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Preface

Several years ago, we started thinking about what it means for a robot to move in a
particular ‘‘style of motion.’’ This question arose out of a desire to be able to make
robotic movements more meaningful and relatable to humans and a curiosity about
what distinguishes different genres of movement. It quickly became clear that this
line of inquiry required a whole new set of tools for understanding motion
generation in particular, and control design in general—tools that related to our
perception of human motion and to the performing arts.

In conjunction with the technical development of style-based motions, we
began searching for a community of researchers who were interested in questions
pertaining to ‘‘Controls and Art.’’ This search resulted in two Invited Sessions at
the American Control Conference (2011 in San Francisco and 2012 in Montreal),
with the second one being co-organized with Naomi Leonard. We were pleasantly
surprised by the strong interest in these sessions, and by the many creative
and interesting approaches to using control-theoretic frameworks to investigate,
bolster, and create art. This book is a logical extension of the two invited sessions,
where a large subset of our authors contributed papers.

The different chapters in this book fall into one or more of three main camps,
namely research that (1) uses artistic ideas for the purpose of control design and
analysis, (2) uses control theoretic ideas to understand and analyze art, and (3) uses
control theory as a generator of artistic expressions. It is, however, not our
ambition to paint the complete picture of the research that can be found in the
intersection between Controls and Art, or to imply that this field is close to
maturity. Instead, we hope that this book will inspire new research in this exciting
line of inquiry.

The marriage between control theory and art is challenging because it requires a
union between subjective and objective analysis. In fact, while control theory
thrives under well-defined performance specifications and clear metrics of success,
art thrives on multiple interpretations and evaluations of a single work. As such,
when embarking on an endeavor connecting the two, a shift in perspective is
needed. This book represents such a shift: the list of authors includes artists and
engineers and the list of topics includes dancing robots, swarming dancers,
automated puppetry, reactive museum installments, salsa dancing, intricate
geometric patterns, aerial quadrotor ballets, music generated from math, and
amorphous blobs that dance the Bhangra. More importantly, we ask our readers to
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consider the matters that arise for putting together what may seem like kitschy
combos: How do dancers communicate to execute such highly coordinated
movements? What does it mean for a robot to dance? What do viewers watching
movement notice most? Can we augment human capabilities with technology?
What makes a composition of curves aesthetic? How do people interact with
curated spaces? And what do the answers to these questions teach us about human
creativity?

To answer these questions, the chapters in this book are arranged around
different themes, with the first theme investigating fundamental questions such
as How is movement perceived? (Kingston et al. Chap. 1), What do performers
actually do? (Leonard et al. Chap. 2), and What is in a dance? (Baillieul and
Ozcimder, Chap. 3). The next theme involves the construction of control laws
based on artistic principles, including aerial robots (Schoellig et al. Chap. 4), robot
puppets (Jochum et al. Chap. 5), and teams of mobile robots (Tsiotras and Castro,
Chap. 6). The last theme turns the relationship between Controls and Art around
by asking how Controls tools can be used in the Arts themselves, including
algorithmic composition using swarm theory (Huepe et al. Chap. 7), automation
for enhancing museum installations (Godbehere and Goldberg, Chap. 8), and the
incorporation of robots in performance (LaViers et al. Chap. 9).

This book would not have been possible without the support from the U.S.
National Science Foundation, the U.S. Office of Naval Research, the U.S. Office of
Scientific Research, the Swiss National Science Foundation, the Chilean National
Council of Culture and Arts, and numerous private foundations, Oliver Jackson at
Springer who got as excited about this idea for a book as we were, and Naomi
Leonard who helped connect us to several of the authors here in the Invited
Session she co-organized for the American Control Conference in 2012.

Charlottesville Amy LaViers
Atlanta, October 2013 Magnus Egerstedt
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Chapter 1
Metric Preference Learning with Applications
to Motion Imitation

Peter Kingston, Jason von Hinezmeyer and Magnus Egerstedt

1.1 Introduction to Motion Imitation Through Puppetry

In entertainment and other artistic endeavors, subjective notions such as “style”
and “aesthetics” play a key role. When control systems are incorporated in these
settings, they are asked to generate behaviors that, rather than achieving a well-
defined physical outcome, serve an esthetic or communicative purpose. In these
situations, the effectiveness of the control strategy is ultimately the degree to which
it aligns with the subjective judgments of human observers.

One specific control application in which this issue has arisen is robotic pup-
petry (see, e.g., [18, 27]), where marionettes with actuated strings—highly com-
plex mechanical systems—are asked to perform expressive and esthetically pleasing
motions in the context of puppetry plays, as in Chap. 5, by Jochum et al., and as
shown in Fig. 1.1. Given a particular human motion, how should the vastly more
limited marionette move to not just mimic the human motion but also communicate
the same emotional intent? Similar issues are encountered in controls applications
like [8, 16], as well as in inverse reinforcement learning settings, e.g., [1, 32, 35].

In puppetry, as in other performing arts, not just any movement is artistically
interesting or meaningful; What is the difference between someone just moving an
object and someone animating it? What is the difference between someone folding
their laundry and someone moving a shirt in a manner that gives it a personality and
brings it to life? The movements of the puppet have the intention to give the puppet
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2 P. Kingston et al.

Fig. 1.1 A robotic puppet executing a wave motion

life and through those movements to communicate an idea. It is the movement of that
puppet that is the heart of the communication. But just what is it about the movement
that enables effective communication? Similar questions are pursed in Chap. 4 by
Scholleing et al. and Chap. 9, by LaViers et al.

To answer this question in a quantitative manner, this chapter draws inspiration
from puppetry. And, it is important to note that puppets are defined by their limitations
more than their abilities [7, 10, 19]. In fact, the limited movements of the puppet
are a distillation of human movement—so-called motion caricature. Simply put, a
puppet cannot do all of the movement of a living person, no matter how simple or
complicated the puppet is in its design or construction. It is therefore necessary to
distil the movement that the puppet can do to its very essence by first imitating the
human motion, then simplifying it to make it executable on the puppet, and lastly,
by exaggerating the motion to make it more expressive.

In order to produce such expressive movements, some guidelines have been
developed through three main classes of puppet movements [33]. The first class
of movements—the primary movements—deals with the overall puppet body and
it captures basic movements such as “up,” “down,” “left,” and “right.” Any angling
or spinning of the puppet body is also considered a primary movement. “Breath” is
another major, primary movement that the puppet must perform to seem alive. In
fact, most of the puppet’s emotions and attitudes are expressed through the primary
movement class, including the speed at which the puppet starts and stops or whether
the movement is smooth and continuous or jerky and broken.

The secondary movement class is the next class of puppet movement. It considers
the moving parts that are attached to the puppet, such as head, arms, and legs. The
movements of these parts can multiply the emotions expressed by the puppet through,
for example, a subtle tilt of the head or various positions of the arms. Finally, the
tertiary movement class concerns puppets that have elements in their designs that
are not directly controlled by the puppeteer. These can include, but are not limited
to, costume elements such as capes or long sleeves, or hair which can be made of

http://dx.doi.org/10.1007/978-3-319-03904-6_4
http://dx.doi.org/10.1007/978-3-319-03904-6_9


1 Metric Preference Learning with Applications to Motion Imitation 3

lightweight fibrous materials or feathers. In short, the tertiary class contains anything
that can move on the puppet that can help it come alive.

In this chapter, we try to take these observations about the Puppetry Arts and
make then quantitative and mathematically precise. But, any such endeavor must
ultimately allow for subjective, human observers to enter into the discussion. To
accommodate this, this paper will indeed focus on how to imitate motions based
on human preferences for which synthetic motions best capture the original, human
motion, with the ultimate objective of producing artistically meaningful motions.
And we achieve this by making so-called preference learning applicable to motion
sequences.

1.2 Preference Learning

The role of human preferences in these problems is unavoidable in that a system’s out-
put is esthetically pleasing only if we think it is pleasing. In this work, we address is
this rather unusual issue by developing techniques both for using empirical measure-
ments to learn cost functions that are consistent with humans’ esthetic preferences,
and for generalizing from these preference measurements to determine a globally best
alternative. For the example of the marionette asked to mimic a human, this would
mean finding the one marionette motion that best captures the subjective “essence”
of a given human motion.

The idea of learning costs or rating functions from expressed preferences has
received significant attention, and a number of related approaches and problems
exist. We sketch a taxonomy of these approaches in the next few paragraphs, before
highlighting their potential drawbacks, together with the novelties of the approach
pursued here.

In instance preference learning, one is given a set of objects called instances or
alternatives (usually points in a real vector space)1 together with information about
humans’ preferences among them. The problem is to learn functions that generalize
these expressed preferences to the entire space in some way. When the preference
data take the form of values from an ordinal scale—e.g., “Good,” “Fair,” “Poor”—the
problem is known as ordinal regression (e.g., [12, 23]). When they take the form of
a collection of pairwise comparisons (i.e., answers to questions of the form “Which
of these two options is better?”), we will refer to the problem as preference learning
(e.g., [2, 11, 13, 15, 20, 22, 25]). Often, preference learning is done by constructing
a real-valued ranking function over the instances (e.g., [20]), but in some cases,
particularly when one wishes to allow intransitive preferences, one can seek merely
to solve a binary classification problem that determines, for a given pair of instances,
which is preferred (as in, e.g., [22]). Applications have included route selection by

1 To the extent that a distinction is made between “instances” and “alternatives,” it is that “instances”
are the points that were shown to human judges, whereas “alternatives” may also include other points
in the space besides those that were seen.
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automotive GPS systems [20], food preference studies [6, 17], and the sorting of
search results [15, 26], among many others.

It should be noted that pairwise comparison studies have the advantage over
numerical or ordinal-ranking experiments of being less prone to batch effects, a
psychological phenomenon in which people’s rankings are only accurate among
objects compared at around the same time [17]. Specific experimental protocols
include two-alternative forced choice (2AFC), in which, when comparing two objects
A and B, subjects must either respond “A is better than B” or “B is better than A;”
three-alternative forced choice (3AFC), in which “the two are the same” is also an
acceptable answer; and 4AFC, which also includes “the two are incomparable” as an
answer. Our attention will be on 2 and 3AFC experiments. In the related problem of
label preference learning (e.g., [4, 24]), one attempts to learn a function that, when
presented with an instance, returns a partial order over labels for that instance. That
problem will fall somewhat outside the scope of this work.

For solving instance- and label-preference problems, large-margin approaches
(e.g., [20, 23]) dominate in the literature. The margin, which these methods maxi-
mize, is the size of the largest error in the data that can be accommodated without
contradicting the learned model. For example, for linear classifiers, it is the distance
from the decision hyperplane to the nearest instance, and for linear rating functions,
it is the distance between level sets of the learned function. Ultimately, Support Vec-
tor Machine (SVM) algorithms (e.g., SMO [31]) are used to solve these problems.
That said, competitive Gaussian-process [11] and least-squares [25] approaches also
exist, which bring Bayesian and algebraic-topological interpretations, respectively.

The essential idea underlying the large-margin approaches is to develop algo-
rithms that learn linear rating functions or classifiers, and to then generalize these
algorithms to the nonlinear case through the use of Mercer kernels (the so-called
kernel trick [5, 9]). It is an elegant and general approach, but what it lacks is the
ability to easily guarantee that the resulting cost functions are convex, which is an
obstacle to the efficient determination of globally best alternatives. We will investi-
gate techniques that sacrifice some of the generality of the kernel-linear approach in
exchange for formulations that allow for the efficient determination of globally opti-
mal alternatives. This chapter unifies and builds on our work [28, 29], and, of earlier
work on preference learning, is most closely related to the large-margin instance-
preference-learning approaches of [17, 22, 23]. One of the methods we propose—a
Chebyshev estimation scheme—is similar in that it also employs a constrained opti-
mization approach and in a particular limiting case (but only then) can be reduced
to an equivalent SVM classification problem. Our proposed approach differs from
[17, 22, 23] in that it aims to find not only a rating function but also a globally best
alternative, and to solve only computationally efficient convex programs, which in
turn motivates different (and sometimes more efficient) problem formulations and
solutions.

The resulting algorithms operate on batch data, and simultaneously use all of the
information available. We give a graph-theoretic method, based on the work of [3]
on transitive reductions, to efficiently simplify the resulting optimization problems
prior to their solution. Additionally, for situations in which a great deal more data
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are available in real-time, we also present a limited memory asymptotic observer,
which trades some efficiency in the use of data for constant memory requirements and
very cheap measurement updates, and which nevertheless guarantees probabilistic
convergence to a global optimum.

The chapter is organized as follows: After giving a problem formulation, we
describe an algebraic-graph-theoretic simplification method for the resulting systems
of constraints, before introducing the optimization problems in more detail in both
direct and instance vector expansion forms, and an example is given to demonstrate
the applicability of the methods to LQ-type optimal control problems. Next, we show
how in a particular limiting case (but only then) a natural generalization is equivalent
to a certain SVM classification problem, before describing a novel limited memory
asymptotic observer. The approaches are demonstrated with two examples; the first of
these compares apples relative to an orange, and the second involves the comparison
of human and synthetic motions.

1.3 Problem Formulation

At the core of preference learning is a collection of empirical, pairwise compar-
isons. The assumption is that these comparisons reflect an underlying rating function.
Hence, given a sequence of pairwise comparisons between points in an inner product
space, we wish to find (1) a real-valued rating function that is consistent with those
preferences, and (2) a global optimum to this function—the best point in the metric
space. By solving these two problems we would have recovered what the underlying
source for the comparisons is.

Formally, let (X, 〈·, ·⊆) be the inner product space, and S = {(x1
i , x2

i )}N
i=1 =

{s1, · · · , sN } ⊂ X × X the sequence of comparisons; a pair (x1
i , x2

i ) appears in the
sequence S if and only if x1

i is preferred to x2
i . The first item we seek, given some

assumptions about its parametric form, is a function f : X → R such that

f (x1) ≤ f (x2) ⇔ (x1, x2) ∈ S. (1.1)

That is, we adopt the convention that lower scores are better; hence we will refer to
f as a cost function.

