
(
xri , x

r ′
j

)
‖2

�MR
v

)
(12)

where �MR
v is the corresponding measurement noise covariance matrix, and g is

an appropriate measurement function. For example, this function could represent a
nonlinear relative pose constraint.

Coming back to Eq. (10), while in our case the future observations are not given,
the reasoning is very similar: we can denote by zr,r

′
k+l,k+ j the measured constraint that

would be obtained by matching zrk+l and zr
′
k+ j if these were known, and considering,

as before, the match is successful (i.e. not outlier), it is possible to quantify the
measurement likelihood (10) as

p
(
zr,r

′
k+l,k+ j |xrk+l, x

r ′
k+ j

)
∝ exp

(
−1

2
‖zr,r ′

k+l,k+ j − g
(
xrk+l, x

r ′
k+ j

)
‖2

�MR
v

)
(13)

Note the above assumes robots r and r ′ will observe the same unknown scene
from future states xrk+l and xr

′
k+ j . How to determine if two future measurements

(e.g. images, laser scans), to be captured from robot poses xrk+l and xr
′

k+ j , will be
overlapping, i.e. represent a mutually observed a scene? The answer to this question
is scenario specific. For example, in an aerial scenario with robots equipped with
downward looking cameras, it is possible to assess if the images are overlapping
given robot poses and a rough estimate of height above ground. Ground scenarios
allow similar reasoning, however here it is more likely that the same (unknown) scene
is observed from multiple views (e.g. autonomous driving with a forward looking
camera), and moreover, obstacles, that are unknown at planning time, may prevent
two adjacent views to observe a mutual scene in practice.
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In this paper we assume one is able to predict if two future poses will mutually
observe a scene. Specifically, in Sect. 4 we consider aerial robots with downward
facing cameras and take a simplified approach, considering two future poses xrk+l

and xr
′

k+ j to overlap if they are “sufficiently” nearby, quantified by a relative dis-
tance below a threshold d. Naturally, more advanced approaches can be considered
(e.g. account also for viewpoint variation) and be encapsulated by an indicator func-
tion as in [16] - we leave the investigation of these aspects to future research.

Given candidate robot paths it is possible to determine using the above method
which future views (poses) will overlap and formulate the corresponding multi-robot
constraints (13). In particular, multi-robot constraints between robot r at time tk+l

and other robots r ′ at time tk+ j with 0 ≤ j ≤ l can be enumerated as

∏

j

p
(
zr,r

′
k+l,k+ j |xrk+l, x

r ′
k+ j

)
. (14)

We can now write the measurement likelihood term p
(
Zr
k+l |Θro

k+l

)
from Eq. (9) as:

p
(
Zr
k+l |Θro

k+l

) =
∏

l j∈Θro
k+l

p
(
zrk+l, j |xrk+l , l j

)
p

(
zrk+l,k+l−1|xrk+l, x

r
k+l−1

) ·

·
∏

j

p
(
zr,r

′
k+l,k+ j |xrk+l , x

r ′
k+ j

)
. (15)

The first product represents observations of previously mapped 3D points l j ∈ Lk ,
with Θro

k+l including those 3D points that are actually visible from xrk+l . The second
term p

(
zrk+l,k+l−1|xrk+l , x

r
k+l−1

)
denotes a constraint stemming from robot r observ-

ing a mutual unknown scene from adjacent views, while the last product represents
multi-robot constraints (14) that correspond to different robots observing common
areas that have not yet been mapped by planning time tk . See schematic illustration
in Fig. 1a, where these future constraints are shown in blue.

Substituting Eq. (15) into Eq. (9) yields the final expression for b (Θk+l):

b (Θk+l) = ηb (Θk+l−1)

R∏

r=1

⎡

⎣p
(
xrk+l |xrk+l−1, u

r
k+l−1

) ∏

l j∈Θro
k+l

p
(
zrk+l, j |xrk+l , l j

)

p
(
zrk+l,k+l−1|xrk+l, x

r
k+l−1

) ·
∏

j

p
(
zr,r

′
k+l,k+ j |xrk+l , x

r ′
k+ j

)
⎤

⎦ . (16)

Several remarks are in order at this point. First, observe that direct multi-robot con-
straints, where a robot measures its pose relative to another robot, are naturally
supported in the above formulation by considering the same (future) time index,

i.e. p
(
zr,r

′
k+l,k+l |xrk+l, x

r ′
k+l

)
. Of course, being able to formulate constraints involv-

ing also different future time instances, as in Eq. (16), provides enhanced flexibility
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since planning rendezvous between robots is no longer required. Second, observe the
formulation (14) is an approximation of the underlying joint pdf of multiple views
X making observations Z of an unknown scene L , since it only considers pairwise
potentials. More concretely, marginalizing L out, p(X |Z) = ∫

p (X, L|Z) dL , intro-
duces mutual information between all views in X , i.e. any two views in X become
correlated. Thus, a more accurate formulation than (14) would consider all robot
poses observing a mutual scene together. Finally, one could also incorporate rea-
soning regarding (robust) data association, i.e. whether a match zr,r

′
k+l,k+ j from raw

measurements (images, laser scans) zrk+l and zr
′
k+ j is expected to be an inlier, as for

example done in [11] for the passive case. These aspects are left to future research.

3.3 Inference Over Multi-robot Belief Given Controls

Having described in detail the formulation of a multi-robot belief b (Θk+l−1) at each
future time tk+l , this section focuses on simulating belief evolution over time given
robot controls or paths. As discussed in Sect. 3, this calculation is required both for
sampling based motion planning and direct trajectory optimization approaches.

Thus, we are interested in evaluating the belief b (Θk+l) from Eq. (16)

b (Θk+l) ≡ p (Θk+l |Z0:k+l , u0:k+l−1) = N
(
Θ�

k+l , Ik+l
)
. (17)

which is required for evaluating the objective function (7). Observe that for concise-
ness we are using here Ik+l ≡ Ik+l|k+l and Θ�

k+l ≡ Θ̂k+l|k+l .
This process involves a maximum a posteriori (MAP) inference

Θ�
k+l = arg max

Θk+l

b (Θk+l) = arg min
Θk+l

[− log b (Θk+l)
]
, (18)

which also determines the corresponding information matrix Ik+l = �−1
k+l .

To perform this inference, recall the recursive formulation (9) and denote the MAP
inference of the belief at a previous time by b (Θk+l−1) = N

(
Θ�

k+l−1, Ik+l−1
)
. The

belief at time tk+l can therefore be written as

− log b (Θk+l) = ∥
∥Θk+l−1 − Θ�

k+l−1

∥
∥2

�k+l−1
+

+
R∑

r=1

[∥
∥xrk+l − f (xrk+l−1, u

r
k+l−1)

∥
∥2

�Q
− log p

(
Zr
k+l |Θro

k+l

)]
(19)

We now focus on the term − log p
(
Zr
k+l |Θro

k+l

)
. Recalling the discussion from

Sect. 3.2 and Eq. (15), this term can be written as
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− log p
(
Zr
k+l |Θro

k+l

) =
∑

l j∈Θro
k+l

∥
∥
∥zrk+l, j − h(xrk+l , l j )

∥
∥
∥

2

�v
+

+ ∥
∥zrk+l,k+l−1 − g(xrk+l , x

r
k+l−1)

∥
∥2

�v
+

∑

j

∥
∥
∥zr,r

′
k+l,k+ j − g(xrk+l , x

r ′
k+ j )

∥
∥
∥

2

�MR
v

, (20)

where the motion and measurement models f and h are defined in Sect. 2, and the
nonlinear function g was introduced in Eqs. (12) and (13). We note that while here
we consider the measurement noise covariance �MR

v to be constant, one could go
further and model also accuracy deterioration, e.g. as the relative distance between
robot poses increases.

We now proceed with the MAP inference (18), which, if the future observations
Zr
k+l were known, could be solved using standard iterative non-linear optimiza-

tion techniques (e.g. Gauss-Newton and Levenberg-Marquardt): in each iteration the
system is linearized, the delta vector ΔΘk+l is recovered and used to update the
linearization point, and the process is repeated until convergence.

Let us first describe in more detail this fairly standard approach, considering for
a moment the future measurements Zr

k+l are known. The linearization point Θ̄k+l

is discussed first. Recalling that we are to evaluate belief evolution given robot
paths, these paths can be considered as the linearization point for robot poses. On
the other hand, in the case of direct trajectory optimization approaches, the nominal
controls over the planning horizon can be used to generate the corresponding nominal
trajectories according to (similar to the single robot case, see, e.g. [9])

x̄rk+l =
{
f (x̄rk+l−1, u

r
k+l−1), l > 1

f (x̂rk , u
r
k), l = 1

(21)

The linearization point for the landmarks Lk ⊂ Θk+l (see Sect. 2) is taken as their
most recent MAP estimate. We first linearize Eq. (19)

− log b (Θk+l) = ‖Bk+lΔΘk+l‖2
�k+l−1

+

+
R∑

r=1

[∥
∥Fr

k+lΔΘk+l − brk+l

∥
∥2

�Q
− log p

(
Zr
k+l |Θro

k+l

)]
(22)

and then linearize the term − log p
(
Zr
k+l |Θro

k+l

)
from Eq. (20):

− log p
(
Zr
k+l |Θro

k+l

) =
∑

l j∈Θro
k+l

∥
∥Hr

k+l, jΔΘk+l − brk+l, j

∥
∥2

�v
+ (23)

+ ∥
∥Gr

k+l,k+l−1ΔΘk+l − brk+l,k+l−1)
∥
∥2

�v
+

∑

j

∥
∥
∥Gr,r ′

k+l,k+ jΔΘk+l − br,r
′

k+l,k+ j )

∥
∥
∥

2

�MR
v

,

where the matrices F , H and G and the vectors b are the appropriate Jacobians and
right-hand-side (rhs) vectors. The binary matrix Bk+l in Eq. (22) is conveniently
defined such that Bk+lΔΘk+l = ΔΘk+l−1.
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Using the relation �−1 ≡ �− T
2 �− 1

2 to switch from ‖a‖2
� to ‖�− 1

2 a‖2 and stack-
ing all the Jacobians and rhs vectors into Ak+l and b̆k+l , respectively, we get

ΔΘ�
k+l = arg min

ΔΘk+l

∥
∥
∥Ak+lΔΘk+l − b̆k+l

∥
∥
∥

2
. (24)

The a posteriori information matrix Ik+l of the joint state vector Θk+l can thus be
calculated as Ik+l = AT

k+lAk+l .
This constitutes the first iteration of the nonlinear optimization. Recalling again

that the future observations Zr
k+l are unknown, it is not difficult to show [9] that,

while the a posteriori information matrix Ik+l is not a function of these observations,
the equivalent rhs vector b̆k+l from Eq. (24) does depend on Zr

k+l . This presents dif-
ficulties in carrying out additional iterations as the linearization point itself becomes
a function of the unknown random variables Zr

k+l .
As common in related works (e.g. [9, 18, 20, 25]), we assume a single iteration

sufficiently captures the impact of a candidate action(s). Alternatively, to better pre-
dict uncertainty evolution, one could resort to using the unscented transformation, as
in [5], or to particle filtering techniques. Furthermore, for simplicity in this paper we
also make the maximum-likelihood measurement assumption, according to which a
future measurement z is assumed equal to the predicted measurement using the most
recent state estimate. As a result, it can be shown that the rhs vector b̆k+l becomes zero
and thus Θ�

k+l = Θ̄k+l . We note one could avoid making this assumption altogether
at the cost of more complicated expressions, see, e.g. [9, 25].

To summarize, the output of the described inference procedure is a Gaussian that
models the multi-robot belief as in Eq. (17): b (Θk+l) = N

(
Θ�

k+l, Ik+l
)
.

3.4 Evaluation of Candidate Paths

Given candidate paths for robots in the group, one can identify the best candidates
by evaluating the objective function J from Eq. (7) for different path combinations.
Such a process involves simulating belief evolution along the candidate paths of
different robots in the group, as discussed in Sect. 3.3, while accounting for multi-
robot collaboration in terms of mutual observations of unknown environments (as
discussed in Sect. 3.2).

4 Simulation Results

In this section we demonstrate the proposed approach considering the problem of
multi-robot autonomous navigation while operating in unknown GPS-deprived envi-
ronments. We consider an aerial scenario, where each robot has its own goal and the
objective is to reach these goals in minimum time but also with highest accuracy.
This can be quantified by the following objective function:
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J =
R∑

r=1

[
κr trgoal + (1 − κr )tr

(
�r

goal

)]
, (25)

where �r
goal and trgoal represent, respectively, the covariance upon reaching the goal

and time of travel (or path length) for robot r . The parameter κr ∈ [0, 1] weights the
importance of each term.

As the environment is unknown and there are no beacons, radio sources or any
other means to reset estimation error, the robots can only rely on onboard sensing
capabilities and collaboration with each other to reduce drift as much as possible.
We assume each robot is equipped with camera and range sensors and can observe
natural landmarks in the environment, which are used to estimate robot pose within
a standard SLAM framework. However, since the environment is unknown ahead
of time, these landmarks are discovered on the fly while the planning process has
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Fig. 2 Different candidate paths for red and green robots calculated over a PRM. Robot initial
positions are denoted by � marks; each robot has to navigate to a different goal, while operating in
an unknown environment. The figures show the covariance evolution along each path. Multi-robot
constraints have been incorporated (denoted by cyan color) whenever robot poses are sufficiently
close, which happens mainly in (c); as a result, uncertainty covariances are drastically reduced.
Note these constraints involve different future time instances. Covariances were artificially inflated
by a constant factor for visualization - actual values are shown in Fig. 3
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Fig. 3 Quantitative comparison between the four alternatives shown in Fig. 2: a Path length; b
covariance upon reaching the goals. Multi-robot constraints lead to lowest predicted uncertainty
represented by Configuration C from Fig. 2c

access only to environments observed by planning time (Sect. 3). Initial relative poses
between the robots are assumed to be known, such that the robots have a common
reference frame - approaches that relax this assumption do exist (e.g. [11]).

In this basic study we use a state of the art sampling based motion planning
approach, a probabilistic roadmap (PRM) [13], to discretize the environment and gen-
erate candidate paths for different robots over the generated roadmap. Figure 2 shows
some of these candidate paths considering a scenario of two robots starting operating
from different locations. In each case we also show the belief evolution (in terms
of uncertainty covariance) along each path, calculated as described in Sect. 3.3, and
the multi-robot constraints that have been incorporated into the appropriate beliefs
(denoted by cyan color). In the current implementation, these constraints, possibly
involving different future time instances, are formulated between any two poses with
relative distance closer than d meters. We use d = 300 m for this threshold parameter
(in the considered scenario the aerial robots height is about 500 m). More advanced
methods could be implemented of course, considering also viewpoint variation and
incorporating statistical knowledge.

As seen in Fig. 2, only in two of the considered cases (Fig. 2b, c), robot paths were
sufficiently close to facilitate multi-robot constraints within belief space planning. In
practice, however, only in the latter case numerous informative constraints have been
incorporated. Figure 3 compares between the two terms in the considered objective
function (25), path length and uncertainty upon reaching the goal, for the candidate
paths shown in Fig. 2.

The lowest predicted uncertainty covariances are obtained for candidate paths
with identified multi-robot constraints as shown in Fig. 3b. In particular, the predicted
uncertainty is reduced by about 40% from 35 m to below 20 m for the first (red) robot.
There is a price to pay, however, in terms of path lengths (or time of arrival): as shown
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in Fig. 3a, to attain these levels of uncertainty, the path of the second (gree) robot is
not the shortest among the considered candidate paths. The decision what solution
is the best therefore depends on the parameter κ from Eq. (25) that weights the
importance of each term in the objective function.

Next, we consider actual performance while navigating to pre-defined goals in
unknown environments using as controls the identified robot paths in the planning
phase described above. The results are shown in Fig. 3 for two alternatives from
Fig. 2a, c. Only the latter included multi-robot constraints within planning. One can
observe that also in practice, using controls from Configuration C drives the robots
sufficiently close to make mutual observations of 3D points (that were unknown at
planning time) and as a result significantly improve estimation accuracy for both
robots (see Figs. 4c, d, and 1b for a 3D view).

(a) Configuration A (b) Configuration C
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Fig. 4 Autonomous navigation to goals according to identified robot paths in the planning phase.
The environment, represented by a sparse set of landmarks, is initially unknown and only gradually
discovered. Figures a and b show robot trajectories and landmark observations using paths defined,
respectively, by Configuration a and c (see Fig. 2). The latter involves numerous mutual observations
of landmarks, that induce indirectly multi-robot constraints. A 3D view is also shown in Fig. 1b.
Figures c and d show the corresponding estimation errors and developing covariance over time,
which, in overall, agree with the predicted belief evolution from Fig. 3b
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5 Discussion and Future Work

Results from the previous section indicate estimation accuracy can be significantly
improved by modeling multi-robot mutual observations of unknown areas within
belief space planning. More generally, we believe similar reasoning can be used to
improve multi-robot collaboration aspects while operating also in uncertain, possibly
dynamic, environments.

In this basic study we have made several simplifying assumptions and did not
address some of the challenges that are expected to arise in practical applications.

• Obstacles: While initially the environment is unknown, it may be that after some
time obstacles are identified as the robots continue in exploration. These obstacles
can be efficiently avoided upon discovery by discarding appropriate paths, as
commonly done in sampling based approaches.

• Scalability: Although current implementation uses PRM, our approach can be
formulated within any motion planning algorithm. The combinatorial problem
associated with evaluating candidate trajectories of different robots is a topic
of future research. We note approaches addressing related problems have been
actively developed in recent years (e.g. [16]). An interesting direction is to also
consider generalization of BRM and RRBT to the multi-robot case. A complimen-
tary aspect is to consider direct trajectory optimization approaches, which could
allow reducing sampling resolution.

• Belief consistency: While here we consider a centralized approach, decentralized
or distributed approaches are often more suitable in practice for numerous reasons.
Resorting to these architectures requires the beliefs maintained by different robots
to be consistent with each other.