The second item we seek is a global minimizer to f ,

x̄ � argminx f (x) (1.2)

which represents the best possible point in the inner product space.
Crucially, we would like to be able to determine f and x̄ entirely by convex opti-

mization—both so that the resulting problems are computationally efficient, and to
ensure that any minima we find are in fact global optima. Although the SVM method-
ology employed in, e.g., [17, 23] finds f as the solution to a convex program, its
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use of Mercer kernels (the so-called kernel trick—see, e.g., [5, 9]) introduces non-
linearities that prevent the determination of x̄ by convex programming. Yet without
the kernel trick and using the SVM approach, one arrives at linear cost functions
for which minima do not exist. What we will present in this chapter is instead a set
of convex programs that provide a useful compromise between these extremes, and
which only reduce to an SVM classification problem in a particular limiting case.
These formulations will allow us to entertain the idea of a unique “best” point in X ,
and at the same time determine what it is by convex programming.

1.4 The Preference Graph

The preference graph G = (V, S) corresponding to the comparison sequence S is the
directed graph whose vertex set V = {x1

1 , x2
1 , · · · , x1

N , x2
N } ⊂ X is the collection of

all unique points that have been compared, and whose edge set is S. We will index
the vertices as V = {x1, · · · , xM }, where M ≤ 2N is the cardinality of V .

If (1.1) is to hold with strict inequality, then we note immediately that the graph G
must be acyclic, and thus represent a partial order. When nonstrict inequalities are
allowed, however, then we may permit cycles, and moreover G can be replaced by
a smaller, equivalent acyclic graph. This has the practical significance of allowing
redundant constraints to be eliminated on purely graph-theoretic grounds, thereby
speeding up later optimization steps. This is constructed, following [3], in the fol-
lowing way:

A cell is defined to be an equivalence class of vertices; two vertices v1, v2 ∈ V
belong to the same cell (denoted v1 ∼ v2) if and only if there exist directed paths in
G from v1 to v2 and from v2 to v1. The quotient graph G/ ∼ is the directed acyclic
graph whose vertices are these equivalence classes, and in which the directed edge
(C1, C2) exists between two cells C1 and C2 whenever there exist vertices v1 ∈ C1
and v2 ∈ C2 such that there is a directed path in G from v1 to v2.

Since any two vertices in the same cell must by (1.1) have the same cost, one
may optimize using only the constraints represented by the edges of this quotient
graph, and discard the rest. Hence without loss of generality we will assume that G is
acyclic; when it is not it should be understood that we will actually work with G/ ∼.

Additional constraints can be eliminated via the transitive reduction. Formally,
using Aho’s definition [3], Gt is the transitive reduction of a graph G if,

1. there is a directed path from vertex u to vertex v in Gt if and only if there is a
directed path from u to v in G, and

2. there is no graph with fewer arcs than Gt satisfying condition 1.

In the case of a directed acyclic graph, the reductionGt (which is unique) is a subgraph
of G. It was shown in [3] that computation of the transitive reduction is of the same
complexity as transitive closure, and hence matrix multiplication; thus, the transitive
reduction can be found in O(nlog2 7) steps using Strassen’s algorithm [34], or, in
principle, O(n2.376) steps using the Coopersmith-Winograd algorithm [14]. (See,
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Fig. 1.2 The original preference graph G (left), and the corresponding transitively reduced quotient
graph, (G/ ∼)t (right). The vertices of (G/ ∼)t , labeled C1, · · · , C3, are sets of vertices in G called
cells (dashed circles and ellipses, left)

e.g., [21, 30]). Moreover, if G contains cycles, then the algorithm given in [3] can
compute (G/ ∼)t with the same complexity.

In short, by working with the transitive reduction of the quotient graph, we are
able to eliminate redundant constraints on purely graph-theoretic grounds, before
even knowing the form of the cost function f . The reduction is shown in Fig. 1.2.

1.5 Metric Costs

Colloquially, when comparing various alternatives, we often speak of options as
being “closer to what we would like,” or of being “far from perfect.” Motivated by
this everyday use of geometric language, in [28] we considered metric costs, which
have the form,

f (x) = ||x − x̄ ||2. (1.3)

In short, it is assumed that there exists some single best point x̄ in X , and one
alternative is preferred over another if and only if it is closer to that point. Moreover,
costs of this type are nicely compatible with the infinite-dimensional alternatives
encountered in control applications, as demonstrated in the following, motivating
example:

Example 1 (LQ Tracking).
We consider a situation in which a human user would like a linear system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (1.4)

to perform a tracking task, with an LQ-type cost functional,
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J (y, u) = 1

2

∫ T

0

⎛
(y − ȳ)T Q(y − ȳ) + (u − ū)T R(u − ū)

⎝
dt (1.5)

where Q = QT 
 0, R = RT 
 0, and T > 0. Subjectivity enters because the
pair x̄ � (ȳ, ū) is known only implicitly to the user, and it is the goal of preference
learning to estimate what it is. It is well-known that (1.5) can be written as

1

2
||(y, u) − (ȳ, ū)||2LQR (1.6)

where || · ||LQR is the norm induced by the inner product

〈(y1, u1), (y2, u2)⊆LQR =
∫ T

0

⎛
yT

1 Qy2 + uT
1 Ru2

⎝
dt. (1.7)

If both y and u are measured, this is enough to apply directly the preference learning
methods to be introduced in the subsequent sections, without knowledge of the
dynamics (1.4). However, if these dynamics are known, then together with (1.7),
they induce an inner product on the control inputs, which enables us to work in that
smaller vector space. This is done in the following way:

Defining the linear operator L : L2([0, T ],Rm) → L2([0, T ],Rp) by,

(Lu)(t) � C
∫ t

0
eA(t−τ )Bu(τ )dτ (1.8)

we define a second inner product,

〈u1, u2⊆LQR∃ � 〈(Lu1, u1), (Lu2, u2)⊆LQR. (1.9)

With these definitions, the cost can be written,

J (u) = 1

2
||u − ū||LQR∃ (1.10)

and the problem, by taking advantage of knowledge of the system dynamics, has
been reduced from that of finding a pair (ȳ, ū), to that of simply finding ū. Moreover,
note that (1.9) can be written in a more standard double-integral form as,

〈u1, u2⊆LQR∃ =
∫ T

0

∫ T

0
uT

1 (τ1)M(τ1, τ2)u2(τ2)dτ1dτ2, (1.11)

where

M(τ1, τ2) = δ(τ1 − τ2)R +
∫ T

T −|τ2−τ1|
BT eAT (t−τ1)cT QceA(t−τ2)Bdt (1.12)
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and δ denotes the Dirac delta distribution. In this way, system dynamics are incor-
porated directly into the preference learning framework.

Under an assumption of metric costs, what does an individual response (x1, x2)

tell us about the location of x̄? The following are equivalent:

1. (x1
i , x2

i ) ∈ S
2. f (x1) ≤ f (x2)

3. 〈x2
i − x1

i , x̄⊆ − 1
2 〈x2

i − x1
i , x2

i + x1
i ⊆ < 0.

In words, each comparison constrains x̄ to lie within a particular halfspace of X .
Defining,

di � x2
i − x1

i (1.13)

μi � 1

2

⎞
x1

i + x2
i

⎠
(1.14)

bi � 〈di ,μi ⊆, (1.15)

the totality of what we know, then, about where x̄ might lie is summarized by the
inclusion over all the comparison halfspaces,

x̄ ∈ P �
N⎜

i=1

{x | 〈di , x⊆ − bi < 0} . (1.16)

The set P , if it is bounded, is a polytope in X . In [28], we stated this system of inequal-
ities and gave an asymptotic observer that converges to x̄ under certain assumptions.
Here, we ask another question: Out of all the points in this polytope, which is “best?”
Two cases will be relevant: Either a particular linear program is bounded, in which
case such a platonic ideal point x̄ exists; or it is unbounded, in which case only an
ideal direction or ray exists. The next subsections introduce this linear program and
address these two cases in turn.

1.5.1 Bounded Case

When P is bounded, a natural choice for x̄ is the incenter or Chebyshev center of
the polytope,

x̄ = argminx max
i

1

||di || (〈di , x⊆ − bi ). (1.17)

This is the point that is maximally far away from the closest constraint plane, as shown
in Fig. 1.3. In other words, when P is nonempty, x̄ is the point that can be perturbed
as much as possible without contradicting any of the preferences expressed in S;
and when P is empty, it is the “compromise” point whose worst constraint violation
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Fig. 1.3 Two examples for X = R
2. Shades of gray indicate the number of violated constraints

(points in darker regions violate more constraints), and discontinuities in the derivative of the
piecewise-linear function x ∩→ maxi

1
||di || (〈di , x⊆ − bi ) are indicated by dashed lines. In the first

example (left), P ∪= ∅ (white region), and x̄ is its incenter, the point maximally far away from the
closest of the constraint surfaces (thin, solid lines) - i.e., it is the center of the largest inscribed
sphere (thick, solid curve). In the second example (right), P = ∅, and the resulting optimum, x̄ , is
the point whose worst constraint violation is minimal

is minimal. That is, with the definition (1.17), if the constraints are feasible (i.e., if
P ∪= ∅), then x̄ ∈ P . This can be viewed as minimizing the ∞-norm of the vector
of constraints. The minimization problem (1.17) is feasible even when P is empty,
in which case its solution is the point whose worst constraint violation is as small as
possible. Equivalently, the problem (1.17) can be rewritten in epigraph form as the
linear program,

(z̄, x̄) = argmin(z,x)z (1.18)

s.t.||di ||z ≥ 〈di , x⊆ − bi

which is always feasible (but possibly unbounded), and satisfies z̄ > 0 ⇐⇒ P = ∅.
The formulation (1.17) also has the advantage that it can be solved with a com-

plexity that grows not with the dimensionality of the space X containing the points,
which may be quite large, but instead with the number of instances seen, which is
typically much smaller; Theorem 1 states the fact that enables this simplification:

Theorem 1. If (1.17) has a global minimizer, then it has a global minimizer in
aff

⎟
x1

1 , x2
1 , · · · , x1

N , x2
N

}
.

Proof. Let x be a global minimum to (1.17), and x̄ be the projection of x onto
aff

⎟
x1

1 , x2
1 , · · · , x1

N , x2
N

}
; i.e., x̄ = x + δ with δ ⊥ span{d1, · · · , dN }. Then for all

i ∈ {1, · · · , N }, since 〈di , δ⊆ = 0 and by linearity of the inner product, 1
||di || 〈di , x̄⊆−

bi = 1
||di || 〈di , x⊆ − bi , and hence the value of the objective function in (1.17) is the

same at either x or x̄ .

In Sect. 5.1, which follows, we describe an efficient Instance Vector Expansion
form suggested by Theorem 1, and obtain problems that have optima when P is

http://dx.doi.org/10.1007/978-3-319-03904-6_5
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bounded. For the case when the set P is unbounded, we will generalize the solution
concept and find optimal directions rather than points, in Sect. 5.2.

Instance Vector Expansion

Since x̄ ∈ aff
⎟

x1
1 , x2

1 , · · · , x1
N , x2

N

}
, i.e., the affine span of the constituent points,

the optimization problem (1.17) can be solved as a finite-dimensional problem even
when X is not finite-dimensional, by expanding x̄ in terms of a finite-dimensional
basis, as described by the following theorem:

Theorem 2. The point

x̄ =
N∑

k=1

c̄kdk + x∗ (1.19)

solves the optimization problem (1.17), where

x∗ = argminx

{
||x ||2 | x ∈ aff

{
x1

1 , x2
1 , · · · , x1

N , x2
N

}}
, (1.20)

and c̄ is found by solving

(z̄, c̄) =argmin(z,c)z

s.t.Gddc − Dz ≤ β, (1.21)

with D = (||d1||, · · · , ||dN ||),β ∈ R
N defined by

βi � 〈di ,μi ⊆ (1.22)

and Gdd ∈ R
N×N being the Gramian,

Gdd �

⎡
⎢⎣

〈d1, d1⊆ · · · 〈d1, dN ⊆
...

. . .
...

〈dN , d1⊆ · · · 〈dN , dN ⊆

⎤
⎥⎦ . (1.23)

Proof. Defining x∗ by (1.20), one can write any x in the affine span of the data
in the form (1.19). Substituting the expansion (1.19) into (1.18) and noting that by
Hilbert’s Projection Theorem x∗ ⊥ di for all i ∈ {1, · · · , N }, one obtains (1.21).

Remark 1. We also note at this point that (1.19) can be written,

http://dx.doi.org/10.1007/978-3-319-03904-6_5
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x =
M∑

k=1

(
indegc(xk) − outdegc(xk)

)
xk + x∗ (1.24)

�
M∑

k=1

ξk xk + x∗ (1.25)

by treating c as a vector of edge weights to the preference graph, and denoting the
weighted in- and out-degrees of a given node xk by indegc(xk) and outdegc(xk)

respectively. Precisely,

indegc(xk) �
∑

i |x2
i =xk

ci (1.26)

outdegc(xk) �
∑

i |x1
i =xk

ci . (1.27)

Remark 2. Moreover, β can be written,

βi = eT
i Gμdei , (1.28)

where Gμd ∈ R
N×N is the cross-Gramian

Gμd �

⎡
⎢⎣

〈d1,μ1⊆ · · · 〈d1,μN ⊆
...

. . .
...

〈dN ,μ1⊆ · · · 〈dN ,μN ⊆

⎤
⎥⎦ (1.29)

and ei denotes the i-th element of the natural basis.

Remark 3. Note that the problem (1.21) depends only on inner products of the vari-
ous di and ui vectors, and hence the problem can be solved even when X is infinite-
dimensional. Precisely, N (N+1)

2 + N 2 ∼ O(N 2) inner products must be computed
to build the matrices Gdd and Gμd , where N is the number of comparisons. Alter-
natively, the relevant matrices can also be produced directly from inner products of
elements of S, as

Gdd = K 22 − K 21 − K 12 + K 11 (1.30)

Gμd = 1

2
(K 22 + K 21 − K 12 − K 11) (1.31)

where each matrix K lm ∈ R
N×N is defined by

K lm
i j = 〈xl

i , xm
j ⊆ (1.32)
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and can be built by indexing into the single Gramian (or kernel) matrix K ∈ R
M×M

defined,
Ki j = 〈xi , x j ⊆. (1.33)

Moreover, D = (

√
Gdd

11 ,

√
Gdd

22 ,

√
Gdd

33 , · · · ,

√
Gdd

N N ).
Finally, x̄ can be reconstructed using (1.19) and

x∗ =
M∑

i=1

αi xi (1.34)

α = 1

1T K †1
K †1 (1.35)

where K † denotes the Moore-Penrose pseudoinverse of K , and 1 = (1, 1, · · · , 1) ∈
R

M .
In particular, the costs of the presented instances can be reconstructed as,

f (xk) = (ek − ξ − α)T K (ek − ξ − α) (1.36)

where ξ is related to c by (1.24), (1.26), and (1.27).