6 Conclusions

We presented an approach for collaborative multi-robot belief space planning while
operating in unknown environments. Our approach advances the state of the art
in belief space planning by reasoning about observations of environments that are
unknown at planning time. The key idea is to incorporate within the belief constraints
that represent multi-robot observations of unknown mutual environments. These
constraints can involve different future time instances, thereby providing enhanced
flexibility to the group as rendezvous are no longer necessary. The corresponding
formulation facilitates an active collaborative state estimation framework. Given can-
didate robot actions or trajectories, it allows to determine best trajectories according
to a user-defined objective function, while modeling future multi-robot interaction
and its impact on the belief evolution. Candidate robot trajectories can be gener-
ated by existing motion planning algorithms, and most promising candidates could
be further refined into locally optimal solutions using direct trajectory optimization



456 V. Indelman

approaches. The approach was demonstrated in simulation considering the problem
of cooperative autonomous navigation in unknown environments, yielding signifi-
cantly reduced estimation errors.
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Collision-Free Reactive Mission and Motion
Planning for Multi-robot Systems

Jonathan A. DeCastro, Javier Alonso-Mora, Vasumathi Raman,
Daniela Rus and Hadas Kress-Gazit

1 Introduction

We aim to synthesize correct-by-construction controllers for a team of robots
performing high-level tasks that capture locomotion and actuation. Towards the goal
of capable human-robot teams, the tasks we consider are reactive, requiring each
robot to react and adapt to changes in the environment (e.g. the motion of other
robots or people) at runtime. It has been demonstrated that reactive task specifi-
cations written in linear temporal logic (LTL) can be automatically converted into
high-level plans that compose basic (atomic) actions to fulfill the task [10]. For
example, consider two robots tasked with patrolling the rooms of a house in order
to remove garbage and pick up misplaced toys. For high-level synthesis, the atomic
actions “remove garbage” and “pick up toys” are assumed to be perfectly executable:
they are treated as black boxes in a discrete abstraction implicit to the specified task.
When a controller is synthesized for this high-level mission specification, it there-
fore does not govern the design of these low-level actions, nor the behavior of the
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dynamic obstacles – e.g. the inhabitants of the household – that may interfere with
their execution. In this work, we address the challenge of ensuring collision-freeness
of the generated motion plans, bridging this disconnect between the high-level plan
and the low-level actions.

Our approach efficiently abstracts collisions between the robots and dynamic
obstacles, and automatically synthesizes a controller for each robot such that the
team satisfies the high-level specification. Synthesis is made tractable using a local
navigation controller for collision-avoidance, eliminating the need to explicitlymodel
dynamic obstacles in the discrete abstraction.We show thatwe are able to preserve the
global guarantees on task satisfaction using a local method for collision avoidance.
This is significant because local planning methods are myopic, and usually do not
yield global guarantees in multi-agent settings due to the threat of deadlock (a robot
is unable to make forward progress) or livelock (the robot is trapped in an infinite
cycle without ever achieving its goals).

Our method applies to the general case of motion planning tasks for multi-robot
systems involving unmodeled and uncontrolled dynamic obstacles. We reduce the
worst-case conservatism with respect to uncontrolled agents and dynamic obstacles
that is typical of most approaches based on reactive synthesis (e.g. [15]). Our results
have major implications on the scalability of controller synthesis for dynamic and
partially-unmodeled environments.

1.1 Related Work

High-level Reactive Synthesis.Reactive synthesis offers a user-friendly approach to
the control of complex robotic systems [10], and is especially compelling given
the complex nature of multi-agent scenarios. Correct-by-construction reactive con-
trollers have been extended with notions of optimality [15] and distributed team-
ing [5]. In most approaches, moving obstacles are modeled in a discrete manner as
part of the abstraction, leading to over-conservative restrictions like requiring robots
to be at least one region apart. Synthesis in dynamic environments thus presents a
crucial dilemma: explicitly modeling the state of all other agents is computation-
ally prohibitive, but incomplete models can obliterate the guarantees afforded by
the planner. To address the state-explosion problem when modeling uncontrollable
agents, [18] formulate an incremental procedure that adapts the number of agents
considered in the plan depending on available computational resources. On the other
hand, the authors in [12] make local modifications to the synthesized strategy when
new elements of the environment are discovered that violate the original assump-
tions. In contrast to previous work on synthesis for multi-robot tasks, our method
preserves guarantees via local collision avoidance, only requiring local awareness
of the robot’s surroundings. While we also update our specification in a systematic
fashion, we do so offline (prior to execution), such that the synthesized strategies
preserve guarantees at runtime. Our approach to providing feedback on failed speci-
fications, described in Sect. 4.2, is inspired by recent formal approaches to automated
assumption generation [3, 6, 11] and explaining the cause of failure [13].
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CollisionAvoidance.Online reactivemethods, such as [2], typically do not provide
global mission fulfillment guarantees. We leverage and extend this work to enforce
collision avoidance and motion constraints in the short time horizon, while relying
on the high-level planner for guidance to fulfill the global mission.

1.2 Contribution

Our contribution is a holistic synthesis approach that leverages high-level mission
planning and low-level motion planning to provably achieve collision-free high-level
behaviors in dynamic environments. Local planning capabilities are abstracted in a
manner that allows dynamic obstacles to remain unmodeled at the high level during
synthesis, and the high level provides deadlock resolution strategies that ensure task
satisfaction.

We further contribute:

(a) Automatic feedback-generation for revising specifications. We automatically
generate human-comprehensible assumptions in LTL that, if satisfied by the
controlled robots and the dynamic obstacles, would ensure correct behavior.

(b) An optimization-based method that extends [2] for synthesizing controllers that
guarantee real-time collision avoidance with static and dynamic obstacles in 3D
environments while remaining faithful to the robot’s dynamics.

Experimental results with ground robots and simulated quadrotors are discussed.

2 Preliminaries

Scalars are denoted by x and vectors by x ∈ R
n , with n denoting the dimension of the

workspace. The robot’s current position is denoted by p ∈ R
n and its current velocity

by v = ṗ. A map of the workspace W ⊂ R
n is considered, and formed by a set of

static obstacles (given by a list of polytopes) O ⊂ R
n . For high-level synthesis, the

map is abstracted by a set of discrete regionsR = {R1 . . . Rp} covering the map W ,
where the open sets Rα ⊆ W .

2.1 Linear Temporal Logic

LTL formulas are defined over the set AP of atomic (Boolean) propositions by the
recursive grammarϕ: := π ∈ AP | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 U ϕ2.From theBoolean
operators ∧ “conjunction” and ¬ “negation”, and the temporal operators © “next”
andU “until”, the following operators are derived: “disjunction”∨, “implication”⇒,
“equivalence”⇔, “always”�, and “eventually” �. Refer to [16] for a description of
the semantics of LTL. Let AP represent the set of atomic propositions, consisting of
environmentpropositions (X ) corresponding to thresholded sensor values, and system
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propositions (Y) corresponding to the robot’s actions and location with respect to a
partitioning of the workspace. The value of each π ∈ X ∪ Y is the abstracted binary
state of a low-level component.

Definition 1 (Reactive Mission Specification) A Reactive Mission Specification is
an LTL formula of the form ϕ = ϕe

i ∧ ϕe
t ∧ ϕe

g =⇒ ϕs
i ∧ ϕs

t ∧ ϕs
g , with s and e

standing for ‘system’ and ‘environment’, such that

• ϕe
i , ϕ

s
i are formulas for the initial conditions free of temporal operators.

• ϕe
t , ϕ

s
t are the safety conditions (transitions) to be satisfied always, and are of the

form �ψ , where ψ is a Boolean formula over AP ∪ ©AP .
• ϕe

g , ϕ
s
g are the liveness conditions (goals) to be satisfied infinitely often, with each

taking the form � �ψ , with ψ a Boolean formula over AP ∪ ©AP .

A strategy automaton that realizes a reactive mission specification ϕ is a deter-
ministic strategy that, given a finite sequence of truth assignments to the variables in
X andY , and the next truth assignment to variables inX , provides a truth assignment
to variables inY such that the resulting infinite sequence satisfies ϕ. If such a strategy
can be found, ϕ is realizable. Otherwise, it is unrealizable. Strategy automata for ϕ

of the form above can be synthesized [4], and converted into hybrid controllers for
robotic systems by invoking atomic controllers [10]. These controllers are reactive:
they respond to sensor events at runtime.

2.2 LTL Encoding for Multi-robot Tasks

We adopt an LTL encoding that is robust to the inherent variability in the duration of
inter-region robot motion in continuous environments [14]. Let APR = {π i

α | Rα ∈
R} be the set of Boolean propositions representing the workspace regions, such
that π i

α ∈ APR is Truewhen robot i is physically in Rα for α ∈ [1, p]. We call
π i

α in APR ⊆ X a completion proposition, signaling when robot i reaches Rα . We
also define the set APact

R ⊆ Y that captures robot commands that initiatemovement
between regions. We call π i

act,α in APact
R an activation variable for moving to Rα .

Non-motion actions are handled similarly.

Definition 2 (LTL Encoding of Motion [14]) A task encoding that admits arbitrary
controller execution durations is

ψ s
t :

∧

π i
α∈APR,

i∈[1,nrobots ]

�(©π i
α ⇒

∨

Rβ∈Ad j (Rα)

©π i
act,β ),

ψe
t :

∧

π i
α∈APR,

Rβ∈Ad j (Rα),

i∈[1,nrobots ]

�(π i
α ∧ π i

act,β ⇒ ©π i
α ∨ ©π i

β ),

ψe
g : � �

∧

i∈[1,nrobots ]
π i
act,α∈APact

R ∪APact
A

((
π i
act,α ∧ ©(π i

α ∨ ¬π i
act,α)

)
∨

(
¬π i

act,α ∧ ©(¬π i
α ∨ π i

act,α)
))

,
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where Ad j : R → 2R is an adjacency relation on regions in R and nrobots is the
number of robots. The ψ s

t -formula is a system safety condition describing which
actions canoccur (©π i

act,β ) given the observed completion variables (©π i
α). Formula

ψe
t captures the allowed transitions (©π i

β) given past completion (π i
α) and activation

(π i
act,β ) variables. Formulaψe

g enforces that everymotion and every action eventually
completes as long as the activation variable is held fixed. Bothψe

t andψe
g are included

as conjuncts to the antecedent of ϕ.

2.3 Local Motion Planning and Robot Dynamics

A collision-free local motion for each robot is computed independently and online
based on the current transition in the strategy automaton. We build on the work on
distributed Reciprocal Velocity Obstacles with motion constraints [1], and its recent
extension to aerial vehicles [2]. Letting t ∈ R+ denote time and tk the current time
instant, we define the relative time t̃ = t − tk ∈ [0,∞) and the time horizon of the
local planner τ > 0, greater than the required time to stop.

For a robot, a set of candidate local trajectories is considered, each defined by
probot (t̃) = f (z,u, t̃), continuous in the initial state z = [p, ṗ, p̈, . . . ] of the robot,
respecting its dynamic constraints and given by an appropriate controller converging
to a straight-line reference trajectory pref(t̃) = p + ut̃ of constant velocity u ∈ R

n

and starting at the current position p of the robot. Local trajectories are now parame-
trized by u. Suitable controllers include LQR and second order exponential curves,
for ground robots [1] and quadrotors [2]. For a given robotic platform and controller,
initial state z and reference velocity u, the maximum deviation (initial position inde-
pendent) between the reference and the simulated trajectory is

γ (z,u) = max
t̃>0

||(p + t̃u) − f (z,u, t̃)||2. (1)

Maximal errors γ (z,u) are precomputed, and stored for on-line use, for the low-level
controller f (z,ui , t̃) and a discretization of initial states z and reference velocities
u.

The idea of the method is as follows: (a) the radius of the robot is enlarged
by a value ε > 0 for collision avoidance, computed with respect to the reference
trajectories p + ut and (b) the local trajectories are limited to those with a tracking
error below ε with respect to their reference trajectory. At each time-step an optimal
reference velocity u∗ ∈ R

n is obtained by solving a convex optimization in R
n .

The associated local trajectory is collision-free, satisfies the motion constraints and
minimizes the deviation to a preferred velocity ū.

We approximate robots by their smallest enclosing cylinder of radius r and height
2h, denoted byV, and its ε-additive dilation of radius r̄ = r + ε and height h̄ = h + ε

by Vε, and assume that all dynamic obstacles maintain a constant velocity during the
planning horizon, or cooperate in avoiding collisions.



464 J.A. DeCastro et al.

3 Problem Formulation and Approach

Example 1 Consider the workspace in Fig. 1a, where two robots are tasked with
visiting regions G1 and G2 infinitely often, ϕg

s = ∧
i∈{1,2} � �(π i

G1) ∧ � �(π i
G2).

Figure1 shows three approaches for solving this task. A simplistic approach is given
in (a), where the robots do not have any collision avoidance and must always be
one region apart from one another. The result is thus conservative; in fact, if any
one region is blocked, the spec would be unrealizable. As will be shown in Sect. 7
this approach does not scale in the presence of dynamic obstacles. In (b), the robots
employ a local planner to avoid collisions, along with a high-level controller that is
less conservative but ignores deadlock. In this case, the execution fails to satisfy the
task when the two robots become deadlocked. (c) shows our approach, where both
robots are able to resolve encountered deadlocks under the synthesized integrated
controller. The strategy can exploit the use of other regions if deadlock occurs.

3.1 Problem Formulation

Problem 1 (Local Collision Avoidance) For each robot of the team, construct an
online local planner that respects the dynamics of the robot and guarantees collision
avoidance with static and dynamic (moving) obstacles.

Problem 2 (Synthesis of High-level Controller with Deadlock Resolution) Given a
topologicalmap, a localmotionplanner that solvesProblem1anda realizablemission
specification ϕ that ignores collisions, automatically construct a specification ϕ′ that
models deadlock between robots and unmodeled dynamic obstacles and synthesize
a controller that satisfies ϕ′.

By solving Problem 2, we guarantee avoiding deadlocks, but possibly at the sac-
rifice of task fulfillment. We therefore synthesize environment assumption revisions

Blue move to
lowing green to ente

Fig. 1 Three examples of motion planning, where the blue and green robots are initially in G1 and
G2, respectively. a is the case with a global planner with no local planner; b and c correspond to
the specifications ϕ (no deadlock resolution) and ϕ′′ (with deadlock resolution) respectively
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(additional LTL formulas) to identify detrimental cases where dynamic obstacles
may trigger deadlock and trap the system from achieving its goals. These formu-
las are significant because they offer conditions upon which the environment must
adhere to in order for the robot team to guarantee the task. As such, they must be
clearly explained to the user. An example of such a condition is: “the environment
will never cause deadlock if robot 1 is in the kitchen and moving to the door”.

Problem 3 (Revising Environment Assumptions) Given an unrealizable reactive
mission specification ϕ′, synthesize environment assumption revisions [ϕe

t ]rev such
that the specificationϕ′′ formed by replacingϕe

t with [ϕe
t ]rev is realizable, and provide

the user with a human-readable description of these revisions.

3.2 Approach

We present a two-part solution to Problems 1, 2 and 3. Figure2 shows the offline and
online components and their interconnections; we now describe them in detail.

Offline. Given a high-level specification that takes a discrete topological map of
the workspace and ignores collisions, a centralized controller is synthesized that con-
siders possible deadlocks, iteratively revising the environment assumptions as nec-
essary until a such a controller is synthesized. We also adopt a recovery scheme [17]
that synthesizes a strategy that allows violations of environment safety assumptions
to be tolerated, retaining satisfaction guarantees as long as the violation is transient.
The automaton is agnostic to the robot’s dynamics, which are instead accounted for
by the local planner. The offline high-level synthesis is described in Sect. 4.

Online. At each time step of the execution, the synthesized automaton provides
a desired goal for each controlled robot. Each robot independently computes a local
trajectory that achieves its goal while avoiding other agents. If a deadlock is sensed,
an alternative goal is extracted for some robot; the existence of such an alternative in
the automaton is guaranteed by construction. The online local planner builds on [2]
by adopting a convex optimization approach as described in Sect. 5.

Fig. 2 Structure of the proposed mission planner, with offline and online parts
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4 Offline Synthesis of the High-Level Mission Plan

Weconsider a high-level task specification, and a topological map of the environment
composed of regions. This task specification ϕ ignores collisions and may result in
deadlocks as in Fig. 1b. We modify the input specification with additional behaviors
that the robot can take to resolve deadlock. The synthesized automaton guarantees
completion of the task while redirecting the robots whenever deadlock occurs.

4.1 Deadlock Resolution

We define physical deadlock to be a situation where at least one robot has not reached
its goal but cannot move. This can happen when an agent becomes blocked either
by another agent or by a dynamic obstacle. To allow the high-level controller to
resolve deadlock, we define a Boolean input signal xi ∈ X that declares when a
robot is in deadlock, where i = 1, . . . , nrobots . We use the term singleton deadlock
to refer to the specific case where a robot is in proximity of a dynamic obstacle.
Additionally, define xi j ∈ X to be an input signal that is True when two robots are
in pairwise deadlock (both in deadlock and within a certain distance of one another),
and False otherwise. We introduce the following shorthand:

θ
i j
P = ¬xi j ∧ ©xi j rising edge–pairwise deadlock between robots iand j

θ i
S = ¬xi ∧ ©xi rising edge–singleton deadlock for robot i

ψ i
αβ = π i

α ∧ ©π i
α ∧ π i

act,β incomplete transition (α �= β); remain in region (α = β)

Resolving deadlock by redirecting the robot’s motion based on the instantaneous
value of xi or xi j alone may result in livelock, where the robot may be trapped away
from its goals as a result of an alternating deadlock status. For this reason, our scheme
automatically introduces additional memory propositions that are set when deadlock
is sensed, and reset once the robot leaves its current region. While adding these
propositions increases the state space of the synthesis problem, the advantage is that
the robot can remember that deadlock had occurred and actively alter its strategy
to overcome that situation. For each robot, we introduce the system propositions
{yiβ | Rβ ∈ R} ⊂ Y to represent the memory of deadlock occurring when activating
a transition from a given region to region Rβ .

�
∧

π i
α∈APR,

Rβ∈Ad j (Rα)

(
yiβ ∧ π i

α =⇒ ©(¬π i
act,α ∧ ¬π i

act,β)
)
. (2)

The role of yiβ is to disallow the current transition (from Rα to Rβ), as well as the
self-transition from Rα to Rα . The self-transition is disallowed to force the robot
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to leave the region where the deadlock occurred (Rα), instead of waiting for it to
resolve; Rβ is disallowed since the robot cannot make that transition.

Next, we enforce conditions to retain memory of singleton deadlock:

∧

π i
α∈APR,

Rβ∈Ad j (Rα)

(
¬yiβ ⇒

(
(θ iS ∧ ψ i

αβ) ⇒ ©yiβ

))
and

∧

π i
α∈APR,

Rβ∈Ad j (Rα)

(
yiβ ⇒

(
(π i

α ∧ ©π i
α) ⇔ ©yiβ

))
.