With a method thus in hand to efficiently compute Chebychev centers when P
is bounded, we now turn our attention to the case when it is not, so that we have a
meaningful solution in all cases.

1.5.2 Unbounded Case: The Minimax-Rate Problem

When P is nonempty but unbounded, we ask a slightly different question: What is
the “point at infinity,” or direction, that is best? More precisely, what we seek in this
case is a unit vector

v̄ = argminv∈X |||v||=1 lim
t→∞

1

t

[
max

i

1

||di || (〈di , tv⊆ − bi )

]
(1.37)

= argminv∈X |||v||=1 max
i

1

||di || 〈di , v⊆ (1.38)

or equivalently,

( p̄, v̄) = argminv∈X,p∈R p (1.39)

s.t.

{ ||di ||p ≥ 〈di , v⊆ ∀i ∈ {1, · · · , N }
||v||2 ≤ 1

.
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As before, an instance vector expansion is possible:

Theorem 3. Letting v = ∑N
k=1 ckdk, the optimization problem (1.39) is equivalent

to

( p̄, c̄) = argmin(p,c) p (1.40)

s.t.

{
Gddc − Dp ≤ 0

cT Gddc ≤ 1

with the matrices Gdd and D as defined in the previous subsection.

Proof. The proof takes the form of that of Theorem 2.

The problem (1.40) is a finite-dimensional second-order cone program (SOCP),
which can be solved efficiently.

The cost function for the unbounded case arises from a similar limit process to
(1.38), as

f (x) = lim
t→∞

(
1

t
||x − vt ||2 − t

)
(1.41)

= lim
t→∞

[
1

t

⎞
||x ||2 − 2〈x, vt⊆ + ||vt ||2

⎠
− t

]
(1.42)

= −2〈x, v⊆ (1.43)

which can be evaluated at the instances as,

f (xk) = −2eT
k K ξ. (1.44)

QP Form and Relation to SVMs

In the unbounded case, so long as int P is nonempty, the minimization problem
(1.38) can be rewritten as an equivalent quadratic program (QP), which will make
the relationship to the usual SVM approach very clear. In fact, (1.38) is equivalent
in this case to a particular SVM classification problem (which differs from but is
related to that studied in, e.g., [17] and [23]).

Defining,

w = 1

p
v (1.45)

and restricting our attention to negative values for p (since when int P is nonempty,
p∗ < 0), we note that

argmin p = argmax p2 = argmin
1

p2 = argmin ||w||2. (1.46)
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Additionally, the constraints in (1.39) can be replaced by,

〈
di

||di || , w
〉

≥ 1 (1.47)

which results in the standard unbiased SVM problem,

w̄ =argminw||w||2

s.t.

〈
di

||di || , w
〉

≥ 1 ∀i ∈ {1, · · · , N }. (1.48)

This is equivalent to (1.39) in the unbounded case except when int P = ∅; then,
since p̄ = 0, w̄ from (1.45) is undefined, but the solution to the SOCP problem
(1.40) nevertheless exists.

The minimax-rate problem (1.48) differs from the SVM problem considered in,
e.g., [17] and [23] by the factor of 1

||di || included in each constraint. The difference
is that whereas the standard SVM approach attempts to classify differences using a
maximum-margin separating hyperplane, the minimax-rate approach finds the direc-
tion that maximizes the rate of constraint satisfaction; this is shown in Fig. 1.4.

1.6 An Asymptotic Observer for Metric Cost Models

The preference learning methods described so far have been batch processes. Prefer-
ence data are collected, and then an optimization problem is solved to produce optimal
alternatives. Although the convex formulations chosen allow fairly large problems
to be solved efficiently in this way, the memory requirements do grow linearly in the
number of observations. In this section, instead of a batch algorithm, we consider
a stream algorithm that continually adjusts its estimate of the optimal alternative.
This algorithm has constant memory and time-per-update requirements, so it is more
suitable for use in embedded applications, where, e.g., a small microcontroller can
continually adjust system operation to improve subjective performance.

Formally, suppose we have access to a very long (infinite) sequence of compar-
isons S = {(x1

k , x2
k )}∞k=1 = {s1, s2, · · · } ⊂ X × X , perhaps as the result of passive

monitoring over an extended period of time, and we would like to know the features
x̄ of the ideal alternative. If alternatives are presented at random to the human, can
we construct an asymptotic observer for x̄ which can avoid storing all of the very
(infinitely) many constraints implied by this sequence? It turns out that the answer
is yes, and exactly such an observer is given by,
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Fig. 1.4 A number of uniformly randomly selected points in [−1, 1]×[−1, 1] ⊂ R
2 are compared

according to a point at infinity (i.e., a linear cost function) (dotted), and both the traditional SVM
(dashed) and the minimax-rate (solid) approaches are used to produce estimates of this direction
from the comparisons. From the difference-classification point of view (top), one wishes to separate
the vectors {di }N

i=1 (displayed as “o”s) from the vectors {−di }N
i=1 (displayed as “*”s). From the

minimax-rate point of view (bottom), one wishes to find the direction that maximizes the rate of
constraint satisfaction (the numbers of violated constraints are represented by shades of gray; the
white region is feasible). The traditional SVM solution separates the positive from the negative
differences with a larger margin (top), but the minimax-rate solution stays as far from the edge of
the constraint cone as possible (bottom)

x̃k+1 =
{

Pk x̃k + αk bk

dT
k dk

dk if dT
k x̃k − bk > 0

x̃k otherwise
(1.49)

Pk = I − αk dkdT
k

dT
k dk

(1.50)

for any sequence of observer gains αk ∈ (0, 2) (and dk, bk defined by (1.13–1.15)),
regardless of x̃0. That is, x̃k converges to x̄ in probability as k → ∞, given a few
assumptions; we will prove this shortly in Theorem 4. Moreover, note that, although
(1.49–1.50) are broken down into separate expressions for clarity of presentation,
they are in fact all functions of x̃ k , so this observer can be implemented with only
dim{X} real memory elements.

Geometrically, the observer (1.49–1.50) operates through a series of projections
(or under/over-projections, if αk ∪= 1), as shown in Fig. 1.5, with each projection
bringing the estimate x̃k of the ideal closer to the true ideal, x̄ . That the resulting
sequence does indeed converge to x̄ is guaranteed by Theorem 4, which follows.

Before continuing, we now state a useful lemma, whose geometric interpretation is
that comparisons between distances relative to reference points can be interchanged
with signed point-plane distance tests.
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Fig. 1.5 A series of the observer’s estimates, with αk = 1 ∀k. The initial estimate is x̃0, and the
true ideal is given by x̄ . In step 0, the observer projects x̃0 onto the plane (solid line) corresponding
to the measured output s0 = (x1

0 , x2
0 ) to produce x̃1. In step 1, the observer makes no changes to

its estimate, because x̃1 is on the correct side of the plane corresponding to s1; hence x̃2 = x̃1. In
step 2, the observer projects x̃2 onto the plane corresponding to s2 to create the estimate x̃3, which
is yet closer to x̄

Lemma 1. Let x1, x2, x̄ be any vectors in an inner product space (X, 〈·, ·⊆), and let
�� be a binary relation from the set, {=,<,>,≤,≥}. Then,

x̄ ∈ {x | 〈d, x⊆ − b �� 0} ⇐⇒ ||x1 − x̄ || �� ||x2 − x̄ ||

where d = x2 − x1, and b = 1
2 〈d, x1 + x2⊆.

Proof. The proof of this is based on the Polarization Identity and is straightforward.

Theorem 4. Let x̄ ∈ X be the ideal alternative, and S = {(x1
k , x2

k )}∞k=1 =
{s1, s2, · · · } a sequence of pairs of i.i.d. random vectors drawn according to a proba-
bility density function p on {(x1, x2) ∈ X | ||x1 − x̄ || < ||x2 − x̄ ||} which is nonzero
in an open ball B(x̄, r) = Br around x̄. Then, the asymptotic observer given by
(1.49–1.50) converges to x̄ in probability.

Proof. 1. If 〈dk, x̃k⊆ − bk > 0, then ||x̃k+1 − x̄ || < ||x̃k − x̄ ||. The distances
||x̃k − x̄ || and ||x̃k+1 − x̄ || are related through the Polarization Identity by (where
Δk = x̃k+1 − x̃k),

||x̃k+1 − x̄ ||2 = ||x̃k + Δk − x̄ ||2 =
||x̃k − x̄ ||2 + ||Δk ||2 + 2〈x̃k − x̄,Δk⊆

so, it order to show that ||x̃k+1 − x̄ || < ||x̃k − x̄ ||, it is sufficient to demonstrate

||Δk ||2 + 2〈x̃k − x̄,Δk⊆ < 0. (1.51)
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From (1.49, 1.50),

Δk =
(

I − αk dkdT
k

dT
k dk

)
x̃k + αkbk

dT
k dk

dk − x̃k

= α

〈dk, dk⊆ (bk − 〈dk, x̃k⊆) dk (1.52)

so, substituting Δk into (1.51) (and dropping the superscript indices k),

α2

〈d, d⊆ (b − 〈d, x̃⊆)2 + 2
α

〈d, d⊆ (b − 〈d, x̃⊆) 〈d, x̃ − x̄⊆ < 0

or equivalently, so long as α > 0 (as we require),

− (〈d, x̃⊆ − b)
[
α (b − 〈d, x̃⊆) + 2〈d, x̃ − x̄⊆] < 0. (1.53)

Since by assumption 〈d, x̃⊆ − b > 0, this is satisfied iff the second factor is
positive; that is,

α (b − 〈d, x̃⊆) + 2〈d, x̃ − x̄⊆ =
αb + (2 − α)〈d, x̃⊆ − 2〈d, x̄⊆ > 0. (1.54)

Since 〈d, x̃⊆ > b, and by Lemma 1, 〈d, x̄⊆ ≤ b, this is satisfied so long as
α ∈ (0, 2), as we require.

2. The sequence ek = ||x̃k − x̄k ||, k = 0, 1, 2, ... is nonincreasing. In the second
case of (1.49), x̃k+1 = x̃k ; this is nonincreasing. In the first case, 〈dk, x̃k⊆−bk >

0, so ek+1 < ek by point 1 above.
3. g.l.b.(ek) = 0 with unit probability. By positivity of || · ||, zero is a lower bound.

To show that this is the greatest such bound, consider some θ > 0 and suppose
that, at iteration m, ||x̃m − x̄ || = θ. Now, let z = min(r, θ/2), and consider the
open balls B1 = B(c1, z/4), B2 = B(c2, z/4), where the center points c1, c2
are defined,

c j = x̄ + x̃ − x̄

||x̃ − x̄ ||
(2 j − 1)

4
z

for j ∈ {1, 2} (see Fig. 1.6); additionally, let x1 ∈ B1, x2 ∈ B2. Then by Lemma
1, we can confirm that x̄ and x̃ are on opposite sides of the plane corresponding
to (x1, x2) (and hence, that a projection will occur) by verifying that,

||x2 − x̃ || < ||x1 − x̃ || (1.55)

||x2 − x̄ || > ||x1 − x̄ ||. (1.56)

Considering the first of these, we note by the triangle inequality,
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Fig. 1.6 If x1 ∈ B1 and x2 ∈ B2, then ||x̃k+1 − x̄ || < ||x̃k − x̄ ||

||x2 − x̃ || ≤ ||x2 − c2|| + ||c2 − x̃ || <
1

4
z + ||c2 − x̃ ||

whereas, by the inverse triangle inequality,

||x1 − x̃ || ≥ | ||x1 − c1|| + ||c1 − x̃ || |
≥ ||c1 − x̃ || = 1

2
z + ||x2 − c2||

so this is indeed the case. Considering the second inequality (1.56), we have
likewise,

||x1 − x̄ || ≤ ||x1 − c1|| + ||c1 − x̄ || <
1

4
z + 1

4
z = 1

2
z

and

||x2 − x̄ || ≥| ||x2 − c2|| − ||c2 − x̄ || |≥ 3

4
z

so this inequality holds as well. Therefore, any x1, x2 from B1, B2 are associated
with a plane that separates x̃ from x̄ and hence triggers a projection. Since B1
and B2 have nonzero measure, and are subsets of Br in which p(·) is nonzero,
then the probabilities for this iteration P1 = Pr(“a point is selected in B1”) and
P2 = Pr(“a point is selected in B2”) are both nonzero, and therefore, since the sk

are independent, Pboth = Pr(“one point is selected in B1 and the other is selected
in B2”) = P1 P2 is nonzero, and the probability that this occurs for at least one
iteration k > m is given by 1 − ∏∞

k=m

(
1 − Pk

both

) = 1 or in other words, with
probability one, there exists a q > m such that 〈dq , x̃q⊆ − bq > 0. Then, by
point 1, ||x̃q − x̄ || < ||x̃m − x̄ || = θ, and so θ, with unit probability, cannot be
a lower bound. Since ek is a nonincreasing sequence in R and g.l.b.(ek) = 0, ek

converges to 0 and thus x̃ converges to x̄ in probability.
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Fig. 1.7 Example estimate trajectory for observer (1.49–1.50) for αk = α = 1, with X = R
2. The

estimate begins at x̃0 = (−15, 15), and approaches the ideal x̄ = (17, 0)

An example of the estimate trajectory in feature space generated by such an
observer is shown in Fig. 1.7. For this example, X = R

2, and features were drawn
from a uniform distribution in the square [−20, 20]×[−20, 20]. The estimate evolves
from its initial condition, x̃0 = (−15, 15) to near the ideal x̄ = (17, 0).