(3)

The first formula sets the memory of deadlock yiβ if the robot is activating transition
from Rα to Rβ . The second formula keeps memory set until a transition has been
made out of Rα (to a region different from Rβ).

For pairwise deadlock, we add the following conditions to set the memory propo-
sition for at least one robot (at least one of the two robots reacts to the deadlock):

�
(
θ
i j
P =⇒

( ∨

�∈{i, j}

∧

π�
α∈APR,

Rβ∈Ad j (Rα)

(¬y�
β ∧ ψ�

αβ

) =⇒ ©y�
β

))
. (4)

We also add the following to ensure that the memory propositions are only set when
the rising edge of deadlock (singleton or pairwise) is sensed.

�
( ∧

i∈[1,nrobots ]
Rβ∈R

(
¬yiβ∧ ¬θ i

S ∧
∧

j∈[1,nrobots ]
j �=i

¬θ
i j
P

)
=⇒ ©¬yiβ

)
. (5)

In practice, we do not need a proposition yiβ for every Rβ ∈ R, but only d =
max
Rα∈R

(|Ad j (Rα)|) such propositions for each robot in order to remember all of the

deadlocks around each region of the workspace. The number of conjuncts required
for condition (4) is

(nrobots
2

)
, but this has no effect on scalability since the runtime of

the synthesis algorithm is only a function of the number of propositions and not the
size of the specification.

Conjuncting the conditions (2)–(5) with ϕs
t yields a modified formula [ϕs

t ]′ over
the set AP , and the new specification ϕ′ = ϕe

i ∧ ϕe
t ∧ ϕe

g =⇒ [ϕs
i ]′ ∧ [ϕs

t ]′ ∧ ϕs
g ,

where the initial conditions are modified by setting additional propositions xi , yiα to
false.

4.2 Specification Revisions

If the above specification ϕ′ is synthesizable, Problem 2 is solved (for a proof, see
Sect. 6). However, if the added restrictions to the system behavior result in the speci-
fication being unrealizable, Problem 3must be solved by finding a set of assumptions
on deadlock under which the environment must follow for the task to be guaranteed.
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These assumptions are then presented to the user as a certificate of the conditions
under which the guarantees for deadlock and livelock avoidance hold.

When a specification is unrealizable, there exist environment behaviors (called
environment counterstrategies) that prevent the system from achieving its goals
safely. Here we build upon the work of [3, 6, 11], processing synthesized coun-
terstrategies to mine the necessary assumptions. Rather than synthesize assumptions
from the counterstrategy, we instead search the counterstrategy for all deadlock
occurrences, then store the corresponding conditions as assumptions.

We denote Cϕ′ as a state machine representing the counterstrategy for ϕ′ and Q
as the set of states for Cϕ′ . To find the graph cuts in the counterstrategy graph that
prevent the environment from impeding the system, we first define the following
propositional representation of state q ∈ Q as ψ(q) = ψX (q) ∧ ψY(q), where

ψY(q) =
∧

π∈γY (q)

π ∧
∧

π∈Y\γY (q)

¬π, ψX (q) =
∧

π∈γX (q)

π ∧
∧

π∈X \γX (q)

¬π.

Next, the set of cut transitions Scuts is computed as Scuts = {(p, q) ∈ Q2 | q ∈
δ(p), ψ(p)ψ(q) |= ∨

i∈[1,nrobots ] ©θ i
S}, where δ : Q × 2Y → 2Q is a transition rela-

tion returning the set of possible successor states given the current state and valuations
of robot commands in Y . Scuts collects those transitions on which the environment
has intervened (by setting deadlock) to prevent the system from reaching its goals.

Finally, the following safety assumptions are found:

ϕe
rev = �

∧

(p,q)∈Scuts
(ψY(p) ∧ ψX (p) =⇒ ¬ © ψX (q)) (6)

If any of the conjuncts in (6) falsify the environment, they are discarded. Then,
set [ϕe

t ]rev = ϕe
t ∧ ϕe

rev and construct the final specification ϕ′′ = ϕe
i ∧ [ϕe

t ]rev ∧
ϕe
g =⇒ [ϕs

i ]′ ∧ [ϕs
t ]′ ∧ ϕs

g .
Algorithm 1 expresses our proposed approach for resolving deadlock. The auto-

matically generated assumptions act to restrict the behavior of the dynamic obstacles.
Each revision of the high-level specification excludes at least one environment move
in a given state. Letting | · | denote set cardinality, with 2|X | environment actions and
2|Y| states, at most 2(|Y|+|X |) iterations occur, though in our experience far fewer are
needed. The generated assumptions are minimally restrictive – omitting even one
allows the environment to cause deadlock, resulting in unrealizability.
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Algorithm 1 Find realizable ϕ′′ fulfilling task ϕ and resolving deadlock
1: ϕ′ ← ϕe

i ∧ ϕe
t ∧ ϕe

g =⇒ [ϕs
i ]′ ∧ [ϕs

t ]′ ∧ ϕs
g

2: [ϕe
t ]rev ← ϕe

t ; ϕ′′ ← ϕe
i ∧ [ϕe

t ]rev ∧ ϕe
g ⇒ [ϕs

i ]′ ∧ [ϕs
t ]′ ∧ ϕs

g
3: while ϕ′′ is unrealizable do
4: Extract Cϕ′′ from ϕ′′
5: ϕe

rev ← Eq. (6)
6: for each kth conjunct of ϕe

rev s.t. ϕe
rev[k] ∧ [ϕe

t ]rev �= False do
7: Parse ϕe

rev[k] into human-readable form and display to user.
8: [ϕe

t ]rev ← [ϕe
t ]rev ∧ ϕe

rev[k]; ϕ′′ ← ϕe
i ∧ [ϕe

t ]rev ∧ ϕe
g ⇒ [ϕs

i ]′ ∧ [ϕs
t ]′ ∧ ϕs

g
9: end for
10: end while

5 Online Local Motion Planning

The result of the computation of Sect. 4 is a finite state machine where the states are
labeled by regions and the transitions represent actions within the allowed navigation
path. Each robot executes the finite state machine controller such that the overall
multi-robot system is guaranteed to be livelock and collision free and deadlocks are
resolved (may they appear). In this section we describe the local planner that links
the high-level mission plan with the physical robot (recall Fig. 2). At each step of
the online execution, the synthesized finite state machine provides a desired goal
position for each robot and a preferred velocity ū ∈ R

n towards it.

5.1 Constraints

To define the motion and inter-agent avoidance constraints we build on the approach
in [2]. We additionally introduce constraints for avoiding static obstacles. For com-
pleteness, we give an overview of each of the constraints.

Motion constraints. Recalling Eq. (1) the motion constraint is given by the refer-
ence velocities for which the tracking error is below ε, R(z, ε) = {u | γ (z,u) ≤ ε},
approximated by the largest inscribed convex polytope/ellipsoid R̂(z, ε) ⊂ R(z, ε).

Avoidance of other agents. Denote by p j , v j , r̄ j and h̄ j the position, velocity,
dilated radius and height of a neighboring agent j . Assume that it keeps its velocity
constant for t̃ ≤ τ , for reciprocity see [2]. For every neighboring agent j , the con-
straint is given by the reference velocities u for which the agents’ enveloping shape
do not intersect within the time horizon. For cylindrically-shaped agents moving in
3D the velocity obstacle of colliding velocities is a truncated cone V Oτ

j =

{u | ∃t̃ ∈ [0, τ ] : ‖pH − pH
j + (uH − vHj )t̃‖ ≤ r̄ + r̄ j , |pV − pVj + (uV − uVj )t̃ | ≤ h̄ + h̄ j },

where p = [pH , pV ], with pH ∈ R
2 its projection onto the horizontal plane and pV ∈

R its vertical component. The constraint is linearized to A j (p, ε) = {u |nT
j u ≤ b j },

where n j ∈ R
3 and b j ∈ R maximize nT

j v − b j subject to A j (p, ε) ∩ V Oτ
j = ∅.
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Avoidance of static obstacles.We extend a recent fast iterativemethod to compute
the largest convex polytope in free space [7], by directing the growth of the region
in the preferred direction of motion and enforcing that both the current position of
the robot and a look ahead point in the preferred direction of motion are within the
region. The convex polytope is computed in position space (R3 for aerial vehicles)
and then converted to an equivalent region in reference velocity space. The details
are given in Algorithm 2, where directedEllipsoid(p,q) is the ellipsoid with one axis
given by the segment p − q and the remaining axis infinitesimally small.

Algorithm 2 Largest collision-free directed convex polytope
1: L ← p + ū{τ, 0.7τ, 0.5τ, ..., 0} ; q ← L[0]; L := L \ q; P := ∅
2: while L �= ∅ and p,q /∈ P do
3: E ← directedElli psoid(p,q)

4: while not converged do // Largest polytope seeded in E computed as in [7]
5: P ← separating planes of E and dilated O (Quadratic program) , P ⊂ R

n \ (O + Vε)

6: If p,q /∈ P then { q ← L[0]; L := L \ q; break; }
7: E ← ellipsoid E ⊂ P of maximal volume (Semi-Definite Program)
8: end while
9: end while
10: F(p, ε) := (P − p)/τ // Converts to ref. velocity, u, space

5.2 Optimization

The optimization cost is given by two parts. The first part is a regularizing term
penalizing changes in velocity (weighted bydesign constant ᾱ); the secondminimizes
the deviation to a preferred velocity, corrected by a repulsive velocity ů inversely
proportional to the distance to neighboring obstacles [2] when in close proximity.
A convex optimization with quadratic cost and mixed linear/quadratic constraints is
solved:

u∗ := arg min
u∈Rn

(ᾱ||u − v||2 + ||u − (ū + ů)||2), (7)

s.t. u ∈ R̂(z, ε) ∩ F(p, ε) and nT
j u ≤ b j ∀ j neighboring agent

The solution of this optimization is a collision-free reference velocity u∗ which
minimizes the deviation towards the goal specified by the high-level state machine.
The associated trajectory (see Sect. 2.3) is followed by the robot and is collision-free.

6 Guarantees

We provide proofs for the guarantees inherent to our synthesized controller.
Respects the modeled robot dynamics. By construction of the local planner, the

controller is guaranteed correct with respect to the low-level controller f (z,u, t̃),
which is continuous on the initial state of the robot and respects its dynamics.
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Yields collision-freemotion. If (7) is feasible, collision-freemotion is guaranteed
for the local trajectory up to time τ (the optimal reference trajectory is collision-free
for an agent whose volume is enlarged by ε and the robot stays within ε of it) with
the assumption that all interacting agents maintain a constant velocity. Avoidance
of dynamic obstacles was shown by [2], we reproduce it for the case of a dynamic
obstacle in R

2 (through it is extensible to R
3). Let p(t) denote the position at time

t ≥ t k . If not specified, variables are evaluated at t k . Consider ||p(t) − p j (t)|| =

|| f (z,u, t̃) − (p j + v j t̃)|| ≥
u∈R̂(z,ε)

||(p + ut̃) − (p j + v j t̃)|| − ε ≥
u∈A j (p,ε)

r + r j

For avoidance of static obstacles, we have that u ∈ F(p, ε) implies, for all t̃ ∈ [0, τ ],

u ∈ F(p, ε) ⇒
Alg. 2, P convex

(p + ut̃) /∈ O + Vε ⇒
u∈R̂(z,ε)

f (z,u, t̃) /∈ O + V.

If (7) is infeasible, no collision-free solution exists that respects all of the con-
straints. Since the time horizon is larger than the required time to stop, passive safety
is preserved by slowing down on the last feasible path and eventually reaching a stop.
Also, since this computation is performed at a high frequency, each individual robot
is able to adapt to changing situations, and the resulting motion is collision-free.

Realizes the reactive task specification. Since the local planner is myopic, it
provides guarantees up to a time horizon τ and consequently may result in deadlock
and livelock. However, as we have shown, the planner’s local guarantees allow a
discrete abstraction that the high-level strategy can use to resolve deadlocks and
avoid livelocks. Here we formally prove the guarantees on the high-level behavior
provided by our synergistic online and offline synthesis.

Proposition 1 Given a task specification ϕ that ignores collisions, if the result-
ing specification ϕ′ defined in Sect.4 is realizable, then the corresponding strategy
automaton also realizes ϕ.

Proof Assume given ϕ = ϕe
i ∧ ϕe

t ∧ ϕe
g =⇒ ϕs

i ∧ ϕs
t ∧ ϕs

g . Recall that ϕ′ = ϕe
i ∧

ϕe
t ∧ ϕe

g =⇒ [ϕs
i ]′ ∧ [ϕs

t ]′ ∧ ϕs
g , where [ϕs

i ]′ and [ϕs
t ]′ contain ϕs

i and ϕs
t as subfor-

mulas, respectively. Suppose that strategy automatonAϕ′ realizes ϕ′. This means that
the resulting controller is guaranteed to fulfill the requirement [ϕs

i ]′ ∧ [ϕs
t ]′ ∧ ϕs

g as
long as the environment fulfills the assumption ϕe

i ∧ ϕe
t ∧ ϕe

g . This implies that Aϕ′

fulfills ϕs
i ∧ ϕs

t ∧ ϕs
g as long as the environment fulfills the assumption ϕe

i ∧ ϕe
t ∧ ϕe

g.

�

Proposition 2 Given a task specification ϕ that ignores collisions, if ϕ is realizable
but the resulting specification ϕ′ is not realizable, then the revision procedure in
Sect.4.2 will find an assumption ϕe

rev to add to ϕ′.

Proof Suppose ϕ is realizable by strategy Aϕ , but ϕ′ is not realizable, admitting
counterstrategy Cϕ′ = (Q, . . .). It suffices to show that the set Scuts is nonempty.
Assume for a contradiction that Scuts is empty. Then the rising edge of deadlock θ i

s
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never occurs for any i , so no robot transitions are ever disabled. Since we assume that
deadlock does not occur in the initial state, this means that xi is always False for
every i . Therefore [ϕs

i ]′ ∧ [ϕs
t ]′ ∧ ϕs

g defined in Sect. 4 reduces to ϕs
i ∧ ϕs

t ∧ ϕs
g . The

lack of deadlock means that any region transition contained inAϕ is still admissible,
and therefore Aϕ can be used as a strategy to realize ϕ′.

Note that it may be the case that Scut is nonempty, but for every (p, q) ∈ Scuts , the
resulting revision (ψY(p) ∧ ψX (p) =⇒ ¬ © ψX (q)) contradicts ϕt

e. This indi-
cates that ϕ is only realizable because it makes unreasonable assumptions on the
environment. Our approach identifies this fact as a by-product of the revision process.

Computational complexity. The high-level reactive synthesis is exponential in
the number of propositions [4], which scales linearly with nrobots – no worse than
existing approaches (e.g. [15]).When one or more dynamic obstacles are considered,
the number of propositions does not depend on the number of dynamic obstacles.

For the online component, a convex program is solved independently for each
robot, with the number of constraints linear in the number of neighboring robots.
The run-time of the iterative computation of the convex volume in free space barely
changes with the number of obstacles, up to tens of thousands [7], and a timeout can
be set, with the algorithm returning the best solution found.

7 Experiments and Simulations

The synthesis procedure described in Sect. 4 was implemented with the slugs
synthesis tool [8], and executed with the LTLMoP toolkit [9]. The local motion
planner, Sect. 5, was implemented with the IRIS toolbox [7] and an off-the-shelf
convex optimizer. We consider the dynamic obstacles to be cooperative in avoiding
collisions. A video is available at http://youtu.be/esa3osYtvGA.

7.1 Humanoid Robots

We synthesize a controller for a “garbage collection” scenario, carried out by two
humanoid robots (able to rotate in place, move forward and along a curve) occu-
pying the workspace in Fig. 3a. The robots are required to patrol the Living Room
(RLR) and Bedroom (RBR) [ � �(π1

LR) ∧ � �(π1
BR) ∧ � �(π2

LR) ∧ � �(π2
BR) ]

and if garbage is observed, pick it up [ �(π1
garb =⇒ π1

act,pickup) ∧ �(π2
garb =⇒

π2
act,pickup) ]. The robots must always avoid other moving agents.
The system propositions are actions to move between regions (π i

act,LR,

. . . , π i
act,BR) and to pick up (π i

act,pickup). The environment propositions are sensed
garbage (π i

garb), region completions (π i
L R, . . . , π i

BR), and pick up completion
(π i

pickup). We omit the encoding of Definition 2, though these conditions are implied.

http://youtu.be/esa3osYtvGA
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Fig. 3 Planar scenario with two centrally-controlled Nao robots and a dynamic obstacle (youBot).
a Workspace showing specification revisions for each region completion/activation pairs where
singleton or pairwise deadlock may occur. Dot placement corresponds to the APact

R for each region;
numbers indicate the robot(s) that are allowed to be in deadlock, and color represents the necessary
restrictions on deadlock. Green dots represent transitions where deadlock is allowed; yellow dots
where deadlock is allowed, but only up to a finite time; and red dots where deadlock is not allowed.
b and c Three consecutive frames of the video are superimposed. In (c), one of the Naos reverses
direction to resolve the deadlock with the youBot

Our synthesis tool took 84 seconds yielding an automaton with 5836 states and four
memory propositions.

A graphical representation of the revisions produced by our algorithm is shown
in Fig. 3a. The red dots indicate that dynamic obstacles should not produce deadlock
when the robot is making the indicated transition. We also alert the user via textual
feedback – one of the generated statements for our scenario is:Deadlock should
not occur when robot 1 is in the Hall moving toward the
Living Room.We employ two Aldebaran Nao robots and a teleoperated KUKA
youBot as the dynamic obstacle. As demonstrated in the snapshots in Fig. 3, the Naos
are capable of executing the task, avoiding collision and resolving deadlocks.

We further evaluated the approach in simulation, from 10 different initial condi-
tions and with two dynamic obstacles. No collisions occurred and the approach was
able to resolve 47 deadlock events out of the 51 encountered. Those that could not
be resolved occurred in disallowed transitions labeled red in Fig. 3a.