1.7 Applications

1.7.1 Apples and Oranges

To demonstrate the application of the metric preference learning formulation, photos
of nine apples were shown to an audience of 13 people in a number of pairwise
experiments. (The fruit is shown in Fig. 1.8.)

Each apple was described by a 15-dimensional feature vector, containing (1–3)
the average color in HSB (hue, saturation, brightness) color space, (4–6) the average
color in RGB color space, (7) the color variance, (8–10) width, height, and the ratio
of the two, (11–12) stem length, and angle relative to apple, (13–14) dimple angle
and depth, and (15) roundness. This represents a collection of many conceivable
characteristics of an apple that may make it more or less orangelike, and the idea is
to learn a cost function without making assumptions a priori about which of these
features are most salient.



1 Metric Preference Learning with Applications to Motion Imitation 21

Fig. 1.8 Depicted are the nine apples used to generate comparisons with the single orange

Fig. 1.9 An example of a pairwise comparison between two apples, relative to the orange

The partial order over the apples was thus generated by having a number of people
make a number of randomly selected, pairwise comparisons (as the one shown in
Fig. 1.9). Represented as a preference graph, the results of these experiments are
shown in Fig. 1.10.

For these data, the minimization problem (1.21) is unbounded and hence we find
an optimal direction via (1.19). Solving (1.40), we obtain the optimum,
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Fig. 1.10 The preference graph corresponding to the apple experiments

v̄1 =−0.0252 (Hue)
v̄2 =−0.0844 (Saturation)
v̄3 = 0.1374 (Brightness)
v̄4 = 0.3572 (Red)
v̄5 = 0.1137 (Green)
v̄6 = 0.1856 (Blue)
v̄7 = 0.0442 (Variance)
v̄8 =−0.1593 (Width)

v̄9 =−0.2380 (Height)
v̄10 =−0.0472 (Width/Height)
v̄11 =−0.0409 (Stem Length)
v̄12 =−0.5017 (Stem Angle)
v̄13 = 0.6683 (Dimple Angle)
v̄14 = 0.0996 (Dimple Depth)
v̄15 =−0.0472 (Roundness)

which has the interpretation that dimple angle and redness are important orangelike
qualities, and that large stem angles are perceived as un-orangelike.

1.7.2 Amoebas and Humans

To understand the comparison of higher dimensional objects and in particular
motions, another experiment was performed in which an audience of 25 people was
asked to perform pairwise comparisons of different motions of a computer-animated
amoeba, relative to the motion-captured movement of a human who danced the
bhangra (Fig. 1.11). An example of one such question is shown in Fig. 1.12. In this
manner, a preference graph was generated as before, with 12 vertices (the amoeba
motions) and 20 edges; this is shown in Fig. 1.11.

Inner products between the various amoeba motions were computed by raster-
izing the motions to binary videos, blurring each frame of the result, and com-
puting the standard Euclidean inner product of these (extremely large) [Frame
Width]×[Frame Height]×[Number of Frames]-dimensional vectors.
The resulting inner product is a relaxation of set overlap area, and its corresponding
metric returns small distances between videos in which mass is located at nearly, but



1 Metric Preference Learning with Applications to Motion Imitation 23

Fig. 1.11 The DAG corresponding to the amoeba experiments

Fig. 1.12 Each question took the form, “Which of the two ‘amoebas’ (bottom) looks more like the
[motion capture data from a] human dancer (top)?”
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not necessarily exactly, the same locations at the same times. We note that the sheer
size of the rasterized representation highlights the advantage of the instance vector
expansion described in Sect. 1.5.1, without which the optimization problem simply
could not be realistically solved.

The minimization problem (1.21) with the resulting data turns out to be unbounded
and hence we again find an optimal direction via (1.19). We obtain the coefficient
expansion for the optimal direction,

v̄ =
M∑

k=1

ξk xk (1.57)

where
ξ = 103( 1.4918, −3.6556, −0.1390, 0.3113,

−1.1243, −0.1771, 2.6335, 0.5878,

1.8362, −1.7319, −0.2999, 0.2672).

What this means is that, in order to look as much like it is dancing the bhangra as
possible, an amoeba should as its first priority aspire to be as much like amoeba 7
(ξ7 = 2.6335) and as dissimilar from amoeba 2 (ξ2 = −3.6556) as possible, and that
it should to a lesser extent model itself after amoebas 1 and 9 (ξ1 = 1.4918, ξ9 =
1.8362) while avoiding the esthetically unappealing moves of amoebas 5 and 10 (ξ5 =
−1.1243, ξ10 = −1.7319). Although this does not explain why, psychologically,
e.g., amoeba 7—which pulses with two upward-pointing, armlike protrusions—is
preferred to amoeba 2—in which a bulge on one side moves in and out—it does
produce both a consistent cost structure, and an estimate for an amoeba motion that
will be preferred to all others in the larger space of motions.

1.8 Concluding Remarks

In this chapter, we investigated the problem of motion preference learning under the
assumption of an underlying metric cost model; here, the alternatives being compared
are points in a metric space, and human judges are assumed to prefer one point to
another if and only if it is closer to some fixed but unknown best alternative that
they may not have been shown. This assumption appears to be a good one for the
examples considered and the features chosen, in that the feasible set P in this case
is nonempty.

Based on the metric cost assumption, a Chebyshev estimator was given for the best
point for the case when P is bounded, and a natural generalization, the minimax-rate
estimator, was developed for when P is unbounded. In the first case, the solution
was found, with an efficiency rivaling standard quadratic SVMs, as the solution to
a linear program; and in the second case the problem was shown to in fact reduce a
particular SVM classification problem.
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In order that the estimators for the bounded and unbounded cases be applicable to
situations in which the compared alternatives inhabit high- or infinite-dimensional
metric spaces, the optimization problems were additionally given in an instance
vector expansion form, which results in optimization problems whose size is pro-
portional not to the dimensionality of the metric space, but only to the number of
comparisons available. This is particularly relevant in a controls context, when the
alternatives being compared are the signals input to or produced by continuous-time
systems, which inhabit infinite-dimensional function spaces.

Finally, for the case when a large amount of data are available, or stream rather
than batch processing is desired, a limited memory asymptotic observer was given
that avoids the need to store all the (infinitely) many constraints.

In all cases, optimal cost functions and points/directions were found efficiently
by convex programming. The result is an efficient minimax estimator for the best
possible alternative.
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Chapter 2
In the Dance Studio: An Art and Engineering
Exploration of Human Flocking

Naomi E. Leonard, George F. Young, Kelsey Hochgraf, Daniel T. Swain,
Aaron Trippe, Willa Chen, Katherine Fitch and Susan Marshall

2.1 Flock Logic

The Flock Logic project [1] was conceived by engineering professor/control the-
orist Naomi Leonard and dance professor/choreographer Susan Marshall. Marshall
approached Leonard in 2010 about the possibility of an investigation to find out what
would happen if a group of dancers were in possession of the rules governing the
motion of groups of flocking animals. The project was initiated as a joint exploration
with professional dancers in July 2010 and then subsequently as a semester-long
Princeton University Atelier course co-taught by Leonard and Marshall in Fall 2010.
The professional dancers and the students, most of whom had previous dance train-
ing, participated in collaborative artistic and scientific investigations and experiments
inspired by the complex and beautiful group motion that emerges in bird flocks and
fish schools. The aim was to explore artistically and scientifically how individual
rules of interaction and response within a network of dancers yield complex emer-
gent collective motion of the group.

The emergent nature of flocking and schooling was a central driver for the project:
the remarkable collective motion of flocks and schools results not from a prescribed
choreography nor even from a designated leader, but rather from simple rules of
response that each individual obeys [2]. These feedback rules govern how each indi-
vidual moves in response to the relative position or motion of its close neighbors.
For instance, basic flocking rules typically have a cohesive element and a repulsive

This effort was supported in part by Princeton University’s Essig Enright Fund, Lewis Center for
the Arts, Keller Center for Innovation in Engineering Education, and Mechanical and Aerospace
Engineering Department, and by NSF grant ECCS-1135724, AFOSR grant FA9550-07-1-0-
0528 and ONR grant N00014-09-1-1074.

N. E. Leonard (B) · G. F. Young · K. Hochgraf · D. T. Swain · A. Trippe · W. Chen · K. Fitch ·
S. Marshall
Princeton University, Princeton, NJ 08544, USA
e-mail: naomi@princeton.edu

A. LaViers and M. Egerstedt (eds.), Controls and Art, 27
DOI: 10.1007/978-3-319-03904-6_2, © Springer International Publishing Switzerland 2014



28 N. E. Leonard et al.

element [3]. The cohesive element requires that while each individual moves around
it should remain a comfortable distance from a few others; the repulsive element
requires that each individual should move away from others that get too close. An
active area of research is focused on explaining how the observed complex collective
motion of animal groups emerges from, and is influenced by, the feedback rules, the
dynamics of the social interactions within the group, the distribution of informa-
tion across the group, the features in the spatial surrounding, the differences among
individuals, the noise in measurements, and the uncertainty in decision making
[4, 5]. Analytical and numerical studies and laboratory and field experiments have
all been used to investigate; for example, see [6–8] for a range of studies on flocking
of starlings.

Flock Logic explored what happens when a group of dancers apply these and
related feedback laws as they move around a space together. In the Flock Logic
explorations the flocking rules were prescribed, but neither how the dancers applied
the rules nor how faithfully they followed the rules were controlled. For example, the
number of neighbors and the distance from neighbors to maintain in the coherence
rule were prescribed, but the dancers were not instructed how to choose with whom to
cohere, how to prioritize among neighbors moving in diverging directions, nor how
to handle conflicts such as when cohering with one dancer meant getting too close to
another dancer. It was also possible that dancers broke the rules at times. Thus, the
emergent human flocking resulted from both prescribed and individualized, and thus
unknown, features of dancers’ choices and dynamics. In this way, the Flock Logic
project provided a framework for exploring emergent collective behavior somewhere
between studying animal aggregations in the wild, with all that is unknown, and
examining computer simulated flocking, with its exclusive reliance on a prescription.

This aspect of Flock Logic made it particularly well suited to an integrated art,
engineering, and science agenda. On the one hand, the Flock Logic framework made
it possible to observe the influence on collective motion of natural biases, in this case
human biases, and heterogeneity across the group. Dancers with different physical
features, personalities, dance training, etc., would respond differently to one another
and would prioritize rules and resolve conflicts differently. This would affect how
information would pass through the group and how the group as a whole would
respond to external forces. On the other hand, the Flock Logic framework made it
possible to systematically examine the influence on collective motion of parameters
of the prescribed rules. This applied to the parameters of rules and environments
meant to represent animal groups, e.g., number of others with whom to cohere,
total population of the group, availability of information or preferences across the
group, as well as the shape, size, and placement of obstacles. This also applied to the
parameters of rules and environments not necessarily intended to represent animal
groups but rather motivated by artistic and engineering design goals. By varying
rules and environmental features beyond what one would expect in animal groups,
it was possible to explore how individual-level behaviors connect more generally to
the aesthetics and the functionality of the emergent group-level behaviors. And this
led to the creation of a wide range of artistic and engineering design possibilities.
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The engineering goal was to use the explorations with dancers to gain insight into
the mechanisms of animal group and human crowd dynamics and into design princi-
ples for control of natural and robotic groups. Could the dance studio be viewed as an
experimental test-bed in this regard? Could the human data collected be used to help
explain a range of collective behaviors? The dancers could represent a human crowd
moving in a bounded space, trying to avoid colliding. Likewise, dancers moving in
a studio, responding to local neighbors and the environment, provide a reasonable
approximation to the collective motion of a herd. The walls of the studio are like
trees or topography, and the heterogeneity among the dancers (experience, height,
confidence) is similar to that in a herd [9]. Further, dancers are particularly well
suited to these kinds of explorations because they are trained to be physically aware
and can comfortably handle a number of feedback rules. Thus, the setting provided
enormous flexibility in the kinds of questions that could be addressed. For example,
in this chapter, the human motion data are used to rigorously study how influence
among individuals in the network is distributed and how that is reflected in the
changing spatial distribution of individuals and in the group-level shape and motion
dynamics. This could, for example, lead to insights on how human crowds move
in cluttered spaces and how animals organize themselves to reduce vulnerability to
predators [10]. This could also lead to bioinspired methods for designing robust and
responsive networks of heterogeneous robots [11].

There are a number of motivating and complementary scientific studies of human
collective motion, many of which focus on crowd dynamics. Experiments on lead-
ership and decision making in human crowds were described in Dyer et al. [12].
In Moussaid et al. [13], analysis of natural pedestrian group motion revealed the
influence of social interactions on crowd dynamics. In Funes et al. [14] a design
method for human collective behaviors used evolutionary dynamics. Simplified mod-
els described in Silverberg et al. [15] predicted collective behavior of humans in mosh
and circle pits as observed from video data of heavy metal concerts. Altenberg [16]
developed a set of rule-based movement experiments as a concrete way of teaching
emergence.

In Flock Logic, the engineering goal was tightly integrated with the artistic goal,
where the idea was to see how applying work on decentralized control of collective
motion, to dancers, could potentially result in choreographic tools or training tools for
developing individual and group awareness. It was also imagined that a site-specific
large group performance work could be developed with little more than a site and
the rules.

The artistic interest centered on a desire to translate flocking rules such as those
related to group cohesion and response to external pressures into improvisational
instructions for dancers. Could these rules support unexpected and complexly orches-
trated collective motion to emerge from individual interactions? How might the local
sensing rules be altered choreographically to make emergent choreography that didn’t
resemble the familiar look of organic flocking? Could these rules be learned quickly
by nondancers to create a kind of flash mob performance?

In theater and dance, there is a long history of movement practice and performance
based on structured improvisation and rules and games [17]. Contemporary chore-
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ographer Forsythe has studied synchrony and pattern in dance, as in, for example,
“Synchronous Objects” [18]. Choreographer Sgorbati has explored dance through
“Emergent Improvisation,” which is modeled after ordering principles observed in
nature [19]. Hagendoorn [20] designed rules for dancers to explore complexity, emer-
gent patterns and emergent choreography. Carlson [21] introduced constraints in
movement generation to study creative decision making in choreographic practice.