7.2 Scalability with Respect to Dynamic Obstacles

Considering the example in Sect. 7.1, the synthesized controller for two robots con-
sists of 29 propositions, and is invariant to the number of dynamic obstacles. In
comparison, we consider a baseline approach similar to Fig. 1a without a local plan-
ner where one-cell separation with other robots and dynamic obstacles (DO) is kept.
In this case, 20 propositions are required for zero DO, 25 for one DO, 30 for two DO,
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Fig. 4 Deadlock resolution (green robot) and safe navigation in a 3D environment. Quadrotors
are displayed at the final time and their paths for the time interval. Each yellow disk represents a
quadrotor and the cylinder its safety volume. The orange robot represents the dynamic obstacle

35 for three DO and 80 propositions for eight DO. Because the obstacles are assumed
to behave adversarially, they can violate mutual exclusion if they enter to within a
neighboring region to the robot. Hence, the synthesis procedure is not realizable
for one or more dynamic obstacles. Our approach, on the other hand, is realizable
independently of the number of dynamic obstacles and requires fewer propositions
than the case with two or more DO.

7.3 Quadrotors

We next demonstrate the effectiveness of the approach in a 3D scenario with the
5 × 5 × 5m3 two floor workspace shown in Fig. 4, where robots can move between
floors through a vertical opening at the left corner or the stairs at the right side of the
room. We simulate, using the model described in [2], two controlled quadrotors, and
onemore as a dynamic obstacle. The task is to infinitely often visit the top and bottom
floors while avoiding collisions and resolving deadlock. The high-level controller
is synthesized as described in Sect. 4. A local planner for the 3D environment is
constructed following Sect. 5. A representative experiment is shown in the snapshots
inFig. 4. Thegreen robot enters deadlockwhenmoving towards the upwards corridor;
however, deadlock is resolved by taking the alternative route up the stairs.

8 Conclusion

We present a framework for synthesizing a high-level finite state machine and
collision-free local planner that guarantees completion of a task specified in linear
temporal logic, where we consider high-level specifications that are able to capture
basic locomotion, sensing and actuation capabilities. Our approach is less conserva-
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tive than current approaches that impose a separation between agents, and is compu-
tationally cheaper than explicitly modeling all possible obstacles in the environment.
If no controller is found that satisfies the specification, the approach automatically
generates the needed assumptions on deadlock to render the specification realiz-
able and communicates these to the user. The approach generates controllers that
accommodate deadlock between robots or with dynamic obstacles independently of
the precise number of obstacles present, and we have shown that the generated con-
trollers are correct with respect to the original specification. Experimentswith ground
and aerial robots demonstrate collision avoidance with other agents and obstacles,
satisfaction of a task, deadlock resolution and livelock-free motion. Future work
includes optimizing the set of revisions found, and decentralizing the synthesized
controller.

Acknowledgements Thisworkwas supported in part byNSFExpeditions inComputerAugmented
Program Engineering (ExCAPE), ONR MURI Antidote N00014-09-1-1031, SMARTS N00014-
09-1051, the Boeing Company and TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.

References

1. Alonso-Mora, J.,Gohl, P.,Watson, S., Siegwart, R., Beardsley, P.: Shared control of autonomous
vehicles based on velocity space optimization. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1639–1645 (2014)

2. Alonso-Mora, J., Naegeli, T., Siegwart, R., Beardsley, P.: Collision avoidance for multiple
aerial vehicles. Auton. Robot. (2015)

3. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of gr(1) temporal logic
specifications. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 26–33 (2013)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs.
J. Comput. Syst. Sci. 78(3), 911–938 (2012)

5. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: Formal approach to the deployment of distrib-
uted robotic teams. IEEE Trans. Robot. 28(1), 158–171 (2012)

6. DeCastro, J.A., Ehlers, R., Rungger, M., Balkan, A., Tabuada, P., Kress-Gazit, H.: Dynamics-
based reactive synthesis and automated revisions for high-level robot control. In: CoRR (2014)

7. Deits, R., Tedrake, R.: Computing large convex regions of obstacle-free space through semi-
definite programming. In: Workshop on the Algorithmic Fundamentals of Robotics (2014)

8. Ehlers, R., Finucane, C., Raman, V.: Slugs gr(1) Synthesizer (2013). http://github.com/ltlmop/
slugs

9. Finucane, C., Jing, G., Kress-Gazit, H.: Ltlmop: Experimenting with language, temporal logic
and robot control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (2010)

10. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal logic based reactive mission and
motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)

11. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: 9th IEEE/ACM Inter-
national Conference on Formal Methods and Models for Codesign, MEMOCODE (2011)

12. Livingston, S.C., Prabhakar, P., Jose, A.B., Murray, R.M.: Patching task-level robot controllers
based on a local μ-calculus formula. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). Karlsruhe, Germany (2013)

13. Raman, V., Kress-Gazit, H.: Explaining impossible high-level robot behaviors. IEEE Trans.
Robot. 29(1), 94–104 (2013). doi:10.1109/TRO.2012.2214558

http://github.com/ltlmop/slugs
http://github.com/ltlmop/slugs
http://dx.doi.org/10.1109/TRO.2012.2214558


476 J.A. DeCastro et al.

14. Raman, V., Piterman, N., Kress-Gazit, H.: Provably correct continuous control for high-level
robot behaviorswith actions of arbitrary execution durations. In: IEEE InternationalConference
on Robotics and Automation (2013)

15. Ulusoy,A., Smith, S.L., Ding,X.C., Belta, C., Rus,D.:Optimality and robustness inmulti-robot
path planning with temporal logic constraints. I. J. Robot. Res. 32(8), 889–911 (2013)

16. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics for concur-
rency, pp. 238–266. Springer, Heidelberg (1996)

17. Wong, K.W., Ehlers, R., Kress-Gazit, H.: Correct high-level robot behavior in environments
with unexpected events. In: Proceedings of Robotics: Science and Systems (2014)

18. Wongpiromsarn, T.,Ulusoy,A., Belta, C., Frazzoli, E., Rus,D.: Incremental synthesis of control
policies for heterogeneous multi-agent systems with linear temporal logic specifications. In:
IEEE International Conference on Robotics and Automation (ICRA) (2013)



An Optimal Control Approach to Mapping
GPS-Denied Environments Using
a Stochastic Robotic Swarm

Ragesh K. Ramachandran, Karthik Elamvazhuthi
and Spring Berman

1 Introduction

In recent years, there has been an increasing focus on the development of robot
platforms that can be deployed in swarms to perform tasks autonomously over large
spatial and temporal scales. In addition, swarms of nanoscale structures and devices
such as nanoparticles, molecular machines, and magnetic nanocarriers are being
developed for biomedical applications such as imaging and targeted drug delivery
[21]. Many potential applications for robotic swarms, including exploration, environ-
mental monitoring, disaster response, search-and-rescue, mining, and intelligence-
surveillance-reconnaissance, will require the robots to operate in dynamic, uncertain
environments. Moreover, the robots’ highly restricted onboard power may preclude
the use of GPS and communication devices, or the robots may be located in GPS-
denied environments where communication is impractical or unreliable. Despite
these limitations, it may still be necessary for the swarm to characterize its surround-
ings, for instance to map obstacles, target payloads, or hazardous areas to avoid.
Nanoscale swarms, which will have extremely limited capabilities, may be used to
map cellular structures inside the human body.

To address these challenges, we present a method formapping a feature of interest
in an unknown environment using a swarm of robots with local sensing capabilities,
no localization, and no inter-robot communication. We consider scenarios where the
robots exhibit significant randomness in their motion due to sensor and actuator noise
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or, at the nanoscale, the effects of Brownian motion and chemical interactions. Our
mapping approach is scalable with the number of robots, so that arbitrary swarm
populations can be used.

Our method relies on developing a continuous abstraction of the swarm population
dynamics in the form of an advection-diffusion-reaction PDE model, which we call
the macroscopic model. This model describes the spatial and temporal evolution
of the population densities of robots in different states throughout the domain. To
represent individual robots, we define a microscopic model that describes how each
robot moves and responds upon encountering a feature of interest. The state transition
of a robot is modeled as a irreversible chemical reaction with a high reaction rate.
The macroscopic model becomes a more accurate model of the microscopic model
as the number of robots increases.

We pose our mapping problem as the computation of a spatially varying function
that represents the map of the feature of interest. To estimate this function, we use
temporal data that is recorded by the robots during their exploration of the envi-
ronment. This data yields the time evolution of the number of robots that are still
exploring the domain; i.e., robots that have not encountered the feature. In practice,
this data could be collected from the robots after their deployment by retrieving their
recorded times of encounter with the feature. In biomedical imaging applications
with nanoscale swarms, this data could be obtained from a measurable signal that
corresponds to the density of the population that is still in the exploring state.

Once this data is obtained, we use techniques from optimal control to compute
the function that represents the feature map. In general, optimal control entails the
minimization or maximization of an objective functional that is defined in a finite-
dimensional space and is subject to a set of ordinary or partial differential constraint
equations, which govern the system of interest. From a computational perspective,
optimal control methods are more effective than black box techniques, such as genetic
algorithms and particle swarm optimization, in terms of the number of objective func-
tional evaluations per cycle. This computational advantage mainly arises from their
use of the problem structure to calculate the gradient of the control-to-state maps
using the adjoint equation. The feature map is defined as the solution of an opti-
mization problem that minimizes an objective functional which is based on the robot
data. This optimization problem is solved numerically offline using standard tech-
niques such as gradient descent algorithms. We validate our approach in simulation
for features of varying shape, size, orientation, and location.

1.1 Related Work

In the literature, there have been exhaustive studies on mapping and exploring an
environment using robots. SLAM (simultaneous localization and mapping) [16, 18],
probabilistic mapping [3, 19], and topological and metric map building [15, 20]
are some of the techniques that have been developed for environmental mapping by
robots. These techniques have been used for path planning and mapping in small
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multi-robot groups. However, the problem of scaling these approaches to larger
groups becomes intractable for swarms of hundreds or thousands of robots, due to
their limitations on communication bandwidth and their spatially distributed nature.
In addition, these techniques require the robots to have sophisticated sensing and
processing capabilities, which are not feasible in swarm robotic platforms.

Mapping an environment using a robotic swarm is a relatively new area of research
in the robotics community. An approach to this problem is given in [6, 7], in which
a robotic swarm is used to identify the topological features of an environment from
information about the times at which robots encounter other robots and environmental
features. This work borrows tools from algebraic geometry and topological data
analysis to compute a metric that can be used to classify the topological structure of
the environment. The approach requires some minimal inter-robot communication,
unlike our strategy which is communication-free.

Our mapping approach uses methods from [9], a stochastic task allocation
approach that achieves target spatial distributions of robot activity without using
communication or localization. Also, our approach is inspired by [13], a method for
reconstructing environmental features from minimal robot data using compressed
sensing techniques. In contrast to the scenarios that we consider, the robots in [9, 13]
can move over the features to be mapped, which allows the mapping problem to be
formulated as the inversion of a linear operator. Approaches with a similar mathe-
matical framework for parameter estimation have been used extensively in the area of
biomedical imaging, especially with MRI and CT scan images. In these approaches,
the system is excited with a stimulus such as a magnetic field, X-rays, or ultrasound,
and the system response is used to identify and estimate a spatially-dependent para-
meter that corresponds to the image [1, 17, 23].

2 Problem Statement

We consider a scenario in which N robots are deployed into an unknown, bounded
environment to map a single feature of interest. We exclude cases in which the
feature is located very close to the domain boundary, since robot collisions with this
boundary and the high diffusion of swarms that start far from the feature will degrade
the estimation. If a robot encounters the feature, it stops moving and records the time
at which it stopped. Using data on the number of robots that are still moving at each
instant, we aim to estimate the position and geometry of the encountered feature.
We can improve the accuracy of this estimate by deploying the swarm in different
directions from various locations, which will ensure greater coverage of the domain
and result in robot collisions with a larger portion of the feature boundary. This
approach may be used to map multiple sparsely distributed features by reconstructing
each individual feature from its corresponding data set and computing the entire map
as a linear combination of single-feature maps.



480 R.K. Ramachandran et al.

Robot capabilities: The robots are assumed have sufficient power to complete the
mapping operation. The power requirement for the robots is low, since they are
not equipped with communication devices or GPS. The robots have local sensing
capabilities and can identify the feature at distances within their sensing range.
We may also assume that the robots can detect other robots within their sensing
range and perform collision avoidance maneuvers, although we do not simulate
collision avoidance in this work. Each robot is equipped with a compass and thus
can move in a specified heading. Additionally, the robots have sufficient memory
to store the time of their encounter with the feature.

Robot controller: The robots begin at a specified location in the domain. Dur-
ing a swarm deployment, the robots move with a predetermined time-dependent
velocity, v(t) ∈ R

2. This velocity is designed to guide the center of mass of the
swarm along a desired trajectory through the environment. The velocity field may
be initially transmitted to the robots by a computer at their starting location, or
the robots may be directed according to the field using external stimuli such as
magnetic fields or radiation. The robots’ motion is affected appreciably by sensor
and actuator noise, due to lack of feedback. If a robot detects a feature within its
sensing range, it stops moving and records the time. At a predefined time t f , the
stationary robots around the feature boundary return to the starting point of the
deployment and upload their encounter times to a computer. The computer then
applies the optimal control method described in Sect. 4 to estimate the map of the
feature using this robot data.

3 Models of the Mapping Scenario

3.1 Microscopic Model

This model is used to simulate a robot’s motion and its response to an encounter with
a feature in its path. The change in a robot’s state that is triggered by an encounter is
modeled as an irreversible chemical reaction,

A
k−→ P, (1)

where the species A represents an active (moving) robot, P represents a passive
(stationary) robot, and k is the reaction rate constant, which in this case is a fixed
probability per unit time. This constant is assigned a high value to enforce a high
probability of transitioning from active to passive.

We model the robots as point masses with negligible size compared to the area
of the domain. A particular robot i has position Xi (t) = [xi (t) yi (t)]T at time t . The
deterministic motion of the robot is directed by the time-dependent velocity field
v(t) = [vx (t) vy(t)]T . The noise in the robot movement is modeled as a Brownian
motion that drives diffusion with an associated diffusion coefficient D. We assume
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that the robots’ navigation error can be modeled as diffusive noise and that the value
of D can be estimated. The displacement of robot i over a time step Δt is given by
the standard-form Langevin equation [11]:

Xi (t + Δt) = Xi (t) + (
√

2DΔt)Z(t) + v(t)Δt, (2)

where Z(t) ∈ R
2 is a vector of independent standard normal random variables that

are generated at time t . The robots avoid collisions with the domain boundary by
performing a specular reflection when they encounter this boundary.

3.2 Macroscopic Model

The macroscopic model governs the time evolution of the expected spatial distribu-
tion of the robotic swarm. For a swarm whose members move according to Eq. (2),
the macroscopic model is given by an advection-diffusion PDE, as described in [5].
Since our microscopic model includes robot state changes that can be represented as
chemical reactions, our macroscopic model takes the form of an advection-diffusion-
reaction (ADR) PDE. The model is defined over a domain Ω ⊂ R

2 with Lipschitz
continuous boundary ∂Ω and over a time interval T . We define L = Ω × [0, T ] and
Γ = ∂Ω × [0, T ]. The state of the macroscopic model is the population density field
u(x, t) of active robots in the domain at points x ∈ Ω and times t ∈ T . We specify
a spatially varying indicator function, K (x) : Ω → {0, 1}, that equals 0 at points
x where the feature of interest is absent and equals 1 at points where it is present.
The reaction term of the macroscopic model is determined by the rate constant k
in Eq. (1), which is switched on or off by the indicator function K (x) depending
on whether the feature of interest occupies point x. This term models the switching
of individual robots from the active state to the passive state when they are in the
vicinity of the feature. The advection term of the macroscopic model is governed by
the velocity field v(t) that is defined in the microscopic model.

From the above definition, the macroscopic model is given by:

∂u

∂t
= ∇ · (D∇u − v(t)u) − kK (x)u in L (3)

with the no-flux boundary condition

n · (D∇u − v(t)u) = 0 on Γ, (4)

where n ∈ R
2 is the outward normal of the boundary ∂Ω . We specify that all robots

start in the active state and set the initial condition,

u(x, 0) = u0, (5)
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to a Gaussian density centered at a point x0, which we assume is far from the fea-
ture. The macroscopic model is numerically solved using the explicit finite-volume
method that is described in [9].

Our approach relies on the close correspondence of the macroscopic model solu-
tion to the average swarm density over an ensemble of microscopic model simula-
tions. Therefore, the approach is robust to robot malfunctions and external distur-
bances as long as these factors do not significantly affect the model correspondence.
This implies that the number of failed robots should be small compared to the total
swarm size, and that the robots’ trajectory drift due to wind, currents, and other envi-
ronmental influences should be small relative to their modeled motion. In scenarios
that violate these conditions, it would be necessary to improve the accuracy of the
macroscopic model by estimating the components of v, D, and k that are affected by
unmodeled dynamics and disturbances. This is a topic of future work.

4 Optimal Control Approach to Mapping Features

The feature reconstruction problem is framed as an optimal control problem. A
gradient descent algorithm is used to compute the optimal control for the problem.
An adjoint state equation approach is used to compute the gradient required for the
algorithm [4]. The key advantage of this approach is that it derives an explicit formula
for the gradient of the objective functional with respect to the control, subject to the
constraints. The Hamiltonian and Pontryagin maximum principle can be to used to
derive the adjoint equation for finite-dimensional systems. However, in the case of
infinite-dimensional systems, the existence of the Hamiltonian has been proven only
for a limited class of systems [10]. This motivated us to derive the directional directive
of the control-to-state mapping and use the generalized chain rule of differentiation
of composite mappings in Banach spaces, as is found in the literature [2, 22]. In
order to make the derivatives of certain maps well-defined, an appropriate choice
of spaces is made for the parameters and the solutions satisfying the system of
differential equations. We present a Lagrangian-based analysis of these derivatives
in the Appendices. The proof for the existence of optimal control for the problem is
the same as the one shown in [8].

The optimization procedure uses data on the ratio of the number of active robots
at each instant of time to the initial number of active robots at the start of the swarm
deployment. To ensure sufficient coverage of the domain, the swarm can be deployed
from multiple starting positions and directed along different trajectories. Once this
data is obtained, the optimization procedure is performed to find the feature map
that would produce data that is similar to the data obtained from the deployments.
The computational cost increases greatly with the number of data sets (one from
each deployment) that are used for optimization, since the number of PDEs to be
solved per iteration varies linearly with the data sets. However, we can obtain a better
estimate of the feature map with more data. Hence, there is a tradeoff between the
computational cost of the optimization and the accuracy of the estimate. In order
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to resolve this issue, we discard data sets from deployments in which few robots
undergo a state transition compared to the other deployments. A paucity of state
transitions indicates that the swarm trajectories infrequently intersect the feature. In
addition, our procedure can be easily parallelized since the most computationally
intensive part is the solution of the PDEs.