Often in improvisational dance work, the individual has a wide range of choices
open to them and takes compositional responsibility for the entire stage as well as
their own body. The Flock Logic rules tend to limit the individual’s choices to their
immediate neighbors and to ask the individual to relinquish group choreographic
responsibility; nonetheless, rich group choreography results. Could rules be designed
that would allow dancers, ignorant of any overarching choreographic goals, to create
complex and organized patterns using these tools?

In Flock Logic, to generate human flocking, the dancers were asked to move
about a space and follow rules that were defined in advance. To enable cohesion,
each dancer was given the rule to keep m of their neighbors at a distance of arm’s
length with the selection of the m neighbors freely changeable. To enable repulsion,
each dancer was asked to avoid letting any dancer get closer than arm’s length. To
prevent tripping, the dancers were asked to avoid moving backwards.

These three rules (cohesion, repulsion, backwards avoidance) were among the
most fundamental rules examined. Variations on the three fundamental rules were
prescribed as well as a range of additional and alternative rules. For example, rules
for alignment with neighbors, response to obstacles and walls, options to initiate
or imitate specific movements, etc., were implemented. More complex informa-
tional structures were imposed—for example, two or three dancers in the group were
secretly given additional rules, such as to move to a particular location or according
to a particular pattern. The dancers also performed rules for other kinds of behaviors
such as dynamic coverage and pursuit and evasion. In part because each dancer’s
motion was relatively under-prescribed, there was considerable room for variation
among individuals, e.g., in speed, facing direction relative to motion, selection of
neighbors, positioning relative to neighbors, and response to walls or obstacles.

Complex and artistically satisfying collective behaviors were routinely observed.
As part of the 2010 Princeton University Atelier course, approximately 50 volunteers
participated in two flocking performances, each at a different site, after having been
briefly instructed in a few local rules of cohesion, repulsion and alignment as well as
responses to obstacles, to walls, and to “predators.” From both artistic and engineer-
ing perspectives, these were highly satisfying performances. A snapshot from one
of the performances is shown in Fig. 2.1. Video clips from the events are publicly
available and can be accessed from the Flock Logic website [1] or directly at the
following links:
http://vimeo.com/19361231 (Peter Richards);
http://www.princeton.edu/main/news/archive/S29/62/38K80/ (Evelyn Tu);
http://www.youtube.com/watch?v=Mg29hawdcMw (Jeffrey Kuperman).

In this chapter, we describe the Flock Logic explorations and the tools used for our
artistic and engineering investigations. As an illustration, we examine one experiment

http://vimeo.com/19361231
http://www.princeton.edu/main/news/archive/S29/62/38K80/
http://www.youtube.com/watch?v=Mg29hawdcMw
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Fig. 2.1 Snapshot from a Flock logic performance at Princeton University in December 2010

with 13 dancers who followed the flocking rules of cohesion and repulsion as they
moved around the dance studio. Using the trajectories tracked from an overhead video
camera and the prescribed interaction rules, we estimate the time-varying graph that
encodes who is sensing whom as a function of time. We compute the time-varying
status of each node in the graph, defining how much attention a dancer receives
from the rest of the dancers, and use these to infer emergent leaders. We discuss
implications, open questions, and further directions both artistic and scientific.

The work described in this chapter connects with the work described in several
other chapters in this collection. In Chap. 7, Heupe et al. [22], similarly inspired,
investigate how flocking dynamics can be used to generate music, and they use
performance to explore the rich interplay between coherence and decoherence. In
Chap. 9, LaViers et al. [23] also use performance to study dance and address engi-
neering design questions similar to ours by investigating how to translate information
about human dance styles into design for robotic motion. Although in our work, we
only track dancers offline after an event, real-time tracking of humans offers the
potential for more complex interactions between humans and machines, as shown in
Chap. 8 by Godbehere and Goldberg [24]. The work in Chap. 6 of Tsiotras and Castro
[25] further demonstrates the richness of multiagent geometries that can result from
modifications to the basic rules of flocking.

In Sect. 2.2, we describe our human flocking explorations, including our on-line
FlockMaker software tool, and the human flocking experiments. Trajectory tracking
is described in Sect. 2.3. In Sect. 2.4, we review graphs and FlockGrapher, our tool for
visualizing graphs. In Sect. 2.5, we estimate the time-varying graph of the network.
In Sect. 2.6, we estimate node status and discuss the influence of individuals. We

http://dx.doi.org/10.1007/978-3-319-03904-6_7
http://dx.doi.org/10.1007/978-3-319-03904-6_9
http://dx.doi.org/10.1007/978-3-319-03904-6_8
http://dx.doi.org/10.1007/978-3-319-03904-6_6
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conclude with a discussion of the results and a reflection on further artistic and
engineering opportunities that build on the Flock Logic project in Sect. 2.7.

An earlier version of this paper appeared in the proceedings of the American Con-
trol Conference, held in Montreal, Canada in June 2012 [26]. At this same conference,
a special interactive session was held in which 100 conference attendees participated
in a human flocking performance event. For this event, original accompanying music
was composed and performed live by Cristián Huepe.

2.2 Human Flocking

2.2.1 Explorations

A typical Flock Logic exploration involved on the order of 10–15 dancers who
moved around the dance studio for a few minutes applying flocking rules prescribed
in advance. Many of these explorations were run in series during a single session,
with a wide variety of flocking rules prescribed. The dancers were given frequent
opportunities to watch the group from the outside, and to discuss how it felt from
within the group and how it looked from without the group. The process was highly
collaborative: dancers made suggestions routinely and during a number of sessions
small groups of dancers would design a set of rules for themselves and for the rest
of the group.

The explorations evolved over time as the dancers gained more experience with
moving according to the rules of flocking. This meant that level of experience played
into the emergent collective motion, especially later in the semester when volunteers
were briefly “trained” and joined the group for flocking. By adding dancers to the
group, the role of the number of dancers was also explored. As many as 24 dancers
participated in some of the experiments in the studio, described in Sect. 2.2.3. In
one of the Flock Logic performances in December 2010 , more than 50 people were
involved and in later flocking events, such as at the special session in Montreal at the
American Control Conference, as many as 100 people participated. Sessions were
also held outdoors which provided the opportunity for explorations in a space without
boundaries.

The basic flocking rules of cohesion, which meant keeping m neighbors at arm’s
length, repulsion, which meant moving away from anyone closer than arm’s length,
and backwards avoidance, formed the basis of many explorations. Two-person cohe-
sion (m = 2) was enough to create what looked like a planar school or flock.
With m = 2 the dancers were regularly spaced and exhibited polarized motion, i.e.,
everyone moving together in a single direction, as well as circular motion, i.e., the
group moving around a circle. The circular motion sometimes drifted and sometimes
remained fixed about a single stationary dancer. The group also experienced fissions
and fusions as well as significant changes in momentum. When m was decreased to
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m = 1, i.e., one-person cohesion, the result was a lot more “parading” and much less
of the distributed look of a natural flock.

Explorations made use of the presence of walls and the introduction of obstacles.
With no special rules attached to walls or obstacles, the dancers treated them much
as animals would likely treat them, i.e., they deftly avoided colliding with them. In
one case, a row of chairs was extended in a line from one wall into the middle of the
room. When the dancers moved into the smaller space created by the chairs and the
parallel wall, they would remain there temporarily, as if caught in a tidal pool, and
only move out once they had reversed direction. When rules were prescribed with
respect to walls and obstacles, all sorts of interesting, and less biologically motivated,
collective behavior emerged. For example, the walls were given an attractive pull as
well as a “stickiness.” As a result, dancers getting close to a wall got pulled away
from the group and stuck there (see Fig. 2.1). They were released from the wall by
cohesion to other dancers when at some later point the group passed by them. This
looked like the peeling off and adhering back of dancers in an ordered way since
these dancers still applied the cohesion and repulsion rules among themselves.

In another case, a round table was moved into the open space and endowed with
the properties of a sling shot. When dancers got close to the table they would circle
around it in a fixed direction, e.g., counter-clockwise, at an increased speed and then
get “flung off.” This led to a variety of different outcomes since different dancers
resolved conflicts differently. For example, in early runs with the round table, the first
few dancers moved around the table at elevated speed, but then they tended to slow
down and congregate in a slow moving flock nearby. The dancers who went around
the table subsequently either stopped short to avoid cutting through this congregating
group or broke the repulsion rule and charged right through it. In the performance
events in December 2010, a “waterfall” effect was sustained with two slingshot tables
(see Fig. 2.1).

The ability to prescribe individualized preferences and objectives was also
explored. These explorations were motivated by an interest in understanding the
role of heterogeneity in preference and objective in groups, if and how individuals
can exert leadership through motion, and the range of emergent collective motion
patterns that can result. Individualized objectives were typically prescribed secretly:
all dancers were told to follow the three basic flocking rules and two or three of the
dancers, unbeknownst to the others, were directed to follow certain additional rules.
For example, the two or three selected dancers were sometimes given the same addi-
tional rule, such as to head for one corner of the room or out a door. Alternatively,
the two or three dancers were given conflicting rules, such as one told to aim for
one corner of the room and another to aim for the opposite corner. Or the two or
three dancers were given a joint objective such as to split the group into subgroups.
How dancers attempted to attain their additional objectives was explored, and it
was observed and discussed how some dancers were successful and some were not
successful in influencing the other dancers through their motion.

In some explorations, one or two dancers were instructed to behave as a predator
or pursuer by waving a hand or t-shirt or flashing a bicycle light. In this case, the
dancers were given the rule to keep a safe distance from the pursuers, e.g., 5 or 10 ft
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Fig. 2.2 Snapshot of a cyclic pursuit experiment with 24 dancers. The position of each dancer
is marked with a green dot and a dashed line connects each pair of pursuer and pursued. The
collection of dashed lines show that the dancers move around a single closed curve that loops
around, intersecting itself three times

depending on the size of the studio. The pursuers could thus put pressure on the group
and create a variety of beautiful patterns by trapping the flock, shaping the flock, and
restricting the flock’s motion to changing corridors of space in the studio. Cyclic
pursuit and evasion was also explored in which case every dancer was assigned one
other dancer to pursue so that the group made a closed cycle with each dancer having
one person to pursue and one person to evade. The motion patterns were constantly
changing loops with multiple intersections, with qualitative features as predicted in
[27]. Figure 2.2 shows a snapshot of 24 dancers in a cyclic pursuit experiment in the
dance studio.

It was also found that adding an optional alignment rule created further artistic
variation and options. Many other rules were explored in place of the basic flocking
rules; these contributed significantly to artistic, engineering and scientific goals. For
example , a rule was applied in which each dancer moved with oscillating speed, i.e.,
accelerating and decelerating repetitively, and such that the oscillations were out of
phase with others nearby. This was motivated by the oscillating speed observed in
fish schools and the rich family of motion patterns that could be designed using this
rule [28]. In another example, rules for dynamic coverage were explored; these rules
were motivated by problems of foraging over spaces of distributed resource [29].
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2.2.2 FlockMaker

FlockMaker is a Java WebStart application developed to aid the Flock Logic project
and designed for simulation and exploration of collective motion [30]. FlockMaker is
inspired by the original work of Reynolds [31] on rule-based simulation of flocking
particles. It is similar in spirit to the “Counterpoint Tool” in Synchronous Objects
[18], in which the dynamic motion of widgets are animated and the user can modify
the number and scale of widgets as well as the parameters that define the extent of
their alignment and synchrony of motion.

FlockMaker is intuitive for a curious layperson, and it can be used to model
complex combinations of flocking rules and initial configurations. Each dancer is
represented as a single particle, modeled as a colored dot with a directional arrow,
moving in the horizontal plane with variable velocity. Speed and facing angle (but
not acceleration) are taken to be approximately continuous in time.

The user can assign a variety of flocking rules to the dancers, such as “Pursue
Someone,” “Repel Neighbors,” and “Slow Down Near Neighbors.” To further con-
trol behavior, the user can set values for a wide range of parameters pertaining to a
dancer’s rules or initial configuration, including radius of sensing, number of neigh-
bors sensed, maximum speed of rotation, and magnitude of additive random noise.
Different rules can be assigned to different dancers. Furthermore, each dancer can be
assigned to follow multiple rules at a time, each rule potentially carrying a different
relative weight representing its level of priority.

Dancers interact not only with one another, but also with the room in which they
are moving, represented as a rectangular space contained within four walls. The
FlockMaker user can change the size of the room, add obstacles to the room, and
add rules applicable only within certain zones of the room.

After several weeks of work in the studio, the students in the Princeton University
Atelier course spent time using FlockMaker, both to test ideas that had been tried
in the studio and to investigate new ideas. Several of the rule sets and emergent
behaviors investigated in FlockMaker were subsequently explored in the studio.

2.2.3 Experiments

A series of human flocking experiments was run in mid December 2010 in the
62′7′′ × 28′4′′ New South dance studio at Princeton University. Groups of dancers
carried out the three basic rules of flocking with manipulations on initial conditions,
number of dancers N (either 13 or 24), and number of neighbors m for cohesion
(either 1 or 2). Alignment with neighbors was tested as was the assignment of an
additional rule to two of the dancers (of which the others were not aware), which was
to try to split the group. Several experiments were also run with dancers implementing
the rules for cyclic pursuit; see Fig. 2.2.
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Six Trendnet IP-600 cameras, synchronized over a local wired network, were set
up in fixed locations to record the motion of the dancers. Two cameras were hung on
the ceiling near either end of the studio, facing inward towards each other, and four
were mounted high up on one side wall. Camera views covered the majority of the
space in the studio and overlapped significantly. Using built-in software, the cameras
recorded video and stored it on a laptop. The video provided 640 × 480 resolution
and 20 frames per second.

For the December 2010 series of experiments, part of the room was blocked off
so that the motion of all of the dancers could be fully captured by one of the six
cameras (one of the two fixed to the ceiling). The dancers wore bright colored hats,
black clothing and bare feet to aid trajectory tracking.

In this chapter, we examine one experiment from the series in which there were
N = 13 dancers—two professional dancers and 11 students. All 13 dancers were
asked only to follow the three basic rules of flocking with cohesion to m = 2
neighbors. The total time for the experiment was 185 s, corresponding to the period
from the start to the stop of the music. We study the tracked trajectories of the dancers
from the first 72 s of this experiment.

2.3 Trajectory Tracking

Trajectories were estimated using custom tracking software applied to the overhead
video from one camera for the first 72 s of the experiment. The tracked trajectories
comprise an ordered set of 1440 planar position vectors (x, y) for each of the 13
dancers. A velocity vector is computed for each dancer at every time step by dif-
ferencing the position vectors. Speed and heading are computed as the magnitude
and angle of the velocity vector. Figure 2.3 shows one frame from the video with
superimposed tracked positions and directions of motion.

The custom tracking software uses a modified version of a real-time tracking
algorithm that was developed at Princeton and used successfully for experiments
involving multiple fish and robots [32]. The algorithm is implemented using the
MADTraC C++ library [33], which in turn relies upon OpenCV [34] for low-level
image processing routines. The original tracking software was designed to address
the challenges of tracking potentially densely distributed objects that are very similar
to one another in appearance. It was therefore applicable to the task of estimating
dancers’ trajectories.

The tracking algorithm follows three steps that are iterated for each video frame,
and described in greater detail in [32]. In the first step, image segmentation produces
a set of “blobs,” such that each blob is a collection of contiguous pixels with high
likelihood of belonging to any dancer’s hat. Likelihood is determined by thresholding
each pixel’s value in HSV color space and mapping to a binary image. Blobs are
extracted from the binary image using OpenCV’s built-in blob labelling algorithm,
which is based on [35]. A blob is often associated with more than one dancer because
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Fig. 2.3 From [26]. One frame from the video of the experiment with superimposed tracked
positions (colored dots) and normalized velocity vectors in the image plane (each colored arrow
indicates the direction in which the centroid of the corresponding hat is moving in the image).
Images of dancers are deliberately blurred

of the physical proximity of dancers to one another, the proximity of dancers in the
image due to the angle of the camera, and noise in the image.

In the second step, the blobs are analyzed in order to extract a noisy measurement
for the position of each dancer. If a single dancer is associated with a blob, then
the measurement of that dancer’s position is taken as the centroid of all pixels in
that blob. Otherwise, to resolve multidancer blobs or clusters of densely-spaced
blobs, an expectation-maximization mixture-of-gaussian (EMMG) algorithm is used,
which iteratively adjusts dancer positions for a given cluster and provides position
measurements as output.

In the third step, the noisy position measurements are used with an unscented
Kalman filter (UKF) for each dancer to provide a more accurate estimated position
(x, y) in the current frame and to predict the position in the next frame. The estimated
position of each dancer is stored as the current point in the dancer’s tracked trajectory.
The predicted positions are used to inform the next tracking iteration. The (x, y)

position vector is expressed in a coordinate frame that is parallel to the floor. The
transformation to these coordinates from image plane coordinates was determined
by applying camera calibration techniques to an image of several objects placed at
known locations in the scene. The average height of each dancer is assumed to be
1.65 m.
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2.4 Graph Theory and Visualization

2.4.1 Background on Graphs

Let N be the number of dancers. For each dancer i , we define the set of neighbors,
Ni , to be the set of dancers whose positions are observed and used for cohesion by
dancer i .

We associate to the system a sensing graph G = (V, E, A), where V =
{1, 2, . . . , N } is the set of nodes, E ⊆ V × V is the set of edges and A is the
N × N adjacency matrix with ai, j = 1 when edge (i, j) ⊂ E and ai, j = 0 otherwise.
Every node in the graph corresponds to a dancer, and the graph contains edge (i, j)
when j ⊂ Ni . An edge (i, j) ⊂ E is said to be undirected if ( j, i) is also in E ;
otherwise it is directed. A graph is undirected if every edge is undirected, that is, if
A is symmetric; otherwise it is directed.

A graph can be represented visually by drawing a dot for each node and a line
between the appropriate pair of nodes for each edge. An undirected edge is typically
drawn as a simple line, while a directed edge (i, j) will have an arrow head pointing
from node i to node j .

A path in G is a (finite) sequence of nodes containing no repetitions and such that
each node is a neighbor of the previous one. The length of a path is given by the
number of edges traversed by the path. The distance, di, j , between nodes i and j in
a graph is the shortest length of any path from i to j . If no such path exists, di, j is
infinite. This distance is not a metric since di, j is not necessarily equal to d j,i .

The graph G is connected if it contains a globally reachable node k; i.e., there is
a path in G from i to k for every node i . G is said to be strongly connected if there
is a path between every pair of nodes in the graph. A strongly connected component
of G is a maximal subset of nodes such that there is a path in G between every pair
of nodes in the subset. G is weakly connected if it is connected when every directed
edge is replaced by an undirected edge. A weakly connected component is a maximal
subset of nodes that forms a connected component when every directed edge in G is
replaced by an undirected edge.

The status, sk , of a node k is the average inverse distance between every other
node and k. That is, sk = 1

N−1

∑
j →=k

1
d j,k

. sk will be maximum (equal to 1) if there
is an edge from every other node to node k, and minimum (equal to 0) if there are
no edges leading to node k.

2.4.2 Visualization of Graphs

FlockGrapher is a Matlab tool developed to compute, visualize and evaluate different
kinds of graphs derived from flock position data. Using a graphical user interface, the
tool accepts tracked position and direction of motion data for individuals in a flock
in two or three dimensions. It can visualize data from one specific instant in time or
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create a time series animation of data sets corresponding to successive time steps.
The user can create graphs from the data by defining an individual’s neighborhood
in terms of either a prescribed number of nearest neighbors or a prescribed sensing
radius. For data that includes the direction of motion of nodes, FlockGrapher can
incorporate a limited viewing angle, assumed to be symmetric about the individual’s
direction of motion. In the case of a fixed number of nearest neighbors and a limited
viewing angle, if there are fewer than the required number of neighbors visible to a
node, the viewing angle will be rotated with respect to the direction of motion until
enough neighbors are visible. Edge weights can be automatically manipulated, e.g.,
as a function of distance between nodes, or they can be prescribed by the user.

Once a sensing graph has been computed, FlockGrapher can evaluate a range of
graph properties, including number of strongly and weakly connected components,
algebraic connectivity, speed of convergence and node status. The tool also displays
some properties on the graph visualization; for example, directed and undirected
edges can be distinguished with different colors. For sets of data corresponding to
successive time steps, the time-varying values of these properties will be displayed
as the graph visualization changes. In the case of the human flocking experiment,
this dynamic graph visualization can be run at the same time as the video of the
dancers to compare computed and observed behavior. FlockGrapher can save all the
computed data to allow for further analysis. A screenshot of FlockGrapher is shown
in Fig. 2.4; the graph and its properties correspond to the frame from the video shown
in Fig. 2.3.

2.5 Sensing Model and Graph Computation

Since each dancer was given the same specific rules to follow, it is in principle
possible to apply the same rules to the tracked data and reconstruct the sensing graph
used by the dancers. However, certain aspects of both the rules and human behavior
make this task challenging. Although the dancers were each told to stay arm’s length
from two other dancers, no instruction was given for how they were to choose these
two neighbors. In addition, although humans have a field of view of up to 200≤ [37],
there was no compulsion for the dancers to keep both of their neighbors visible at
all times.

Given these limitations, two key assumptions were made in order to estimate the
dancers’ sensing graph. First, it was assumed that each dancer only chose neighbors
from within a limited angular range centered about the direction they were traveling.
Since no dancer was observed to be rapidly moving their head, the direction of motion
was assumed to be a reasonable proxy for direction of the head and therefore for center
of viewing range. Although this assumption is generally applicable to the data, there
were instances observed in which a dancer would either move in a different direction
to where they were facing, or move with their head turned at a constant angle to their
body. These occurrences are impossible to detect with our point-tracking approach,
but could be accounted for with a more sophisticated tracker with the ability to detect
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Fig. 2.4 Screenshot of FlockGrapher using dancer data corresponding to the instant shown in
Fig. 2.3. Nodes are shown as small green circles connected by edges. Directed edges are blue
with arrow heads and undirected edges are red. The number next to each node is its status. Other
computed graph properties are displayed on the left

the orientation of each dancer’s face. Second, it was assumed that each dancer was
applying the cohesion rule with the two nearest neighbors within this range. Since
every dancer was trying to keep two neighbors at arm’s length (and let no dancers
closer than arm’s length), a dancer’s neighbors would naturally be among the closest
of the other dancers.

With these assumptions, we used FlockGrapher to estimate the sensing graph
at each time (frame) by computing the two-nearest neighbor graph with a limited
viewing angle. When fewer than two other dancers were visible using the direction
of motion to center the viewing region, this region was allowed to rotate until two
dancers became visible. However, it was not known a priori what viewing angle to
choose to best represent the dancers’ behavior.

For collective behavior, it is impossible to guarantee that a group will remain
together if the communication graph is not connected [38]. When the graph is dis-
connected, there is nothing to prevent different subgroups from moving in different
directions and splitting the group. However, other features of the environment (such
as the limited space in the room) can drive the group back together. Since fissions and
fusions of the group were observed, we selected the viewing angle for our sensing
model as the one that produced a graph that was disconnected when the group of
dancers was observed to split and remained connected when the group of dancers
was observed to be cohesive.



2 In the Dance Studio 41

Table 2.1 Effects of
viewing angle on graph
connectedness over the whole
tracked period

Total viewing Percentage of time Number of
angle connected (%) disconnection events

360≤ 59.58 40
270≤ 91.67 43
210≤ 97.5 10
180≤ 98.47 3
150≤ 98.68 5
120≤ 99.65 3
90≤ 99.58 3

Table 2.1 shows the results of estimating the sensing graph across the whole
tracked period using different viewing angles. It can be seen that reducing the viewing
angle from 360≤ to 270≤ significantly improves the amount of time the graph is
connected, with the maximum connectedness occurring with a viewing angle of
120≤. However, our goal was not simply to maximize connectedness but rather to
match the observed behavior of the group.

Early in the experiment, between about 1 and 3 s, a small group of four dancers split
from the rest of the group. The dancers within this group appeared to be observing
only one another. Eight of the remaining dancers also formed a group, only observ-
ing one another. The thirteenth dancer was originally able to observe both groups
before turning to face the larger group, but since no other dancer was observing this
individual, the group was split during this whole period. Eventually, the dancers in
the larger group turned and observed the smaller group, leading to a single “flock”
again. This disconnection event was reflected in the estimated graphs for viewing
angles of 150≤ and greater, but not for the smaller angles. However, with a viewing
angle of 150≤ the graph became connected at a few points within this interval when
direct observation of the video suggests that the group was still split. This was not
the case with a viewing angle of 180≤; thus, 180≤ was chosen as providing the best
match of the splitting behavior of the dancers. Figure 2.3 shows the group during this
disconnection event and the graph in Fig. 2.4 (corresponding to the frame of Fig. 2.3)
is computed using a viewing angle of 180≤.

Although our first estimate of the sensing graph captures a split in the group and
stays connected during the rest of the tracked period, it remains a crude approxi-
mation to the true sensing graph. For example, some nodes change their neighbors
rapidly in our estimated graph, which is likely an overestimation of the rate at which
dancers switch neighbors. Instead, if an individual has just been chosen as a neigh-
bor, that individual is likely to stay a neighbor for a period of time rather than being
immediately discarded as another individual comes closer in view. Two steps were
taken in an effort to reduce rapid neighbor fluctuations. First, the tracked position
data were passed through a low-pass filter, which consequently smoothed out node
headings. Then, to account for an individual’s reluctance to change neighbors soon
after they are chosen, a term was added to the estimation model representing the
probability of switching from a current neighbor to a closer dancer. The lower was
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the probability the greater was the “inertia” of the dancer to switch to a closer dancer,
equivalently, the greater was the commitment of the dancer to its current neighbor.
By allowing this probability to reset to a low value whenever a new neighbor was
chosen and then increase with time, we could capture the inertia of edges in the
sensing graph.

2.6 Analysis of Individual Influence

We used the estimated time-varying sensing graph to begin investigating the influence
of each individual dancer within the group. Our method computes and compares node
status for all dancers. Without knowing precisely how each individual implemented
the flocking rules, node status can provide an estimate of an individual’s importance
within the group. A dancer with a status of 0 has no influence since no one else in the
group is observing that dancer. A dancer with a status of 1 has the maximum possible
influence as every other individual is directly observing that dancer. However, due
to the time-varying nature of the graph, an individual’s importance depends not only
on its current node status but also on its node status in the past. Therefore, we took
as a first estimate of instantaneous importance each node’s average status over the
past 1 s. A plot of average node status for all nodes for part of the tracked period is
shown in Fig. 2.5.

Although node status provides a measure of an individual’s potential to influ-
ence the group, it does not indicate whether that influence was actually exercised.
Therefore, to examine if node status is indeed related to the influence of a dancer
in this data set, we investigated a quantitative measure of an individual’s influence
on the rest of the group. This quantity is the time, referred to as lead time, at which
a peak occurred in the cross-correlation function between an individual’s direction
of motion and the direction of the group’s motion. Positive values for this lead time
indicate that an individual tended to lead the group (i.e., change direction and then
have the group follow) while negative values indicate that an individual tended to lag
the group (i.e., change direction to follow the group after the group had changed).
This lead time measure was found to correlate strongly with average node status,
with the nodes with highest average status having the largest lead times and the
nodes with lowest average status having the largest lag times. Thus, we argue that
node status computations do indeed provide insight into leadership roles within the
group. Importantly, the ability to calculate node status at any point in time allows
for investigation of instantaneous and changing leadership throughout the flocking
event.

By examining the plot of averaged node status, “leadership events” can be iden-
tified, where one particular node achieved the greatest importance within the group
(with a high status value) for an extended period of time. Figure 2.5 reveals one such
event when node 10 became a leader between approximately 28.75 and 31.45 s.
Looking at the video, it can be observed that during this time the group was moving
from the back left corner of the room toward the front right corner, with node 10 at
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Fig. 2.5 From [26]. Plot of 1 s running average of node status for all nodes, along with a sample
video frame and sensing graph near the end of the leadership event from t = 28.75 s to t = 31.45 s.
The red edge is undirected while all blue edges are directed. Node 10, with the highest status,
corresponds to the dancer in the front of the group

the front of the group. This suggests that the node status measurements can capture
emergent leadership.