The optimal control problem is formulated as follows. Each of the i swarm
deployments yields a sequence of times at which active robots encounter the fea-
ture and switch to the passive state. From this data, we can determine the fraction
gi (t) ∈ L2([0, T ]) of active robots in the swarm at each time t during deployment
i . The solution ui (x, t) of the corresponding macroscopic model Eqs. (3)–(5) can be
used to compute the integral

∫
Ω
ui (x, t)dx, the expected fraction of active robots

in the domain at time t . We assume that the swarm size is sufficiently large for
gi (t) to closely match this integral if the feature map, represented by the function
K (x) in Eq. (3), is known. Therefore, we can frame our optimization objective as the
computation of the input K (x) that minimizes the function

Ji (ui ) = 1

2

∥
∥
∥
∥

∫

Ω

ui (x, t)dx − gi (t)

∥
∥
∥
∥

2

L2([0,T ])
. (6)

Suppose that the data from N deployments are selected to compute the optimal
controls. The swarm velocity and initial distribution for deployment i are given by
vi (t) and ui0, respectively. The macroscopic model with these parameters is con-
sidered to be the i th set of constraints, which we denote by Ψi (ui , K ) as in [22].
The solution to this model is given by ui , and the set of solutions for all N deploy-
ments is u := {u1, u2, . . . , ui , . . . , uN }. We define the space of macroscopic model
solutions as U = C([0, T ]; L2(Ω)) and the space of admissible input functions as
Θad = {K (x) ∈ L2(Ω); Kmin ≤ K (x) ≤ Kmax }. Furthermore, Wi is a weight that
quantifies the significance of the data from deployment i relative to data from the
other deployments, and λ is the Tikhonov regularization parameter [14]. Using these
definitions, we can frame the optimal control problem as:

min
(u,K (x))∈UN×Θad

J(u, K ) =
N∑

i=1

Wi Ji (ui ) + λ

2
‖K (x)‖2

L2(Ω), (7)

subject to the constraints Ψi (ui , K ), i = 1, . . . , N .
We must compute the gradient of the objective functional J(u, K ) with respect

to the control inputs in order to perform the gradient descent algorithm for mini-
mizing this functional. We introduce the Lagrangian functional L and Lagrangian
multipliers pi , with p := {p1, p2, . . . , pi , . . . , pN }:

L (u,p, K ) = J(u, K ) +
N∑

i=1

〈pi , Ψi (ui , K )〉. (8)



484 R.K. Ramachandran et al.

The functions pi , also known as the adjoint variables, express the sensitivity of the
objective functional to variations in the input control variable K (x). The necessary
condition for optimality is ∇L = 0, which implies the following three conditions:
(1) ∇uL = 0, the adjoint equation; (2) ∇pL = 0, the state equation in weak form;
and (3) ∇KL = 0, the optimal control constraint. These three equations are used to
compute the gradient of J(u, K ). The derivation of the adjoint and gradient equations
is described in the Appendices.

The solution to an optimization problem that is obtained by a gradient descent
algorithm is sensitive to the choice of the initial guess and may be a local minimum of
the objective functional rather than the global minimum. To increase the likelihood
of obtaining the global minimum, we choose an initial guess for the feature map,
represented by K (x), that is guaranteed to include the actual map. This initial guess
is that the feature covers the entire area traversed by the swarm during each of its i
deployments (in actuality, the feature will occupy a subset of this area). Formally,
we define γi := [0, 1] → R

2 as the trajectory of the swarm center during the i th

deployment and B2(γi (τ ), δ) as a ball with radius δ centered at the point γi (τ ), and
we initially set K (x) = 1 for all x ∈ (∪N

i=1B2(γi (τ ), δ)
) ∩ Ω , τ ∈ [0, 1]. We choose

δ to be 3 times the standard deviation of the initial Gaussian swarm distribution.

5 Simulated Mapping Scenarios

We developed microscopic and macroscopic models of a robotic swarm for six map-
ping scenarios, each with a single feature in the domain. The six features varied in
position, size, shape, and orientation. We applied the method described in Sect. 4 to
reconstruct each feature from the simulated robot data on feature encounter times.
For each simulation, we used a swarm of 1000 robots in a normalized domain of
size 1 m × 1 m. The value of k was chosen to be 1/dt , where dt is the time step of
the microscopic model, in order to ensure that robots always switched to the passive
state when they encountered the feature boundary. For simplicity, the designated
velocity fields vi (t) of the robots were each assigned a constant heading. The robots
moved at a speed of 0.012 m/s with a diffusion coefficient of D = 5 × 10−4 m2/s,
and each simulation ran for 80 s. The microscopic model was simulated in a 26 × 26
grid, while the macroscopic model was solved in a finer grid of 51 × 51 grid cells to
account for numerical diffusion. In the optimization procedure, K (x) was bounded
between Kmin = 0 and Kmax = 1.

Figure 1 shows snapshots of the active robots in a swarm at various times t during
a sample deployment. The robots behave according to the microscopic model and
move through a domain that contains a rectangular feature. Robots that have switched
to the passive state are not shown. The population of active robots decreases as the
robots move eastward and encounter the feature in their path.

Figures 2, 3, 4, 5, 6, 7, 8 and 9 illustrate the results of our mapping procedure for
the six scenarios that we investigated. Each figure shows the actual feature, the map
of the feature given by the estimated K (x), and the error between these two plots.
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Fig. 1 Snapshots of the simulated swarm moving through a domain with a rectangular feature
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Fig. 2 K (x) estimated from 6 data sets for a domain that contains a rectangle. The white arrows
show the starting locations and directions of the swarm deployments
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Fig. 3 K (x) estimated from 6 data sets for a domain that contains an inclined rectangle
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Fig. 5 K (x) estimated from 4 data sets for a domain that contains a square at the center
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Fig. 6 K (x) estimated from 8 data sets for a domain that contains a square at the center
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Fig. 7 K (x) estimated from 8 data sets for a domain that contains a square in the corner
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Fig. 8 K (x) estimated from 6 data sets for a domain that contains a non-convex L-shaped object
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Fig. 9 Objective function value versus number of iterations for the different scenarios examined

In the plots of the actual features, the white arrows indicate the starting points and
directions of the swarm center of mass during deployments, each of which yields
one data set. Figures 2, 3, and 4 show that we can obtain a fairly accurate map of
a rectangle at two different orientations and a triangle using 6 data sets for each
scenario. We consider smaller features in the next three figures. From Figs. 5 and 6,
we see that the map of a feature increases in accuracy when more non-redundant data
sets are used in the optimization procedure. Figure 7 represents a worst-case scenario,
in which the map is estimated using data from swarms that start at locations far from
the feature, which is in one corner of the domain. The swarms are highly diffused by
the time they reach the vicinity of the square; however, 8 data sets yield a relatively
accurate map. Lastly, Fig. 8 shows that 6 data sets yield a fairly poor estimate of a
non-convex L-shaped feature; we will work further on extending our technique to
mapping non-convex shapes. Figure 9 shows that for each scenario considered, the
optimal control approach effectively minimizes the objective function by driving it
close to zero from its initial value.

6 Conclusion

We have presented a method for mapping an environmental feature using a robotic
swarm that exhibits diffusive motion and lacks localization and inter-robot commu-
nication. Our approach employs optimal control techniques to reconstruct a spatially
varying function that represents the feature of interest. This function is estimated
using temporal data on the proportion of active robots, which have not encountered
the feature, at each instant of time. Our simulation results indicate that this method-
ology can accurately reconstruct the feature when the data is obtained from multiple
swarm deployments that originate at different locations throughout the domain.

In future work, we would like to extend this approach to more accurately recon-
struct non-convex shapes, as well as multiple features in a domain. Our mathematical
framework can in principle be used to reconstruct an arbitrary feature geometry, pro-
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vided that we can design swarm trajectories that yield robot interactions with all
facets of the feature. In general, however, it is impossible to identify trajectories
a priori that can produce sufficient data for accurate reconstruction. This limitation
makes it difficult to map complex feature geometries, as illustrated by Fig. 8. Another
factor that contributes to mapping inaccuracies is the decrease in number of active
robots during a swarm deployment, which can reduce the correspondence between
the density fields of active robots from the macroscopic and microscopic models.
This issue could be resolved if the robots perform an obstacle avoidance maneuver
upon encountering a feature, staying in the active state rather than entering the pas-
sive state. The corresponding macroscopic PDE would need to model this avoidance
behavior, which would increase the complexity of computing the gradient of the
objective functional. In addition, we plan to implement our mapping approach as the
initial step in other swarm strategies, such as collective transport tasks [24] that first
require estimating the location and geometry of the payload.

Acknowledgements This work was supported by NSF Awards CMMI-1363499 and CMMI-
1436960.

Appendix 1: Mathematical Preliminaries

We study the solution to PDEs in the weak sense, which can be found in the

Sobolev space H 1(Ω) =
{
y ∈ L2(Ω) : ∂y

∂x1
∈ L2(Ω),

∂y
∂x2

∈ L2(Ω)
}

. Here, the

spatial derivative is to be understood as a weak derivative defined in the dis-
tributional sense. The space is equipped with the common Sobolev space norm,

‖y‖H 1(Ω) =
√(

‖y‖2
L2(Ω) + ∑2

i=1

∥
∥
∥ ∂y

∂xi

∥
∥
∥

2

L2(Ω)

)

. We also define V = H 1(Ω), which

has the dual space V ∗ = H 1(Ω)∗.
We consider the general system for Eqs. (3)–(5):

∂u

∂t
= Au +

2∑

i=1

vi Biu − K (x)u + f in L ,

n · (D∇u − vu) = g on Γ,

u(x, 0) = u0, (9)

where A is a formal operator and Bi is an operator defined as Bi : L2(0, T ; V ) →
L2(0, T ; L2(Ω)), K (x) ∈ L2(Ω), f ∈ F = L2(0, T ; L2(Ω)) is the forcing function
in the system, g ∈ G = L2(0, T ; L2(∂Ω)), and u0 ∈ L2(Ω). The variational form
of the operator A, called Ag , is defined as Ag : L2(0, T ; V ) → L2(0, T ; V ∗). The
solution of the system in the weak sense is given by u ∈ U = L2(0, T ; V ) with
ut ∈ U ∗ = L2(0, T ; V ∗) if it satisfies the equation:
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〈
∂u

∂t
, φ

〉

U ∗,U
= 〈

Ag, φ
〉
U ∗,U +

2∑

i=1

〈vi Biu, φ〉F − 〈K (x)u, φ〉F + 〈 f, φ〉F (10)

for all φ ∈ L2(0, T ; V ). The boundary conditions are equipped with Ag in the vari-
ational formulation using Green’s theorem. This is essentially the variational form
of the Laplacian,

〈
Agu, φ

〉
U ∗,U = −〈D∇u,∇φ〉L2(Ω) +

∫

∂Ω

(g + n · vu) φdx . (11)

In the macroscopic model Eqs. (3)–(5), we define A = ∇2, Bi = ∂
∂xi

, f = 0, and
g = 0.

Appendix 2: Adjoint Equations

The adjoint equation ∇uL = 0 implies that [∇u1L , . . . ,∇uiL , . . . ,∇uNL ] = 0.

From Eq. (8),

∇uiL = ∇uiJ(u, K ) + ∇ui

N∑

j=1

〈p j , Ψ j (u j , K )〉

= ∇uiJ(ui , K ) + ∇ui 〈pi , Ψi (ui , K )〉, (12)

since a term in the sum is a function of ui only when i = j . By Eq. (7),

∇uiJ(ui , K ) = ∇ui

N∑

j=1

Wj Jj (u j ) = Wi∇ui Ji (ui ). (13)

From Eq. (6),

∇ui Ji (ui ) = ∇ui

(
1

2
‖(Dui )(t) − gi (t)‖2

L2([0,T ])

)

, (14)

where D := U → L2([0, T ]) and (Dui )(t) = ∫
Ω
ui (x, t)dx. Then, by the chain rule

of differentiation [4, 12], the directional derivative of Ji (ui ), ∇ui Ji (ui ), is given by

〈∇ui Ji (ui ), s〉U = 〈(Dui )(t) − gi (t), Ds〉L2([0,T ]) = 〈D∗((Dui )(t) − gi (t)), s〉U .

(15)
Here, D∗ := L2([0, T ]) → U and (D∗ f )(t) = f (t) · 1Ω(x), where f (t) ∈
L2([0, T ]) and 1Ω is the indicator function of Ω ⊂ R

2. We can show that 〈Dy, f 〉 =
〈y, D∗ f 〉 ∀y ∈ U, f ∈ L2([0, T ]). Therefore,
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∇ui Ji (ui ) = D∗((Dui )(t) − gi (t)). (16)

By definition,

〈pi ,∇ui Ψi (ui , K )s〉 = 〈∇ui Ψi (ui , K )∗ pi , s〉 ∀s ∈ U, (17)

where ∇ui Ψi (ui , K )∗ is the adjoint operator of ∇ui Ψi (ui , K ) corresponding to the
inner product of the Hilbert space. Now, by taking the directional derivative of
Ψi (ui , K ) at ui in the direction of s, we obtain

∇ui Ψi (ui , K )s = ∂s

∂t
− (∇ · (D∇s − vi (t)s) − kK (x)s). (18)

Substituting Eq. (18) into Eq. (17) yields

〈pi , ∇ui Ψi (ui , K )s〉 =
∫ T

0
〈pi , ∂s

∂t
〉L2(Ω) − 〈pi , D∇2s〉 + 〈pi ,∇ · vi (t)s〉 + 〈pi , kK (x)s〉.

Using integration by parts on the integral term in the equation above, we get

∫ T

0
〈pi , ∂s

∂t
〉L2(Ω) = 〈pi (T ), s(T )〉 − 〈pi (0), s(0)〉 −

∫ T

0
〈s, ∂pi

∂t
〉L2(Ω).

As this is true for all s ∈ U , we could choose the s with s(0) = 0 and construct pi (T )

such that
∫ T

0 〈pi , ∂s
∂t 〉L2(Ω) = ∫ T

0 〈− ∂pi
∂t , s〉L2(Ω). Thus, we choose the final condition

of the adjoint equation as pi (T ) = 0. We now make use of the following lemma:

Lemma 1 Let L and L∗ be operators defined by L : L2(0, T ; V ) → L2(0, T ; V ∗)
and L∗ : L2(0, T ; V ) → L2(0, T ; V ∗), respectively. The variational form of L is:

〈Lu, φ〉V ∗,V = −〈D∇u,∇φ〉L2(Ω) − 〈v · ∇u, φ〉L2(Ω) +
∫

∂Ω

n · (vuφ)dx

∀φ ∈ V . Also, by Lagrange’s identity, 〈Lu, p〉V ∗,V = 〈u, L∗ p〉V,V ∗ ∀u, p ∈
L2(0, T ; V ). We use the zero-flux boundary condition in Eq. (4) to compute the
variational form of the operator L∗ to be 〈L∗ p, φ〉V ∗,V = −〈D∇ p,∇φ〉L2(Ω) +
〈v · ∇ p, φ〉L2(Ω) ∀p ∈ L2(0, T ; V ) and ∀φ ∈ V .

Using the variational form of the Laplacian as in Eq. (11) and applying Lemma 1
and integration by parts, we can show that −〈pi , D∇2s〉 + 〈pi ,∇ · vi (t)s〉 can be
transformed into − 〈D∇2 pi , s〉 − 〈∇ · vi (t)pi , s〉 with the boundary condition n ·
∇ pi = 0. Finally, we observe that 〈pi , K (x)s〉 = 〈pi K (x), s〉. By combining these
results with Eqs. (12), (15), and (17), we obtain

〈∇ui Ji (ui ), s〉 + 〈−∂pi
∂t

− D∇2 pi − ∇ · vi (t)pi + pikK (x), s〉 = 0.
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Thus, the set of adjoint equations for the system defined by the i th set of constraints,
Ψi (ui , K ), with respect to the objective functional, J, is given by

− ∂pi
∂t

= ∇ · (D∇ pi + vi (t)pi ) − pikK (x) − ∇ui Ji (ui ) in L (19)

with the Neumann boundary conditions

n · ∇ pi = 0 on Γ, pi (T ) = 0, i = 1, . . . , N . (20)

Here, Eq. (19) with Eq. (20) has a solution in the weak sense.