Another leadership event can be observed from the data during a period when
one dancer stopped moving and the remaining dancers started circling around this
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Fig. 2.6 Average node status over the whole tracked period. The blue crosses represent the status
values without any inertia term, while the red crosses represent the status values with an inertia
term where the probability resets to 0 when new neighbors are chosen and grow back to 1 with an
increment of 0.14 per frame

individual. However, the individual with the highest status during this event was
not the stationary one, but rather one who was very close by the stationary one and
who kept moving in a circle. This seems particularly interesting since at other times
(however, not during our tracked period) one dancer would stop and the whole group
would eventually stop too. The difference between these two kinds of events (circling
vs. stationary group motion) may be due to the differences between the status of the
stationary and nearby dancers in the first case as compared to the second case.

By averaging each individual’s status over the whole tracked period, we evaluated
whether or not some individuals had a disproportionate influence on the group.
Figure 2.6 shows the average of each node’s status over the tracked period. Nodes
12 and 10 had the highest average status, with values 1.9σ and 1.7σ higher than the
group mean, where σ is the standard deviation of the average status values over all
nodes.

The average of an individual’s status over the whole tracked period can be similarly
computed in the case that the graph estimation model includes a probability-based
reluctance to switch neighbors, as described above to model switching inertia or,
equivalently, commitment to neighbors. Interestingly, while this inertia term does
lead to a significant decrease in average neighbor changes per second, the overall
structure of average node status values does not change significantly. Figure 2.6
displays the average status of each node both for the original model (blue) and the
filtered model with the inertia term (red). Although there is some variation between
the average node status values for the two models, the same nodes represent upper and
lower outliers. This suggests that the incorporation of reluctance to switch neighbors
into the model does not alter the overall sensing structure, notably the emergence of
leaders, even as it potentially smooths out unrealistic fluctuations of node neighbors.
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Fig. 2.7 Average node status, with no inertia, from a simulation over an equivalent period to the
tracked dancer data

We hypothesize that the emergence of the outlier nodes in Fig. 2.6, and in particular
those with very high status, is due to human bias. To test this, we developed an
agent-based flocking simulation which lacks any human bias. Given our hypothesis,
we would expect that the simulated agents, without human bias, would not exhibit
outlier nodes. The simulation models particles that move in the plane, in a space
with boundaries like in the dance studio, and follow the rules and parameter values
close to those given to the dancers. The simulation was run in Matlab with particle
positions updated synchronously to move in the direction to maintain one arm’s
length (assumed to be 0.80 m) from its two closest nodes within a viewing angle of
180≤, while also repelling from all other nodes within an arm’s length. Additional
functions were incorporated to provide limits on velocities, turning rates and response
to boundaries. The corresponding node status of each of these particles was calculated
analogously to those of the dancers.

The simulated particle system was initialized with positions and headings match-
ing those of the dancers in our experiment and then the average status of each node
was calculated over the following 72 s. The average node status over the first 72 s
is shown in Fig. 2.7 and can be compared to the plot in Fig. 2.6. It can be seen in
Fig. 2.7 that both the mean and the standard deviation are smaller than in the case of
the human dancers and furthermore there are no significant outliers. Every node in
the simulation has a status in the range of values below the human dancer that ranked
eighth in terms of highest node status and above the human dancer that ranked tenth.
Additional simulations were also run with random initial conditions. The average
mean status and average standard deviation of 40 simulations run for 72 s each with
random initial conditions was found to be approximately 0.352 and 0.0094, respec-
tively. These mean and standard deviation values are very similar to those from the
simulation of Fig. 2.7 with the dancers’ initial conditions (0.351 and 0.0080, respec-
tively) and are significantly smaller than what is computed from the tracked dancer
data (0.377 and 0.043, respectively).
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This comparison suggests that one consequence of human bias in the behavior
of the dancers is that some individuals were less influential and other individuals
significantly more influential as compared to a group of identical particles. This
implies that rather than leadership simply arising as a result of random mixing within
the group, the behavior of some individuals makes them more likely to assume
positions of high influence. We note that the dancers corresponding to nodes 10, 11,
and 12 (the three nodes with highest average status) are three of the four dancers
in the small disconnected group of Figs. 2.3 and 2.4, suggesting further possible
consequences of emergent leaders.

2.7 Final Remarks

The Flock Logic project, conceived at the intersection of dance and control theory,
produced a novel and generative framework for artistic, engineering, and scientific
investigation of collective motion. The project centered around explorations and
experiments with the motion patterns that emerge when dancers apply feedback
rules modeled after those attributed to flocking birds or schooling fish. The framework
combined the prescribed rules of individual behavior and response with the unknown
choices and actions of living agents, yielding opportunities for exploration that was
part systematic and part uncontrolled. As a result, the Flock Logic framework proved
useful for artistic exploration of dance and tools for choreography, for engineering
exploration of decentralized control laws for multiagent system dynamics, as well
as for scientific investigation of collective animal behavior and crowd dynamics.

The explorations built off of a set of basic “flocking” rules of cohesion and repul-
sion: dancers were instructed to move around while maintaining an arm’s length dis-
tance from a prescribed number of other dancers and not letting anyone come closer
than arm’s length. Rules for walls, obstacles, and zones were added. Additional objec-
tives and preferences were imposed selectively and secretly so that a small subset
of dancers were asked to influence the group only through their motion and with-
out explicit signaling. Dancers behaving as pursuers or predators applied pressure
dynamically on the group, often to beautiful effect. Synchrony and anti-synchrony of
directionality were explored using alignment rules. Many artistic explorations made
use of different kinds of rules that were originally motivated from observations or
analysis of animal behavior or from engineering design objectives, such as foraging
and coverage. Other explorations were motivated purely by artistic goals, such as
designed responses to specific obstacles.

To address questions concerning the role of the heterogeneity of the group of
dancers and specifically the relative influence of the different dancers on the collective
motion, we analyzed video data of an experiment with thirteen dancers applying the
basic rules of flocking with two-person cohesion. From the video we tracked, the
trajectories of the dancers over a 72 s segment. Then, we applied the flocking rules
to the data to estimate the network graph at each frame of the video, that is, who
was paying attention to whom at each time step. From the resulting time-varying
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graph, we computed node status for each dancer at each frame; node status provides
a measure of how much attention a dancer received from the rest of the dancers. We
discussed how node status was strongly correlated with lead time in turning, i.e.,
dancers with high status would typically turn before the rest of the group. From this
we argued that high node status suggests high influence and therefore leadership.
By examining the average status of each dancer over the whole tracked segment, we
found two of the dancers with status higher than the mean value by nearly twice the
standard deviation. We showed how this result is robust to the addition of an inertia
term that models a dancer’s commitment to its newly acquired neighbors. We also
showed evidence that human bias explains the large variation in influence among the
dancers, and in particular the outliers, by comparing the data with analogous results
from a simulation of dancers modeled as particles without human bias.

These results raise many more interesting questions and possibilities for future
investigation. For example, how does human bias produce leadership, where no
such leadership was assigned? Do certain dancers move in ways that attract the
attention of the others? Or do individuals who emerge as leaders break the rules, for
example, by paying less attention to others than instructed? The results suggest the
possibility of an interesting tension between following rules and breaking rules. This
could be explored scientifically using evolutionary game theory in which there is a
benefit to breaking the rules associated with influencing the group toward one’s own
preferences but also a cost to breaking the rules associated with losing the advantages
of group living.

Other questions concern the relationship between the rules and environment and
the resulting shape and momentum of the group. What accounts for polarized versus
circular motion? What accounts for fissions and fusions of the group? What role do
leaders play in these dynamic transitions? These questions address the fundamental
interplay between how an individual influences the group and how the group influ-
ences an individual. In [39] leadership in a dynamic network evolves according to
distributed adaptive dynamics driven by a metric that rewards efficient tracking of
an external signal; it can be shown in this context that optimal leader sets are defined
by their joint centrality, a property of the network graph much like node status [40].
Our present results suggest an important link between the spatial distribution of more
influential individuals, i.e., those with high node status, and the group-level dynam-
ics. These results may inform design of distributed multiagent adaptive dynamics of
rules, rule-breaking or network interconnections, to control leadership and thus the
collective behavior of the multiagent system.

Many further artistic, engineering, and scientific investigations are possible, even
extending the basic flocking rules into more abstract, nonspatial, domains. Such
domains could include music (as shown in Chap. 7 [22]), personal preferences,
styles, language, and more. Human flocking for recreation or therapy might also be
explored—participants in the Flock Logic performances described finding it calming
to engage with a group without a goal and rewarding to be part of creating something
new.

http://dx.doi.org/10.1007/978-3-319-03904-6_7
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Chapter 3
Dancing Robots: The Control Theory
of Communication Through Movement

John Baillieul and Kayhan Özcimder

3.1 Dance and Motion Primitives

This chapter reports recent extensions of our work [1] on motion-based communication
mediated by the dynamics of a control system. The discussion was focused on a form
of dance involving a small set of motion primitives—beginners salsa. While the set-
ting of this simple form of the dance has provided a useful setting for the discussion
of key ideas, it is also of interest to consider the enhanced artistry to be found in more
advanced level dance sequences. Hence, in this chapter, the basic motion primitives
of beginner’s level salsa (BLS) will serve as the foundation for introducing additional
primitives that correspond to intermediate level salsa (ILS). As described in [1] and
as will be recalled below, there are four motion primitives (dance steps) associated
with beginner’s salsa constitute the alphabet from which dance routines are con-
structed. Any sequence of steps from this four letter alphabet is admissible. This is to
say that any of the four motion primitives can follow any other in the dance sequence.
In constructing intermediate dance sequences, the alphabet of motion primitives will
be larger, and it will no longer be the case that any move can follow any other move.
This is related to another key difference between BLS and ILS. Motions in the latter
involve upper body movements. The four basic steps A, B, C, D in beginner’s salsa
can be distinguished entirely in terms of foot movements of the dancers. In interme-
diate salsa, arm positions of the leader (male dance partner) and follower (female

This chapter reports results that have grown out of our paper in the 2012 American Control
Conference [2]. Parts of that paper are reproduced here for the sake of completeness.
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dancer) play a key role in defining the step as well as in communicating the intended
next step in the sequence. In what follows, we shall discuss the step transitions and
characteristics of the interlocked arm configurations of the dancers in the language
of topological knot theory. This language is useful in relating physical constraints
on the dancers’ body movements to the allowable step transitions in the dance.

The research described below is aimed at understanding how we might go about
characterizing artistic communication through controlled motions. In computer sci-
ence and linguistics, the concept of expressiveness characterizes the difficulty of
recognizing a sentence in a language or grammar [5]. This chapter considers the
problem of understanding expressiveness as it relates to perceived artistry in the
movement sequences that enable communication in dance. When the objective of
robot control and motion planning involves gesture-based information propagation,
expressiveness can be thought of as a proxy for controllability. In [2], it was shown
that a motion description language consisting of only two motion primitives is suf-
ficiently expressive that it can be used to prescribe motions to accomplish robotic
reconnaissance missions within an impotent class in two-dimensional domains. For
the robotic dance described application below, the way in which expressivity depends
on both the size of the motion primitive alphabet and the syntactic rules governing
the construction of sequences of motion primitives will be explored.

The work that we report contributes to a growing literature on robotic emula-
tion of human activities. A complete survey of this literature is not possible, but
several efforts are notable. The use of advanced computer vision to detect and recog-
nize movements is reported in Chap. 8. Leaving aside the important question of
autonomous motion recognition, the present chapter focuses on generative models
and their use in creating artistically pleasing motion sequences. The chapter that
follows, together with the work reported in [1], describes the results of out effort to
understand the creation of motion sequences that interpret musical phrases in salsa.
An interesting counterpoint to this work is reported in Chap. 7 where the authors
discuss blending audio segments to create musical phrases that interpret the detected
flocking behaviors of a group of dancers. The perceived artistic characteristics of
these musical phrases are shown to depend on both positions of the dancers and
the communication between neighbors in the flock. In the work reported below, the
artistic goal is always to create motion executions that utilize perceived movements
of a dancer’s partner to create a desired collaborative performance. While we focus
on pairs of dancers, larger groups can certainly be studied. (C.f. [9, 10]). Work of
LaViers et al. (Chap. 9) finds that additional stylistic characteristics such as the per-
ceived energy expended in the dance routine can influence an observer’s perception
of artistry. While the work in this chapter (and the book as a whole) has aimed
to articulate elements of a theory of robotic dance, the idea of coordinating group
motions by means of regular signal patterns has a much wider range of potential
applications. We call the reader’s attention to Chap. 4 which treats the use of music
to coordinate the movements of UAV formations.

The chapter is organized as follows. In the next section, we discuss some elemen-
tary ideas and concepts in topological knot theory and provide a brief review of the
history of attempts to use formal languages to describe dance. Sections 3.3 and 3.4

http://dx.doi.org/10.1007/978-3-319-03904-6_8
http://dx.doi.org/10.1007/978-3-319-03904-6_7
http://dx.doi.org/10.1007/978-3-319-03904-6_9
http://dx.doi.org/10.1007/978-3-319-03904-6_4
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will review earlier work on the relationship between motion complexity and artistic
merit in beginner’s salsa. Section 3.5 will discuss dance primitives and poses in terms
of knot theory, and Sect. 3.6 will revisit figures of merit that have been introduced
in Sects. 3.3 and 3.4. It will be shown that even though ILS is based on a larger
alphabet of motion primitives, topologically enforced syntactic constraints cause the
movements to be less random. Dance phrases emerge in a natural way. Section 3.7
provides some concluding remarks on quantifying artistic merit. We note that this
chapter is an outgrowth of work reported in an earlier publication [1], and some of
this earlier works are repeated for the sake of completeness in Sects. 3.3 and 3.4.