Appendix 3: Gradient Equation

Using a similar analysis to the one in Appendix 2, we find that ∇KL reduces to

∇KL = ∇KJ(u, K ) +
N∑

i=1

∇K 〈pi , Ψi (ui , K )〉. (21)

From Eq. (7), we can derive the following expressions:

∇KJ(u, K ) = ∇K
λ

2
‖K (x)‖2

L2(Ω), 〈∇KJ(u, K ), s〉 = 〈λK (x), s〉. (22)

As in Appendix 2, we could express 〈pi ,∇KΨi (ui , K )s〉 as 〈∇KΨi (ui , K )∗ pi , s〉 ∀s ∈
L2(Ω), where ∇KΨi (ui , K )∗ is the adjoint operator of ∇KΨi (ui , K ) corresponding
to the inner product of the Hilbert space. Now, by taking the directional derivative of
Ψi (ui , K ) at K in the direction of s, we find that ∇KΨi (ui , K )s = kui s. Therefore,
with further simplification, we can show that

〈∇KΨi (ui , K )∗ pi , s〉 = 〈(Ξ(kui pi ))(x), s〉L2(Ω), (23)

where Ξ := L2(0, T ;Ω) → L2(Ω) and (Ξ f )(x) = ∫ T
0 f dt for all f ∈

L2([0, T ];Ω) and x ∈ Ω . By combining Eqs. (21)–(23), we formulate the objec-
tive functional derivative as

J′ =
N∑

i=1

(Ξ(kui pi ))(x) + λK (x). (24)

Thus, the computation of J′ requires ui and pi , which can be obtained by solving
Ψi (ui , K ) forward and solving Eqs. (19), (20) backward.
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An Effective Algorithmic Framework
for Near Optimal Multi-robot Path Planning

Jingjin Yu and Daniela Rus

1 Introduction

We study the problem of planning collision-free paths formultiple labeled disc robots
operating in two-dimensional, multiply-connected, continuous environments (i.e.,
environments with holes). The primary goal of this work is to develop a practical,
extensible framework toward the efficient resolution of multi-robot path planning
(Mpp) problems, in which the robots are densely packed, while simultaneously seek-
ing to minimize globally the task completion time. The framework is composed of
two key algorithmic components, executed in an sequential order. Using the example
illustrated in Fig. 1a, first, we compute the configuration space for a single robot, over
which an optimal lattice structure is overlaid (Fig. 1b). Using the lattice structure as a
roadmap, each start (resp., goal) location is assigned to a nearby node of the roadmap
as its unique discrete start (resp., goal) node, which translates the continuous problem
into a discrete one (Fig. 1c). Then, a state-of-the-art discrete planning algorithm is
applied to solve the roadmap-based problem near-optimally (Fig. 1d). Through the
tight composition of these two algorithmic components, our framework proves to be
highly effective in a variety of settings, pushing the boundaries on optimal multi-
robot path planning to new grounds in terms of the number of robots supported and
the allowed robot density.
Relatedwork.Mppfinds applications in a wide spectrum of domains such as naviga-
tion [1, 25],manufacturing and assembly [13], warehouse automation [40], computer
video games [26], andmicrofluidics [8]. Given the important role it holds in robotics-
related applications, Mppproblems has received considerable attention in robotics
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Fig. 1 An illustrative example of our algorithmic framework. a A problem instance with three disc
robots. The start and goal locations are indicated by the blue and red labeled discs, respectively. b
The configuration space (shaded area) for a single robot and the fitted hexagonal lattice. The blue
circles are the start positions, and the red circles are the goal positions. c The discrete abstraction
of the original problem. d Solution to the original continuous problem

research with dedicated study on the subject dating back at least three decades [24],
in which a centralized approach is taken that considers all robots as a single entity
in a high dimensional configuration space. Because the search space in such prob-
lems grows exponentially as the number of robots increases linearly, a centralized
approach [24], although complete, would be extremely inefficient in practice. As
such, most ensuing research take the approach of decomposing the problem. One
way to do this is by assigning priorities to the robots so that robots with higher pri-
ority take precedence over robots with lower priority [3, 5]. Another often adopted
partitioning method is to plan a path for each robot separately without considering
robot-robot interaction. The paths are then coordinated to yield collision free paths
[2, 19]. Following these initial efforts, the decomposition scheme is further exploited
and improved [7, 17, 21, 31, 34, 35]. Many of the mentioned works also consider
optimality in some form. We emphasize that, since finding feasible solution for
Mpp is already PSPACE-hard [10], i.e., no polynomial-time complete algorithmmay
even exist for such problems unless P=PSPACE, computing globally near-optimal
solution for a large number of robots is extremely challenging.

Recent years have witnessed a great many new approaches being proposed for
solving Mpp. One such method, reciprocal velocity obstacles [33, 36], which can
be traced back to [11], explicitly looks at velocity-time space for coordinating robot
motions. In [8], mixed integer programming (MIP) models are employed to encode
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the interactions between the robots. A method based on network-flow is explored
in [37]. In [20], similar to our framework upon a first look, an A∗-based search
is performed over a discrete roadmap abstracted from the continuous environment.
However, the authors addressed a much narrower class of problems for which they
can bound the computation cost but cannot guarantee the solution optimality. It is
also unclear how the complex geometric problem of efficiently computing a discrete
roadmap from the continuous environment is resolved in the paper. In [28], discrete-
RRT (d-RRT) is proposed for the efficient search of multi-robot roadmaps. Lastly,
as a special case of Mpp in continuous domains, efficient algorithms are proposed
[29, 32] for interchangeable robots (i.e., in the end, the only requirement is that
each goal location is occupied by an arbitrary robot). At the same time, discrete
(e.g., graph-based) Mpphas also been a subject of active investigation. This line of
research originates from the mathematical study of the 15-puzzle and related pebble
motion problems [14, 39]. Since then, many heuristics augmenting the A∗ algorithm
have been proposed for finding optimal solution, e.g., [23, 30, 38], to name a few.
These heuristics essentially explore the same decoupling idea used in the continuous
case to trim down the search space. Amethod based on network-flow also exists here
[42]. Some of these discrete solutions, such as [14], have helped solving continuous
problems [15, 27].
Contribution. Our work brings two contributions toward solving Mppeffectively
and optimally. First, we introduce a two-phase framework that allows any roadmap
building (i.e., discretization) method to be combined with any suitable discrete
Mppalgorithm for solving continuous Mppproblems. The framework achieves this
by imposing a partial collision avoidance constraint during the roadmap building
phase while preserving path near-optimality. Second, we deliver a practical inte-
grated algorithmic implementation of the two-phase framework for computing near
optimal paths for a large number of robots. We accomplish this by combining (i) a
fast algorithm for superimposing dense regular lattice structures over a bounded two-
dimensional environment with holes and (ii) an integer linear programming (ILP)
based algorithm for computing near-time-optimal solutions to discreteMpp [41]. To
the best of our knowledge, we present the first such algorithm that can quickly plan
near optimal, continuous paths for hundreds of robots densely populated in multiply-
connected environments.1

Paper organization. The rest of the paper is organized as follows. We formulate the
Mppproblem in Sect. 2. In Sect. 3, we describe the overall algorithmic framework
architecture and the first component of the framework on roadmap-based problem
construction. In Sect. 4, we describe how the second component of the framework
may be realized. In Sect. 5, we demonstrate the effectiveness of our framework over
a variety of environments. We hold an extensive discussion and conclude in Sect. 6.2

1Warehousing systems from Kiva Systems [40] can work effectively with hundreds of robots.
However, these robots essentially live on a grid within a structured environment.
2Due to limited space, detailed description of the ILP algorithm (Sect. 4) and larger versions of
some figures are included in the online material available at http://arxiv.org/abs/1505.00200. An

http://arxiv.org/abs/1505.00200
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2 Problem Statement

Let W denote a bounded, open, multiply-connected (i.e., with holes), two-
dimensional region.We assume that the boundary and obstacles ofW can be approx-
imated using polygons with an overall complexity of m (i.e., there are a total of m
edges). There are n unit disc robots residing inW . These robots are assumed be omni-
directional with a velocity v satisfying |v| ∈ [0, 1]. LetC f denote the free configura-
tion space for a single robot (the shaded area in Fig. 1b). The centers of the n robots
are initially located at S = {s1, . . . , sn} ⊂ C f , with goals G = {g1, . . . , gn} ⊂ C f .
For all 1 ≤ i ≤ n, a robot initially located at si must be moved to gi .

In addition to planning collision-free paths, we are interested in optimizing path
quality. Our particular focus in this paper is minimizing the global task completion
time, also commonly known as makespan.3 Let P = {p1, . . . , pn} denote a feasible
path set with each pi a continuous function, defined as

pi : [0, t f ] → C f , pi (0) = si , pi (t f ) = gi .

The makespan objective seeks solutions that minimize t f . In other words, let P
denote the set of all solution path sets, the task is to find a path set with t f close to

tmin := min
P∈P

t f (P). (1)

We emphasize that the aim of this work is a method for quickly solving “typical”
problem instances with many robots and high robot density (i.e., the ratio between
robot footprint and the free space is high) with optimality assurance. By typical, we
mean that: (i) the start location and goal locations are reasonably separated, (ii) a
start or goal location is not too close to static obstacles in the environment, and (iii)
there are no narrow passages in the environment that cause the discretized roadmap
structure to have poor connectivity. More formally, we assume that assumptions (i)
and (ii), respectively, take the forms4

∀1 ≤ i, j ≤ n, |si − s j | ≥ 4, |gi − g j | ≥ 4 (2)

and

∀p ∈ {S ∪ G}, |p − q| ≤ √
5 ⇒ q ∈ W . (3)

(Footnote 2 continued)
accompanying video demonstrating our algorithm and software developed in this paper are available
from the corresponding author’s website.
3Note that our algorithmic framework also applies to other time- and distance-based optimality
objectives through the use of an appropriate discrete planning algorithm.
4Equations (2) and (3) are unit-less given the unit disc robot assumption. If the robots have radius
r , the right side of the inequalities from (2) and (3) should be scaled by a multiplicative factor of r .
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(b)(a)

Fig. 2 a An environment with a discretization that does not capture its original topology. b The
roadmap after restoring connectivity (the operations are performed automatically from our code),
which then captures the topology of the original environment

For (iii), the discretized roadmap should capture the topology of the continuous
environment well. To bemore concrete, see Fig. 2a. In this environment, there are two
holes. The lattice graph, after contraction of faces that do not contain any obstacles,
does not have any holes. We expect the discrete roadmap to be connected and have
number of holes (after face contraction) equal to the number of holes of the continuous
environment (e.g., Fig. 1d).
Remark. We provide these assumptions only to suggest situations in which our
framework is expected to perform well. In our evaluation, these assumptions are not
enforced. We in fact greatly relax (2) (from 4 to 2.5) and do not enforce (3) at all. We
also give an efficient subroutine for restoring connectivity when assumption (iii) is
not satisfied. For example, the routine, when applied to the example in Fig. 2a, yields
the result in Fig. 2b, which is a screen capture from our program. We also emphasize
that, given that optimal Mpp is an extremely challenging task computationally [10]
and our focus on method effectiveness, we do not consider the problem from the
angle of solution completeness.

3 Algorithmic Framework Architecture
and Roadmap-Based Discrete Problem
Construction

Wesolve the proposed problemusing an algorithmic frameworkwith two algorithmic
components–discretization of the continuous problem followed by resolution of the
roadmap-based problem.The overall framework contains four sequential procedures:

(i) select and overlay a regular lattice structure over the configuration space,
(ii) restore environment connectivity lost in the discretization process,
(iii) snap start and goal locations to roadmap nodes to create a discrete problem on

the roadmap, and
(iv) solve the discreteMppproblem optimally or near-optimally.
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We note that, when compared with motion planning methods such as PRM [12]
and RRT [16], our framework, looking somewhat similar on the surface, is in fact
rather different. In methods like PRM and RRT, the discretization deals with the
configuration space encompassing all degrees of freedom of the target system. Our
approach, on the other hand, performs a careful, mostly uniform discretization of
the configuration space for a single robot with two degrees of freedom. In doing
so, we trade probabilistic completeness for the faster computation of near-optimal
solutions. In the rest of this section, we describe the first key component of our
algorithmic framework–the construction of the roadmap-based discrete problem,
which subsumes the first three algorithmic procedures of the overall framework.

3.1 Lattice Selection and Imposition

Appropriate lattice structure selection In selecting the appropriate lattice structure,
we aim to allow the packing of more robots simultaneously on the resulting roadmap
and obtain the structure fast. Clearly, if an insufficient number of nodes exists in
the roadmap, the resulting discrete problem can be crowded with robots, which is
difficult to solve and may not even have a solution. On the other hand, to allow
a clean separation between the roadmap building phase and the discrete planning
phase of the framework, the nodes cannot be too close to each other, e.g., two robots
occupying two different nodes should not be in collision. Moreover, it is desirable
that two robots moving on different edges in parallel will not collide with each other.

Considering all these factors together, we resort to adopting uniform tilings of
the plane [22]. A uniform tiling of the plane is a regular network structure that
can be repeated infinitely to cover the entire two-dimensional plane. Due to the
regularity of uniform tilings, it is computationally easy to overlay a tiling pattern
over C f . Choosing such a tiling then relieves us from selecting each node for the
roadmap individually. Over the 11 uniform tilings5 of the plane [22], we computed
the density of robots supported by each. To allow concurrent moves of robots on
nearby edges, take square tiling as an example, a square must have a side length of
4/

√
2 to avoid potential collision incurred by such moves (see, e.g., Fig. 3a). Indeed,

it is straightforward to show that the closest inter-robot distance is reached when two
robots are in the middle of two edges connecting to the same node. For hexagonal
tilings, this results in a minimum side length of 4/

√
3 (Fig. 3b).

After obtaining the required side length parameters for all 11 tilings, themaximum
robot density allowed by these tilings can then be computed.We compute the density
by assuming that all nodes of the regular tiling patterns are occupied by robots and
compute the ratio between the area occupied by robots and the free space when it is
unoccupied. For an infinite lattice with no obstacles, the hexagonal tiling is the best

5These tilings are: triangular, trihexagonal, square, elongated triangular, hexagonal, truncated
square, truncated trihexagonal, truncated hexagonal, snub square, rhombitrihexagonal, snub hexag-
onal.
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(a) (b)

Fig. 3 Minimum distance between robots. To ensure no collision when executing a discrete plan,
the distance between two lattice nodes must be 4/

√
2 + ε for square tilings (a) and 4/

√
3 + ε

for hexagonal tilings (b). At exactly 4/
√
2 (resp. 4/

√
3) the robots will touch when reaching the

midpoint of the edge. The contact point is shown as a red doc in both figures

Fig. 4 Efficient computation
of the hexagonal lattice that
falls inside C f

1
2

3
4

with about 45% density, followed by the square tiling with roughly 39% density.
Triangular tilings have a density of only 23%. This leads us to choose hexagonal
lattices as the base structure of the discrete roadmap.
Imposing the lattice structure After deciding on the lattice structure, we need a
procedure for imposing the structure on C f . Essentially, every edge must be checked
to determine whether it is entirely contained in the free configuration spaceC f . Note
that if this is performed naively, i.e., performing collision checking of each edge with
all obstacles, the overall complexity is on the order of O(mA), in which m is the
complexity of the workspace and A is the area contained in the outer boundary. The
naive approach quickly becomes time-consuming as either m or A grows.

To complete this step efficiently, we start by making an arbitrary alignment
between a sufficiently large piece of the infinite hexagonal lattice and the contin-
uous environment (Fig. 4). Then, we look at one C-space obstacle (including the
outer boundary) at a time. For each obstacle, we pick an arbitrary vertex on the
boundary (red dot in Fig. 4) and locate the hexagon from the lattice it belongs to
(in case of the example in Fig. 4, the shaded hexagonal with the label “1”). We then
follow the obstacle boundary and find all (green) edges of the lattice that intersect the
boundary. The edges found this way do not belong to C f and the final discrete graph
structure; moreover, they partition the lattice into pieces that are either completely
inside C f or completely outside C f . This allows us to efficiently check whether the
rest of the lattice edges belong toC f . To do so, we start with a vertex that is withinC f

that also belongs to one of these green edges and perform a breath first search over
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Fig. 5 Smallest cycles fully
surrounding the two C f
obstacles

the lattice structure, now with all the green edges deleted. All edges found this way
must be long to C f . We repeat this until all vertices of the lattice that fall inside C f

are exhausted. Note that this BFS is a discrete search without performing geometric
computation over real numbers, which can be done much faster than edge intersec-
tion checks. In the end, we obtain an output sensitive algorithm that typically takes
time between Θ(

√
A) and Θ(A), depending the total length of obstacle boundaries.

In practice, using the said method, the computation time used by this step is trivial
in comparison to the time it takes to do the discrete planning.
Restore Configuration Space Connectivity We now address how we may ensure
that the topology of C f is preserved in the discrete roadmap. Essentially, we must
locate places where connectivity in the continuous environment is lost. We illustrate
our algorithmic solution for doing so using an example. For the problem given in
Fig. 3a, for each C-space obstacle, it is straightforward to obtain the smallest cycle on
the lattice enclosing the obstacle (e.g., the green and red cycles in Fig. 5). Then, for
each pair of obstacles, we check whether the corresponding enclosing cycles share
non-trivial interior and if so, locate a minimum segment on the overlapping section
(e.g., the red segments between the two orange nodes in Fig. 5). Using visibility
graph [18],wemay then restore the lost connectivity andobtain the roadmap shown in
Fig. 3b. Most of the computation time in this step is spent on computing the visibility
graph itself, which takes time O(m logm + E) [6], with m being the complexity of
the environment and E being the number of edges in the resulting visibility graph.
Remark. In the process of restoring connectivity, it is possible that the resulting
roadmap cannot guarantee that simultaneous movements of disc robots are collision-
free. Without getting into details, we mention that this issue can be fully addressed
by sacrificing some time optimality.

We also note that the preservation of the connectivity or topology of the contin-
uous environment can be crucially important. A better connected environment has
a more diverse set of candidate paths, making the resulting problem easier to solve.
Perhaps more importantly, the preservation of the connectivity of C f is essential to
preserving path optimality. For a roadmap built from an overlaid square lattice, given
a shortest path p ⊂ C f between two points, due to the strong equivalence between
the Euclidean metric and the Manhattan metric, the shortest path p and the corre-
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Fig. 6 Suppose that the start and goal locations are at the center of the blue and the red discs,
respectively. If the robot does not find the narrow passage on the left, it then needs to travel through
a winding path on the right. By extending the width of the environment, we can make the winding
path arbitrarily long when compared to the shortest path

sponding shortest path p′ on the square lattice-based roadmap are within a constant
factor multiple of each other for any reasonably long path p (that is, length(p)  1
does not hold). The same argument applies to the roadmap-based hexagonal lattices.
Without obstacles, the ratio length(p′)/ length(p) over a long path p is bounded by√
2 for square lattices and roughly the same for hexagonal lattices. The ratio is largely

the same when obstacles are present. On the other hand, if the connectivity of C f

is not preserved, then it becomes possible that length(p′)/ length(p) is arbitrarily
large. An example is given in Fig. 6.

Once we establish that the roadmap preserves the near-optimality on path length,
the same applies to time optimality. Given the preservation of near-optimality of
individual paths, it does not directly imply that an optimal solution to the abstracted
discrete problem also preserves optimality with respect to the original continuous
problem, in terms of time or distance. However, our computational experiments show
that this is generally the case when C f has good connectivity.

3.2 Snapping Start and Goal Locations to Roadmap Nodes

After the full roadmap is built, each start or goal location in S ∪ G must be associated
with a nearby roadmap node. We call this process snapping. For the snapping step,
for each si ∈ S, we simply associate si with the closest roadmap node that si can
reach without colliding with another s j ∈ S. The same process is performed for all
gi ∈ G With the separation assumptions (2) and (3), this is almost always possible.
In particular, (2) implies that each hexagon from the lattice contains (roughly) at
most one start and one goal location. Therefore, the number of nodes on the roadmap
is at least twice the number of robots. In rare cases when conflicts do happen, we
may apply the rearrangement algorithms (e.g., [29]) to perform the snapping step
without incurring much penalty on time optimality. The completeness of this step is
guaranteed by (2) and (3).
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With the snapping process complete, a discrete abstraction of the original con-
tinuous problem is obtained. For our example, this leads to the scenario captured in
Fig. 1c. If we are not interested in optimality, the discrete problem may be attempted
using a non-optimal but polynomial time algorithm [14, 44]. As stated in the indi-
vidual subsections, the computation required in this section can be carried out using
low-degree polynomial time algorithms. The relative time used for this portion is triv-
ial as compared to the time required for solving the roadmap-based discrete problem.

4 Fast, Near-Optimal Discrete Path Planning

After a high quality roadmap is obtained with near-optimality guarantees on time
and distance (e.g., an optimality-preserving reduction from continuous space to dis-
crete space), one may then freely choose an algorithm for finding solutions to the
discrete abstraction (Fig. 1c in our example). Whereas an arbitrary number of glob-
ally optimal objectives can be conjured, four objectives are perhaps most natural.
These four objectives minimize the maximum or the total arrival time or travel dis-
tance. Viewing from the angle of service provider (e.g., delivery drones) and end user
(e.g., customers), minimizing the total distance or time allows the service provider
to minimize energy cost or overall vehicle fleet usage. On the other hand, minimiz-
ing the maximum time or distance promises a more uniform service quality among
customers. If minimizing the total arrival time or the total distance is the goal, then
discrete search methods such as ID [30] can be applied. Here, we focus on the mini-
mummakespan (i.e., maximum arrival time or task completion time).We describe an
effective method for minimizing the makespan [41, 42], which is also a good proxy
to minimizing the maximum travel distance. The method is an ILP-based one with
an optimal baseline algorithm, augmented with near-optimal heuristics to improve
the computational performance.
The baseline, ILP model-based algorithm We first describe how an ILP model
is obtained [42]. The key idea is to perform time expansion over the discrete (spa-
tial) roadmap and then build the ILP model over the resulting directed space-time
graph. This step essentially sequentially chains some T copies of the spatial roadmap
together. Locally, for a hexagonal roadmap, the space-time graph has the structure
given in Fig. 7. Now, if the discrete Mppallows a solution within T time steps, then
there is a corresponding solution on the space-time graph in the form of n vertex
disjoint paths. An ILP model can then be readily build to find these vertex disjoint

Fig. 7 In a single time
expansion step, a node’s
neighbors (including the
node itself) at time step t are
connected to the node at time
step t + 1
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paths. Each solution found on the space-time graph can be easily mapped back to
yield a feasible solution to the originalMppproblem. To ensure optimality, a conser-
vative initial estimate of T , the number of steps for doing time expansion, is used.
This T is then gradually increased until a first feasible solution is found, which is
also a minimum makespan solution.
k-way split heuristic As finding minimum makespan solutions to discrete Mpp is
NP-hard [43], we observe the time in solving the corresponding ILP models grows
exponentially as the size of the model grows. This lead us to a heuristic that breaks a
large ILPmodel into multiple small ones along the time line. If the problem is broken
in k pieces, we call it a k-way split. Using 2-way split as an example, first, individual
paths for the robots are computed. Then themid-point of these paths are used to divide
the discreteMppproblem into two sub-problems, with these mid-points serve as the
goals of the first sub-problem and the start locations of the second sub-problem. If
there are mid-points that overlap, randomization is used to find alternative locations.
Last, each sub-problem is solved individually, after which we stitch the solutions
together.Note that, because the division is over time, there are no interactions between
two sub-problems. In a k-way split, the original ILP model is effectively divided into
k equal sized pieces. Solving these k pieces is usually much less time consuming
than solving the single, larger ILP model. The heuristic, however, does not preserve
true optimality on makespan but rather yields near-optimal solutions.
Reachability analysisAnother useful, optimality preserving heuristic is reachability
analysis. The basic idea here is to truncate edges from the space-time graph that are
unreachable, based on the start and goal locations of each individual robot.

5 Computational Evaluation

We implemented the roadmap building phase in C++ using CGAL [4]. The dis-
crete path planning module, written in Java, uses Gurobi [9] as the ILP solver. The
experiments were carried out on an Intel i7-4850HQ laptop PC.

For evaluation, we tested of our algorithmic framework over five distinct envi-
ronments. The first one is a simple square with a side length of 35 (recall that the
robots are unit discs), with no internal obstacles. The rest of the environments have
the same bounding square but contain different obstacle setups. We randomly select
start and goal locations for all our tests. These environments, along with a typical
50-robot problem instance, are illustrated in Fig. 8.

5.1 Performance in Bounded, Obstacle-Free Environment

We first characterize how our framework performs in terms computation speed and
solution optimality, as k-way split heuristic is used with different values of k. For
this task, we carry out two sets of computations. The first set, covered in this sub-
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Fig. 8 Environments with obstacles and 50 start and goal locations. The labeled blue discs mark
the start locations and the labeled pink discsmark the goal locations. Zoom-in on the digital version
of the paper for details. a Plus. b (Halloween) Jack. c Triangles. d Bars
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Fig. 9 Performance of framework with various choices of heuristics for a square environment
without internal obstacles. Left Computation time. Right optimality ratio

section, focuses on bounded, obstacle-free environment. For this environment, we
let the number of robots vary between 10–100 and evaluate the performance of the
framework with the baseline algorithm (i.e., a single sub-problem), 2-way split (i.e.,
two sub-problems), 4-way split, and 8-way split. For each choice of the number
of robots and the heuristic, 10 test cases are randomly generated sequentially and
solved. The average running time and optimality ratio is plotted in Fig. 9. Note that
our computation of the optimality ratio is conservative. To compute this ratio, we
find the shortest distance between each pair of start and goal locations and use the
maximum of these distances as the estimate of optimal time (since the robot has
maximum speed of 1). We then obtain the optimality ratio by dividing the actual task
completion time by the estimated value.

From the experiments, we observe that the baseline algorithm actually performs
quite well for up to 40 robots in the absence of obstacles. With that said, both
2-way and 4-way splits do much better without losing much optimality–all three
achieves optimality ratio between 1.2–1.6 in our experiments. With the 8-way split,
sacrificing some optimality, we were able to consistently solve problems with 100
robots in 10s on average. Such settings correspond to robots occupying over 25% of
the free space, a setting that has never been attempted before in optimal multi-robot



An Effective Algorithmic Framework for Near Optimal … 507

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30  35  40  45  50

8-way split
4-way split
2-way split
Baseline

 1

 1.5

 2

 2.5

 3

 5  10  15  20  25  30  35  40  45  50

8-way split
4-way split
2-way split
Baseline

Fig. 10 Performance of our algorithmic frameworkwith various choices of heuristics for the “Jack”
environment. Left computation time. Right optimality ratio

path planning. With 8-way split, problems with 125 robots in the same environment,
which corresponds to a robot density over 31.4%, can be comfortably solved in about
15min. We note that, if robot density is around 20%, our method can readily solve
problems with over 300 robots (in a larger environment).

5.2 Performance in Bounded Environment with Obstacles

The second set of experiments shifts the focus to an environment with obstacles. For
this we use the “Jack” environment. We choose this environment because it is in fact
a relatively difficult setting as many shortest paths have to pass through the middle,
causing conflicts. The experimental result, for 5–50 robots, is plotted in Fig. 10,
which is consistent with our first set of experiments. We note that obstacles, while
affecting the computation time, do not heavily impact the optimality of the result.

5.3 Evaluation of Overall Framework Performance

Our last set of experiments is aimed at showing the overall effectiveness of our
framework. For this purpose we select the splitting heuristic automatically. Roughly,
we do this by increasing k (in a k-way split) to keep each time expansion with
10 time steps, which we have found to strike a good balance between speed and
optimality. For the set of environments illustrated in Fig. 8, the experimental result
is plotted in Fig. 11. Our method is able to consistently solve all instances with an
average solution time from 0.5 to 10s while providing good optimality assurance on
minimummakespan. The two spikes in Fig. 11a at 40 robots are due to the switching
to 8-way split at 45 robot for these two environments.
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6 Conclusion

In this paper, we present an algorithmic framework for tackling the multi-robot path
planning problem in continuous, multiply-connected environments. Our framework
partitions the planning task into two phases. In the first phase, the configuration space
is tiledwith a carefully selected regular lattice pattern, taking into account robot-robot
collision avoidance. The imposed lattice is then processed to yield a roadmap that
preserves the connectivity of the continuous configuration space, which is essential
for achieving near optimality in the final solution. Snapping the robots and their goal
locations to the roadmap then transforms the initial continuous planning problem to a
discrete planning problem. In the second phase, the discrete planning problem can be
solved using any graph-based multi-robot path planning algorithms, after which the
solution can be readily used in continuous domains. With a good optimal planner for
discrete Mpp, our overall algorithm can consistently solve large problem instances
with tens to hundreds of robots in seconds to minutes.

As we make an important first step here toward a generic framework for near-
optimal multi-robot path planning in continuous domains with obstacles, we also
bring about many natural next steps. We discuss a few of these here, which we plan
to fully explore in our future research.

Nonholonomic constraints.An important issue not addressed in this paper is path
planning for nonholonomic robots. We briefly touch upon this issue here. Our algo-
rithmic framework supports quite naturally nonholonomic robots that are small-time
locally controllable (STLC) with reasonable minimum turning radius. Essentially,
to apply our method to a nonholonomic robot, the robot only need the capability to:
(i) move from its start location to a nearby roadmap node with a given orientation,
(ii) trace any path on the roadmap without incurring collision, and (iii) move from
a roadmap node to a nearby goal location (with an arbitrary orientation). A car-like
robot, or any robot that is STLC, possesses the first and the third capabilities. Then,
as long as the robot has a minimum turning radius of 2, it can follow any path on a
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Fig. 12 A car-like robot
with a mininum turning
radius of 2 can trace any
given path on a hexagonal
lattice with side length 4/

√
3

without violating its
nonholonomic constraints or
colliding with other robots

hexgonal lattice without violating its nonholonomic constraints (see Fig. 12). More
importantly, multiple robots may move concurrently in such a manner without caus-
ing collisions. The introduction of nonholonomic constraints does not significantly
affect optimality.

Decentralized planner. The current implementation of our framework yields a
centralized algorithm. It is possible, however, to make the algorithm decentralized
at the global scale. For example, we may simply let each robot perform planning
individually using a method such as reciprocal velocity obstacle (RVO) based algo-
rithm and engage locally our centralized method as the density of robots surpass
some critical threshold. Note that, as the density of robots increases, RVO-based or
repulsion-force-based methods generally do not have optimality guarantees and may
also create deadlocks.

Optimality of hexagonal lattice in general environments. While we have shown
that a hexagonal lattice structure yields the optimal tiling in the absence of obsta-
cles, it is unclear whether this holds well when there are obstacles in the bounded
environment. In future work, we plan to study this through simulation under various
obstacle settings. We will also characterize the performance using lattice structures
other than hexagonal ones. The reason behind this is that, although hexagonal lat-
tice allows the highest density, each node is only 3-connected. Square lattices, for
example, has a 4-connected structure, which facilitates the discrete planning phase.
Generally, discrete Mppproblems with higher connectivity are easier to optimally
solve.
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Detecting, Localizing, and Tracking
an Unknown Number of Moving Targets
Using a Team of Mobile Robots

Philip Dames, Pratap Tokekar and Vijay Kumar

1 Introduction

Target detection, localization, and tracking has many applications, ranging from
search-and-rescue [10] to building smart cities [21]. Consequently, such problems
have long been a subject of study in the robotics community. Active target tracking
typically refers to two types of tasks: estimating the trajectories of the targets from the
sensor data, and actively controlling the motion of the robotic sensors to gather the
data. Both problems have been studied in the literature under many different settings.
Solutions have been presented for radio-based sensors [13], range-only sensors [35],
bearing sensors [22], and range and/or bearing sensors [36], under centralized and
decentralized settings.

Frew and Rock [9] design optimal trajectories for a single robot to track a single
moving target using monocular vision. The problem of keeping targets in a robot’s
field-of-view can be formulated as a visual servoing problem. Gans et al. [11] design
a controller which guarantees stability while keeping three or fewer targets in the
field-of-view of a single mobile robot. Tracking multiple targets with multiple robots
requires explicit or implicit assignment of targets to robots. Spletzer and Taylor [29]
present a general solution for the multi-robot, multi-target case using a particle filter
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formulation. Xu et al. [33] present a mixed nonlinear integer programming for-
mulation for assigning robots to targets as well as for determining optimal robot
positioning. Recently, there has been some work on actively detecting and/or localiz-
ing an unknown number of stationary targets using radio sensors [15, 28], range-only
sensors [5], and arbitrary sensor models [8].

Unlike most existing work, we study the case of tracking an unknown and varying
number of indistinguishable targets. This introduces a number of challenges. First,
we cannot maintain a separate estimator for each target, since the required number of
estimators is unknown. Second, we must account for the fact that targets appear and
disappear from the environment. Third, we cannot maintain a history of the target
positions because we cannot uniquely identify individual targets, making prediction
difficult. Finally, the system must be capable of handling false positive and false
negative detections and unknown data association in addition to sensor noise. Despite
these challenges, we present positive results towards solving the problem.

To solve this estimation problem we turn to Random Finite Sets (RFSs). RFSs
are random variables whose realizations are finite sets. Distributions over RFSs have
both a distribution over the cardinality of the set (i.e., number of targets) and a
distribution over the elements of the set (i.e., position of the targets). The Probability
Hypothesis Density (PHD) filter [23] is the most common estimation strategy based
on RFSs. The PHD filter has recently received attention in robotics for use in robot
localization [2], simultaneous localization andmapping [19], localizing static targets
[8, 27], and more [1]. In this paper, we show how the PHD filter can be employed
for tracking moving targets (Sect. 3.3).

An important consideration for target tracking is the motion model for the targets.
A number of parametric motionmodels have been proposed in the literature (see [20]
for a detailed survey).Weemploy adata-driven technique to extract themotionmodel,
instead of assuming any parametric form. Specifically, we useGaussian Process (GP)
regression to learn a map of velocity vectors for the targets, as Joseph et al. do in their
work [14]. Additionally, we show how to model the appearance and disappearance
of targets within the environment (Sect. 3.2).

Next, we present a control policy to assign trajectories for all robots in order to
maximize the objective function over a receding horizon. We study two objective
functions using the PHD filter: mutual information and the expected number of
detections by the robots. We show that both objective functions are submodular, and
use a result based on [31] to prove that our greedy control policy is a 2-approximation
(Sect. 3.4).

In addition to the theoretical analysis we offer, we evaluate our algorithm using
simulated experiments. While our framework may be applied to a number of robot
and sensormodels, for the purposes of testingwe restrict our attention to fixedwinged
aerial robots with downward facing cameras.We use a real-world taxi motion dataset
from [24] for the targets and to verify our models. The simulation results reveal that
robot teams using the information-based control objective track a smaller number of
targets with higher precision compared to teams that maximize the expected number
of detections (Sect. 4).
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2 Problem Formulation

We address the problem of a team of R robots monitoring an area in order to detect,
localize, and track an unknown number of moving targets using an inexpensive
camera. The robots are able to localize themselves within the environment (e.g.,
using GPS) and robot r has pose qrt at time t .

The number of targets, nt , is unknown and varies over time, since individual targets
may enter and leave the area of interest. We use Random Finite Sets (RFSs) to repre-
sent the number and state of targets at any time. In the target tracking scenario, RFSs
may represent either targets states or measurements. Let Xt = {x1,t , x2,t , . . . , xnt ,t }
denote a realization of a RFS of target states at time t . A probability distribution of
a RFS is characterized by a discrete distribution over the cardinality of the set and a
family of densities for the elements of the set conditioned on the size, i.e.,

p(X = {x1, . . . , xn}) = p(|X | = n) p({x1, . . . , xn} | |X | = n). (1)

The first statistical moment of a distribution over a RFS is called the Probability
Hypothesis Density (PHD). The PHD, v(x), is a density function over the state space
of an individual target with the property that the integral over any region S is the
expected number of targets in that region, i.e.,

∫
S
v(x) dx = E[|X ∩ S|]. (2)

The PHD filter makes the assumption that targets are independent and identically
distributed and that the cardinality of the target set is characterized by a Poisson
distribution. The likelihood of such an RFS is

p(X) = exp

(
−

∫
v(x) dx

) ∏
x∈X

v(x), (3)

which is fully characterized by the PHD.
Each robot receives a set ofmeasurements Zr

t = {zr1,t , zr2,t , . . . , zrm,t } to targets that
it detects within the field of view (FoV) of its sensor. The number of measurements,
mt , varies over time due to false negative and false positive detections and the motion
of the robots and the targets. Let pd(x | q) denote the probability of a robot at
q detecting a target with state x . pd(x | q) = 0 for targets outside of the FoV of
the sensor and having pd(x | q) < 1 indicates the possibility of a false negative,
or missed, detection. When a target is successfully detected, the sensor returns a
measurement z ∼ g(· | x, q). The sensor can also return measurements to clutter
objects, causing false positive detections. Let c(z | q) denote the PHD of clutter
measurements.

The PHD filter is somewhat analogous to the Kalman filter, recursively updating
the statistical moments necessary to fully characterize a distribution over the target
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states. Like the Kalman filter, there are two equations: the prediction and the update,

v̄t (x) = b(x) +
∫

ps(ξ) f (x | ξ)v(ξ) dξ (4)

vt (x) = (
1 − pd(x | q)

)
v̄t (x) +

∑
z∈Zt

pd(x | q)g(z | x, q)v̄t (x)

c(z, q) + ∫
pd(ξ | q)g(z | ξ, q)v̄t (ξ) dξ

. (5)

Here v̄t (·) is the predicted target PHD; b(·) is the PHD of target births, which
accounts for new targets entering the area; ps(·) is the target survival probability,
which accounts for targets leaving the area; and f (· | ξ) is the target motion model.
In the following section, we show how to learn these parameters from a real-world
dataset.

Note that the representation in the PHD filter is inherently different from more
traditional target trackers. With the PHD, there is no notion of target labels or of
individual target tracks. Instead, the PHD filter tracks the density of targets over
time, yielding information about the bulk motion rather than about the motion of
individual targets. Future work will examine the recent Labeled MeMBer filter [26],
which is also based on RFSs but uses a different representation such that it is able to
output labeled target tracks.

3 Target Tracking Framework

The representative problem that we consider is of a team of fixed-wing aerial robots
equipped with downward-facing cameras tracking vehicles driving on the ground.
However the same methodology could be extended to work with robots with other
mobility constraints (e.g., ground vehicles or quadrotor platforms) and other sensor
modalities (e.g., lidars or 3D depth cameras).

3.1 Sensor Parameterization

The problem of detecting vehicles using aerial imagery has been well studied [12,
34].Weuse such studies to informour selection of the sensor detection,measurement,
and clutter models. The approaches presented in [12, 34] are similar, searching for
image features over a range of scales in order to detect cars of different sizes or to
detect cars from different elevations or with different image resolutions. In general,
the system is able to have a higher detection rate if we accept a larger number of
false positive detections [34, Fig. 12], [12, Fig. 8]. The detection rate may also vary
with the number of pixels per target, which may be computed, using the robot pose,
the approximate length scale of a target, and the image resolution, to be
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# pixels per car = pixels per radian × arctan
length of target

distance from camera to target
. (6)

We assume a logistic relationship between the number of pixels per target, npx(x, q),
and the detection rate,

pd(x | q) = p0 + pd,max − pd,0

1 + exp(−k(npx(x, q) − np,0))
, (7)

where pd,0, pd,max, k, and npx,0 are design parameters.
The camera returns pixel (i.e., bearing) measurements to the cars detected within

the image. Using the pose of the robot, we can project measurements onto the ground
plane to localize the targets. The measurement model is

g(z | x, q) = N (z; [rx , cx ]T , σ 2 I ), (8)

where rx , cx are the pixel row and column values in an image taken at q, of a target
at x , σ is the standard deviation in pixels, and I is a 2 × 2 identity matrix.

Like the targets, the clutter is modeled as a Poisson RFS, which is completely
characterized by the PHD. Without a priori knowledge of locations that are likely to
have clutter, the best choice is to use a uniform distribution over the measurement
space. For most computer vision-based detection algorithms, the expected number of
clutter detections depends upon the detection model, with a high detection likelihood
resulting in a higher detection rate [12, 34].

3.2 Target Parameterization

In order to predict how the target set evolves, we need models for the motion of
individual targets as well as the birth/death processes of the targets. A number of
motion models have been proposed in the literature, ranging from adversarial [6]
to stochastic [20]. We take a data-driven approach to modeling the targets’ motion,
utilizing real-world datasets that are available [16]. In particular, we use Gaussian
Process (GP) regression [25] to learn the function that maps the position coordinates
of the targets to velocity vectors, as shown by Joseph et al. [14]. Unlike [14], we use
a single GP rather than a mixture of GPs.

GP regression is aBayesian approximation technique to learn some function f (X)

given measurements y = f (x) + ε corrupted by Gaussian noise, ε ∼ N (0, σ 2).
Here, x = [x1, x2]T refers to the position coordinates of the targets. We learn two
separate functions, f1 and f2, one for each axis of the ground plane, assuming that
the velocities along the two axes are independent. Instead of assuming a parametric
model for fi , GP regression assumes that the joint distribution of fi (X) defined
over any collection of positions, X = {x1, . . . , xk}, is always Gaussian. Thus, fi (X)
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Fig. 1 The a mean and b standard deviation of the Gaussian Process regression motion model
overlaid on the map. We only show a small patch of the environment to show the detail. The
measured velocity vectors are shown in red, and the velocity vectors predicted over a grid are given
in blue. The units of the velocity are m/s

is completely specified by its mean function, mi (X) = E[ fi (X)] and covariance
function, ki (X, X ′) = E[( fi (X) − mi (X))( fi (X ′) − mi (X ′))].

Given observed velocity vectors Y1 and Y2 taken at some subset of positions, X ,
GP regression predicts the velocity vectors at some other set of positions, X∗, as a
Gaussian distribution with conditional mean and variance values [25]:

mi (X
∗|X) = mi (X

∗) + Ki (X
∗, X)[Ki (X, X) + σ 2 I ]−1(Yi − mi (X))

σ 2
i,X∗|X = Ki (X

∗, X∗) − Ki (X
∗, X)[Ki (X, X) + σ 2 I ]−1Ki (X, X∗),

where Ki (X, X ′) is a matrix whose (m, n)th entry is given by the covariance between
xm ∈ X and xn ∈ X ′. We take the prior function, mi (X), to be a zero-mean distribu-
tion. Thus, if the covariance function is known, the above equations can fully predict
the velocity values at arbitrary positions.

Weassume that the covariance function belongs to theMatérn classwith parameter
ν = 3/2 [25] since this choice of covariance function yields a better fit as compared
to the standard squared-exponential function used by Joseph et al. [14]. The length
hyperparameter of the Matérn covariance is learned using training data from the
Cabspotting taxi dataset from [24]. Figure1 shows the predicted mean and variance
values given by the GP regression using the learned hyperparameter values.

We use an empirical approach to learn the target survival and birth processes.
We overlay a uniform grid (1m resolution) over the environment. Whenever a target
appears in a cell, we add one to the survival count if the target was previously
in another cell, we add one to the birth count if the target was previously outside
the environment, and add one to the death count if at the next time step the target
leaves the environment. The birth count for each cell is initialized to 10, so that the
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Fig. 2 a The area of interest, a roughly 6.15 × 5.56km region surrounding downtown San
Francisco. b The probability of target survival as a function of position
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Fig. 3 Empirical target birth PHD

distribution of birth locations is uniform if there is no data. Similarly, the survival
and death count for each cell are initialized to 9 and 1, respectively. The survival
probability in a cell is given by the ratio of the survival count to the total survival and
death counts in that cell. In the absence of data, this yields a uniform probability of
survival of 0.9.

Figure2a shows the environments used in the simulations, with the target survival
probability in Fig. 2b and birth PHD in Fig. 3. As Fig. 2b shows, the targets survive
with high probability in the majority of the environment. The probability decreases
near the western and southern edges of the environment, where there are roads along
the edge of the environment. These same areas also have the highest rates of target
births, as Fig. 3b shows. One may also clearly see the highways in the southeast and
the bridge in the northeast, which have the highest rates of traffic, and thus of target
births and deaths. The target birth rate per minute, when considering all 536 taxis in
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the dataset, is 4.548 targets per minute of real time. The actual and fit birth rates are
shown in Fig. 3a, with the Poisson approximation fitting the data well.

3.3 PHD Filter

We utilize the Sequential Monte Carlo (SMC) PHD filter from Vo et al. [32]. This
approximates the PHD using a set of weighted particles, v(x) ≈ ∑Pt

i=1 wi δ(x − xi ).
The SMC PHD filter allows for arbitrary, non-linear sensor and motion models,
including a finite field of view for the sensor. New particles are added to the PHD
using the birth PHD described above as well as using the most recent measurement
set. A fixed number of particles, Pb, are drawn from the birth PHD and an additional
Pm particles are drawn from the inverse measurement model for each measurements

in the most recent set, Zt . The weight of each of these particles is w =
∫
c(z) dz

Pb+|Zt |Pm ,
where |Zt | is the cardinality of the measurement set.

3.4 Control Policy

In this section, we present our control policy for assigning trajectories for the robots.
We study two objective functions for the control policy.

3.4.1 Mutual Information (MI) Objective

Mutual information is a way of quantifying the dependence between two random
variables [7], and can be defined in multiple ways

I [X ,Z ] =
∫

p(X, Z) log
p(X, Z)

p(X)p(Z)
dXdZ =

∫
KL

[
p(X | Z)||p(X)

]
p(Z) dZ . (9)

The last term above states that mutual information can be interpreted as the expected
Kullback–Leibler divergence between the prior and the posterior, given the unknown
future measurements. Thus, maximizing mutual information between the target set
and the futuremeasurements of the robots will cause the robots to takemeasurements
that will change their belief quickly.

The robots utilize a receding horizon control policy. Each robot generates a set of
candidate trajectories, with T measurements along each trajectory at evenly spaced
intervals. The optimal strategy is then to choose robot trajectories that maximize the
mutual information between the target set and its future measurements,

Q∗
τ = argmaxQτ ∈Q1:R

τ
I [Xt+T ;Y 1:R

τ | Qτ ], (10)
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where τ = {t + 1, . . . , t + T } is the time horizon, Xt+T is the predicted loca-
tion of the targets at time t + T , Y 1:R

τ is the collection of binary measurements
for robots 1 to R from time steps t + 1 to t + T , and Qτ are the future poses
of the robots. These measurements depend on the future locations of the robots
Qτ = {q1

t+1, . . . , q
1
t+T , . . . , qR

t+T }. Computing Q∗
τ is computationally challenging,

nevertheless, we show that a greedy strategy approximates Q∗
τ by a factor of 2.

We utilize binarymeasurements, rather than the fullmeasurements sets, in order to
decrease the computational complexity of the control policy. This allows us to derive
a closed-form expression for (10), and we have previously shown that this approach
effectively drives a team of robots to detect and localize static targets [8]. The binary
measurements are defined to be y = 1 (Z �= ∅), where 1 (·) is the indicator function.
Here y = 0 is the event that the robot receives nomeasurements to any (true or clutter)
objects while y = 1 is the complement of this, i.e., the robot receives at least one
measurement. Kreucher et al. [18] take a similar approach, using a binary sensor
model and an information-based objective function to schedule sensors to track an
unknown number of targets.

Theorem 1 The mutual information between the target set and the binary measure-
ment model is a lower bound on the mutual information between the target set and
the full measurement set, i.e., I [X ;Y | Q] ≤ I [X ;Z | Q].
Proof Note that y is deterministically related to Z , y = 1 (Z �= ∅). This allows us to
apply the Data Processing Inequality [7, Theorem 2.8.1], which states that functions
of the data cannot increase the amount of information. �

We utilize a greedy approximation strategy to evaluate (10), similar to that used
by Tokekar et al. [31]. Using this approach, each robot computes the utility of each
action according to (10). The robot and actionwith the highest utility are selected. The
remainder of the team thenplans again, conditionedon the action of thefirst robot, and
the robot and action with the highest utility are again selected. This process repeats
until all robots have been assigned an action. Using the fact that mutual information
is a submodular set function of robot poses, we can show that this greedy assignment
policy is a 2-approximation.

Lemma 1 I [X ;Y | Q] is a submodular set function of Q.

Proof See [17, Proposition 2]. �
Theorem 2 Let QG be the robot poses selected by the greedy assignment policy and
Q∗ be the robot actions selected by the full, joint evaluation of (10). Then greedy is
a 2-approximation, i.e., I [X ;Y | QG] ≥ 1

2 I [X ;Y | Q∗].
Proof It is known that the greedy algorithm yields a 2-approximation formaximizing
a monotone, submodular function subject to a partition matroid constraint [4]. We
can create a set system using the candidate robot actions, as shown in [31]. This set
system defines a partition matroid, which along with the previous lemma proves the
desired result. �
Atanasov et al. [3] recently proved the same bound holds for the centralized and the
decentralized case.
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Fig. 4 Sample UAV
trajectories

3.4.2 Expected Number of Detections (END) Objective

The Expected Number of Detections (END) objective function is given by

N [X | Q] =
∫ (

1 −
∏
q∈Q

(
1 − pd(x | q)

))
v(x) dx . (11)

This objective gives the expected number of targets detected by at least one robot,
and is a submodular set function of Q so the greedy assignment algorithm will be a
2-approximation, similar to the previous theorem.

Lemma 2 The END objective function, N [X | Q], is a submodular function of Q.

Proof The difference in the objective when adding a single robot is

N [X; Q ∪ {q ′}] − N [X; Q] =
∫

pd(x | q ′)
∏
q∈Q

(1 − pd(x | q))v(x) dx .

For any R ⊆ Q, the product
∏

r∈R(1 − pd(x | r)) ≥ ∏
q∈Q(1 − pd(x | q)) since

pd(x | q) ∈ [0, 1],∀x, q. Thus N [X; R ∪ {q ′}] − N [X; R] ≥ N [X; Q ∪ {q ′}] − N
[X; Q], so by definition N [X, Q] is submodular. �

3.4.3 Trajectory Generation

We use a simple model for a fixed-wing aircraft with three basic control inputs:
forward velocity, yaw rate, and pitch rate. For each control input we select a range of
possible values. For each possible set of control inputs we integrate the position, yaw,
and pitch forward in time using a 1-step Euler integration scheme. Any trajectories
that bring the robots above or below the elevation limits are discarded as invalid, as
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are any that result in collision. The remaining trajectories are interpolated to yield
the T poses at which each robot will take a measurement. Figure4 shows sample
trajectories for a single robot.

4 Results

To test the performance of the different objective functions, we ran a series of experi-
ments using simulated robots, varying the number of robots, the length of the planning
horizon, the objective function, and the target motion model. We used teams of 2, 4,
and 6 robots, keeping the number of planning steps constant (T = 2) and keeping the
total number of actions for the team constant (RT = 12). We perform 5 trials with
each configuration, randomly selecting a subset of 80 targets from the taxi database
for the ground truth target motion in each trial. Note that the true number of targets
in the area of interest varies over time as targets enter and leave. The robots monitor
the area from Fig. 2a, which is scaled down by a factor of 100 from the real world.
We also sped up the data by a factor of 60, so 1 s in simulation represents 1min of
real time, in order to speed up the simulations. The data is taken from 4–9 pm on
May 18, 2008, a time of day where there will be plenty of taxi traffic.

It is worth noting that a number of competing multi-target tracking methods
exist [30], most notably the Multiple Hypothesis Tracker (MHT) and Joint Proba-
bilistic Data Association (JPDA). However, to the best of our knowledge, there do
not exist active multi-robot control policies based on these estimation algorithms.
This makes comparisons to these methods beyond the scope of this paper.

4.1 Moving Targets

The two target motion models that we consider are the Gaussian Process (GP)
described in Sect. 3.2, and a Gaussian random walk (GRW) model. In GRW we
model the target as performing a random walk, with a velocity drawn at random
from a Gaussian distribution. Note that these models are used only to update the
PHD; the actual targets trajectories are given by the taxi dataset. In both cases we
use the survival and birth processes described in Sect. 3.2, with the birth rate set to
0.6788 to account for the reduced number of data files used.

Figures5, 6 and 7 show how the ratio of the expected number of targets to true
targets, the robot elevation, and the target set entropy change during a single run.
These are representative trials of a team of 2 robots with a planning horizon of 6 time
steps.

Figures8, 9 and 10 show the ratio of the expected number of targets to true number
of targets, the fraction of true targets within the sensor FoV, and the ratio of expected
targets to true targets within the sensor FoV, respectively. In general, the fraction
of targets tracked by the team depends much more on the motion model and the
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(a) GP motion model with MI objective
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(b) GP motion model with END objective

Fig. 5 Ratio of the expected number to the true number of targets over a single run for R = 2 and
T = 6
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(a) GP motion model with MI objective
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(b) GP motion model with END objective

Fig. 6 The elevation of the robots over a single run for R = 2 and T = 6
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(a) GP motion model with MI objective
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(b) GP motion model with END objective

Fig. 7 The entropy of the target set over a single run for R = 2 and T = 6
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(a) Gaussian random walk
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(b) Gaussian process

Fig. 8 Average ratio of the expected number to the true number of targets over a single run
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(a) Gaussian random walk
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Fig. 9 Average fraction of the number of targets within the team’s field of view over a single run

objective function than on the team size or planning horizon, despite the fact that
larger teams and planning horizons cause the robots to observe a larger number of
targets. Additionally, the ratio of the expected number of targets to the true number
of targets within the sensor FoV is largely independent of the objective function,
team size, or planning horizon.

Overall, the robot teams using the information based control objective (MI) esti-
mate and track fewer targets than the teams using the END objective but each target
is tracked with higher quality. Additionally, the teams using the GP-based motion
model track more targets than those using the GRW motion model.

The reason for this difference is due to the emergent behavior of the different
control objectives. Robots using the MI objective tend to stay closer to the ground in
order to decrease uncertainty in the location of individual targets. On the other hand,
robots using the END objective fly at a higher altitude, as Fig. 11 shows. Note that
increasing the altitude decreases the probability of detection, while increasing the
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(b) Gaussian process

Fig. 10 Average ratio of the expected number to the true number of targets within the team’s field
of view over a single run

0

5

10

15

20

25

30

R
=

2,
 T

=
2,

 M
I

R
=

2,
 T

=
6,

 M
I

R
=

4,
 T

=
2,

 M
I

R
=

4,
 T

=
3,

 M
I

R
=

6,
 T

=
2,

 M
I

R
=

2,
 T

=
2,

 E
N

D

R
=

2,
 T

=
6,

 E
N

D

R
=

4,
 T

=
2,

 E
N

D

R
=

4,
 T

=
3,

 E
N

D

R
=

6,
 T

=
2,

 E
N

D

A
vg

. e
le

va
tio

n 
[m

]

(a) Gaussian random walk

0

5

10

15

20

25

30
R

=
2,

 T
=

2,
 M

I

R
=

2,
 T

=
6,

 M
I

R
=

4,
 T

=
2,

 M
I

R
=

4,
 T

=
3,

 M
I

R
=

6,
 T

=
2,

 M
I

R
=

2,
 T

=
2,

 E
N

D

R
=

2,
 T

=
6,

 E
N

D

R
=

4,
 T

=
2,

 E
N

D

R
=

4,
 T

=
3,

 E
N

D

R
=

6,
 T

=
2,

 E
N

D

A
vg

. e
le

va
tio

n 
[m

]

(b) Gaussian process

Fig. 11 Average elevation of the robots over a single run

sensor FoV. Consequently, flying to the highest altitude is not necessarily optimal.
Figure12 shows the average target entropy. This is substantially lower for the teams
using MI, indicating that the targets are being tracked with less uncertainty.

4.2 Static Targets

We also test the performance of our framework with static targets using a team of 4
robots with a planning horizon of 3. The simulation parameters are identical, except
we replace the 80 taxi data traces with 80 randomly drawn static target locations.
The resulting final estimated number of targets and target entropies are shown in
Fig. 13. The final estimated number of targets is very close to 1 using both objective
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(a) Gaussian random walk
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(b) Gaussian process

Fig. 12 Average entropy of the target set over a single run
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(b) Final entropy of the estimated target set.

Fig. 13 Performance of our framework with static targets

functions, indicating that the system is able to correctly determine the number of
targets. The entropy is also lower than in the case of moving targets.

5 Conclusions

In this paper we describe a framework for detecting, localizing, and tracking an
unknown number of moving targets using a team of mobile robots. The robot team
uses the Probability Hypothesis Density filter to simultaneously estimate the number
of targets and the states of the targets. The PHD filter is robust to false negative
and false positive detections and sensor noise and does not require any explicit
data association. Using the estimate of the target set from the PHD filter, the robots
greedily select actions that maximize submodular control objectives. The two control
objectives that we consider in this paper are the expected number of detected (END)
targets by the team and the mutual information (MI) between the predicted targets
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and the future detections of the robots. We validate our framework through extensive
simulations using a real-world dataset for target motion. Robot teams using the END
objective track a higher fraction of the targets but do not localize the targets with
high precision. Conversely, robot teams using MI track a smaller number of targets
but have significantly lower uncertainty in the target positions.
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