3.2 The Rudiments of Knot Theory

We recall that knots are simple closed curves in R
3, and links are finite sets of knots

that may be entangled with one another. Although interest in knots dates to antiquity,
the formal study of knots as mathematical objects may be traced to Vandermonde’s
1771 paper “ Remarques sur les problèmes de situation”, [12]. The modern introduc-
tion of polynomial invariants and other algebraic tools have significantly deepened
the theoretical foundations, while the simultaneous proliferation of applications to
statistical mechanics, molecular biology, and chemistry has secured the place of
knot theory as an important mathematical discipline. Knot theory is of interest in the
enhanced version of salsa that we shall examine below where the dancers’ joined
hands both enable artistic expression and constrain the grammar of motion sequences
in the dance. For the purpose of our discussion, we shall provide a rudimentary con-
ceptual introduction to the language of knot theory.

For any two knots, the linking number specifies how many times each curve
(knot) winds around the other. The linking number is always an integer, and since
the curves are oriented, the linking number may be positive or negative. A simple
way to determine the linking number is to “project” the curves onto the plane by
an immersion f : R3 → R

2. Under this mapping a knot (or link) is in one-to-one
correspondence with its image except at double points (called crossings) where a
distinction needs to be made between the top and bottom segments of the knot (link).
(Note, that we do not allow image points of multiplicity higher than two [no triple
points, for instance], and all crossings are assumed to be transverse.) To keep track
of which segment crosses over and which crosses under, we represent the segment
that is under by means of a break, as illustrated in Fig. 3.1. The planar image (with
respect to f ) of the knot (or link) together with the labeling of “over” and “under”
segments at crossings constitutes the link diagram.

Two knots (or links) are equivalent if there exists an orientation preserving home-
omorphis of a neighborhood of the first in R

3 onto a neighborhood of the second
(also in R

3) such that the second knot (link) is the image of the first.
Well-known results of K . Reidemeister [13] have shown that equivalent links may

be transformed into one another by a finite sequence of three elementary moves—the
so-called Reidemeister moves. These are depicted in Fig. 3.2. A type 1 move simply
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Fig. 3.1 Over and under pass information in 2-D regular diagrams

Fig. 3.2 Three Reidemeister moves preserving the link equivalence

removes or adds a kink, a type 2 move is a separation and a type 3 move is preserving
the number of crossings.

Consider two links—colored, say, black and red. Assuming that each is oriented,
there are precisely four possible crossings, as depicted in Fig. 3.3. Let the numbers
of each type of crossing be n1, n2, n3, n4, respectively. The linking number is then
defined to be

#(L1, L2) = n1 + n2 − n3 − n4

2
.

If L is a link with n components L1, L2, . . . Ln then the linking number of L is [11],

∑
1⊆i⊆ j⊆n

#(Li , L j ) = #(L). (3.1)

Figure 3.4 gives the linking numbers for some simple links. Any two unlinked
knots have linking number zero (Fig. 3.4). However, linking number zero for two
knots does not necessarily mean that the knots are unlinked. One well-known example
is Whitehead link which has linking number zero but for which the two components
are linked (Fig. 3.5). This example is important because it shows that linking numbers
do not determine the topology of knots and links. The related concept of an unknot
will be important in what follows.
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Fig. 3.3 Four possible crossings between the link edges

Fig. 3.4 Linking numbers for some of the 2-component links

Fig. 3.5 Whitehead link with #(L1, L2) = 0

Definition 3.1. A knot is called an unknot (trivial knot) if it bounds an embedded
disc. (That is to say, it is equivalent to a circle.)

An important operation in knot theory is that of cutting and splicing. This operation
can be used to alter the local over and under passing at crossings, and thus, it can be
used to change the topology of a knot or link. The final basic concept of elementary
knot theory that we shall make use of is the knot sum. Two oriented knots/links L1
and L2 can be added together to form their sum L1#L2 by placing them side by side
and cutting each one once and splicing in two line segments such that the orientation
is preserved [11] (Fig. 3.6). This is depicted in Fig. 3.7. Below (in Sect. 3.5), we shall
use this circle of ideas to study poses and motion sequences in a simple extension of
beginner’s salsa that will be introduced next.
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Fig. 3.6 Unknotting the trefoil: The cutting and splicing operation locally changes the over and
under passes at a crossing

Fig. 3.7 Orientation preserving knot sum operation for the links L1 and L2

3.3 Salsa: Energy, Complexity, and Perceived Artistic Merit

There are many domains of human endeavor in which it is natural to decompose
complex activities in sequences of motion primitives. Throughout many cultures,
dance consists of sequences of body movements that are known to expert dancers, and
passed on through formal instruction to beginners and students. The artistic content of
formalized movements that occur in dance is central to what must be expressed in the
motion-based language associated with each dance vernacular. It would seem natural,
then, to develop a formal means of transcribing basic motion primitives for dance,
but attempts to do this have not led to widespread use among dance professionals.
Perhaps the best known effort in this direction was the development in the 1920s
of labanotation [6, 15]. Rolf Von Laban attempted to develop a scripting language
that was sufficiently expressive that all human movement could be described and
recorded on paper. This has never been widely used, probably because in its attempt
to be universal, it became complex and nonintuitive. (This is supported by noting the
“more than 700 symbols that indicate parts of the body, direction, levels, and types
of movement and the durations of each action.” (Quoted from the web page [7].)

In this chapter, we avoid dealing with such expressive complexity by restricting
our attention to a form of dance involving only a small set of motion primitives—
beginner’s salsa. As is always the case in the performing arts, there are distinct levels
of proficiency in salsa. Because our goal is to analyze and deconstruct component
motions in order to reinterpret them as controlled motions of simple wheeled robots,
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Table 3.1 The ten dance
sequences

Dance 1 DD ADB B B B ACCC DDDDDB D AAAA
Dance 2 AAAAAAAADDDDDDDDDDDB DB B
Dance 3 ADBC D AC B D ADBC D AB AC D AC B D
Dance 4 DBC ADBC ADBC ADBC ADBC ADBC
Dance 5 AC B D AC B D AC B D AC B D AC B D AC B
Dance 6 ABC DBC D AC D AB D ABC AB ADBC D
Dance 7 DB AD AC B DDB AB DD AAC DB B D AD
Dance 8 AAAAB AAAD AAAAAAAC AAAD AA
Dance 9 DBC DC B B DC B DDDB DDD AABCCC
Dance 10 DB DCC B DDB B DDDCCCC AB DDDB

we consider a version of beginner’s salsa that uses only four basic steps which we
label A, B, C , and D. (See Fig. 3.17) In salsa, as in many forms of dance, each
motion primitive (dance step) begins and ends in accordance with the rhythm of the
music to which it is set. Specifically, in a sequence of elementary steps making up
a salsa performance, each of the four motion primitives is executed for a period of
eight beats (two bars) of the music. In what follows, we describe the salsa motion
primitives in terms of their two-bar durations. We assume each primitive has the
dance partners standing in a standard initial pose as illustrated in Fig. 3.17.

In an attempt to understand something about how people perceive the artistic merit
of a dance performance, two dancers were asked to perform a number of short salsa
segments using the four basic dance primitives in different sequences. Digital video
recordings of the salsa segments were shown to 20 “judges” who were asked to rank
the performances in order of artistic merit. The judges included both trained dancers
as well as people with no formal training in dance. All judges were instructed to use
standard criteria in their rankings, including artistic conent, dance routine difficulty,
partner synchronization, and complexity of the choreography. Ten dance sequences,
each comprised of 23 basic dance primitives were selected to be ranked by each of
the judges. Using the motion primitives (dance steps) A, B, C, D described in the
previous section, the ten performances are given in Table 3.1.

The average scores of the 20 judges are given in the first row of Table 3.3. Dance
sequence 9 was preferred, while almost no one liked dance number 2. It is noted that
although the judges were in substantial agreement regarding dance number 2 (rated
as poor) there was comparatively high variance in the judges scores on other dances.

Having thus tabulated the judges’ rankings, we were led to the question of whether
the artistic qualities in terms of which the performances were differentiated could be
indentified in a precise and even quantitative way. The late Dennis Dutton identified
complexity as one of the four central characteristics of great art.1 Dutton [4] To
evaluate the complexity of a sequence of symbols such as those in Table 3.1, we
considered metrics suggested by the well-known Shannon Entropy. The simplest
possible metric may be arrived at by recording the number of occurrences of each

1 Dutton identifies the four central characteristics of high art as 1. complexity, 2. serious content,
3. purpose, and 4. distance [4].
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Fig. 3.8 A scatter plot of Judges’ rankings as a function of the frequency complexity using the data
from Table 3.1 and listed on rows 1 and 2 of Table 3.3

of the symbols in the symbol set S = {A, B, C, D}. Each dance is exactly 23
symbols in length, and thus the relative frequency of occurrence of the k-th symbol
is fk = (#of occurrences of k − th symbol)/23. The metric

⎛
⎝ symbol

frequency
complexity

⎞
⎠ = −

4∑
k=1

fk log2 fk (3.2)

is then a measure of the variability of the component steps that make up the dance.
Because there are only four symbols involved, the maximum value this measure
could take is log2 4 = 2, which would be attained if each symbol appeared in the
sequence equally often. (Since the sequence lengths are all 23, this bound is never
achieved.) On the other hand, if any single symbol were to appear in all 23 places
in the sequence, the complexity (3.2) would have the value 0. When the complexity
metric (3.2) is evaluated on the ten dance sequences of Table 3.1, the values are
strictly between the two extremes, and they are given in row three of Table 3.3.

A simple linear regression in which the average judges’ scores were regressed on
the computed symbol frequency suggests only a modest correlation. (See Fig. 3.8)
Indeed, the value of the coefficient of correlation for the sequences is only 0.48,
indicating a weak correlation. The following section describes some refined notions
of complexity that may more faithfully reflect the artistic quality of the sequences.

3.4 Deconstructing the Dances into Four-Step Phrases

It is an interesting exercise to attempt to fit four-state Markov chain models to the
symbol sequences of Table 3.1. While the sequences are long enough and the sets of
transitions are rich enough in some cases to construct such models, any model of the
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dance in which the next step depends only on its immediate predecessor step will
probably seem a bit aimless and not reflective of the artistic quality of the sequence
of steps that the dance actually contained. As has been noted in the computer music
literature, [14], higher order Markov chain models can be used to capture the phrasal
nature of music. While fitting higher order Markov models to the sequences of
Table 3.1 is beyond the scope of the chapter, we shall briefly examine the phrasal
structure of the sequences. In Sect. 3.5, it will be noted that physical and topological
constraints impose a natural phrase structure on motion sequences in our ILS model.

As noted above, each of the four motion primitives in BLS is executed over
a period of eight beats of music. Each phrase is thus eight musical measures in
length. Since there are four beats to a measure, it is natural to group the letters in
the sequences into four letter phrases. Several phrase centric complexity metrics can
then be considered. One such metric is based on viewing each four symbol phrase
as a complete dance sequence in its own right. In terms of the symbol set S, every
four letter phrase has a complexity given by (3.2) where now fk = (# number of
occurrences of the k-th symbol)/4. Clearly, there are five possible values that this
phrase complexity metric can take on phrases made up of the four letters in S. They
are 0, − 1

4 log 1
4 − 3

4 log 3
4 = 0.811278, − log 1

2 = 1, − 1
2 log 1

4 − 1
2 log 1

2 = 1.5,

and log 4 = 2 in the respective cases that all letters in the phrase are equal, three
letters in the phrase are equal, there are two distinct pairs of equal letters, there are
exactly three letters in the sequence, and finally in the case that there are four distinct
letters in the sequence. Based on this phrase metric, we prescribe an averaged phrase
complexity metric for each of the 23 letter sequences. Ignoring the final three letters
in each sequence, the right hand column in Table 3.2 lists the number of distinct four
letter phrases that make up the dance. The third row of Table 3.3 lists the averaged
phrase complexity of the dance.

A further metric in terms of which to evaluate dance complexity is what we shall
call the number-of-phrases complexity. We omit details but note that this metric is
based on the number of distinct phrases and their frequency of occurrence among
the first 20 letters in each dance sequence (a number between 1 and 5). The possible
values of the number-of-phrases complexity in terms of the appropriately restated
formula (3.2) range between 0 and log2 5 ⊂ 2.344. The values taken on by this metric
for our ten dances are listed in row 4 on Table 3.3. Note that while dances 4 and 5 have
the highest averaged phrase complexities (being comprised of four distinct letters),
they also have the lowest complexity measured in terms of number-of-phrases.

Comparing the average judges’ scores with the averaged phrase complexity
showed a discernible correlation, with the coefficient of correlation being 0.75. On
the other hand, the number-of-phrases complexity had no meaningful correlation
with the judges rankings (correlation coefficient −0.099). It is interesting to note,
however, that a convex combination of these complexity metrics in which the rela-
tive weightings are 90 % averaged-phrase complexity and 10 % number-of-phrases
complexity has a slightly higher value of 0.764 coefficient of correlation with the
judges rankings. This metric slightly discounts dance routines that repeat the same
four steps over and over. It is also interesting to note that both these complexity
metrics are identical on and do not discriminate between dances 4 and 5, and yet the
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Table 3.2 The dance sequences grouped into four-letter phrases

# phrases

Dance 1 (DD AD)(B B B B)(ACCC)(DDDD)(DB D A)AAA 5
Dance 2 (AAAA)(AAAA)(DDDD)(DDDD)(DDDB)DB B 3
Dance 3 (ADBC)(D AC B)(D ADB)(C D AB)(AC D A)C B D 5
Dance 4 (DBC A)(DBC A)(DBC A)(DBC A)(DBC A)DBC 1
Dance 5 (AC B D)(AC B D)(AC B D)(AC B D)(AC B D)AC B 1
Dance 6 (ABC D)(BC D A)(C D AB)(D ABC)(AB AD)BC D 5
Dance 7 (DB AD)(AC B D)(DB AB)(DD AA)(C DB B)D AD 5
Dance 8 (AAAA)(B AAA)(D AAA)(AAAA)(C AAA)D AA 4
Dance 9 (DBC D)(C B B D)(C B DD)(DB DD)(D AAB)CCC 5
Dance 10 (DB DC)(C B DD)(B B DD)(DCCC)(C AB D)DDB 5

The right-hand column lists the number of distinct four letter phrases in the sequence, and the final
three letters in each sequence were not counted as a phrases

Table 3.3 There were 20 judges; numbers in parentheses in the average score row are standard
deviations

Dance no. 1 2 3 4 5 6 7 8 9 10

Average
score by 3.6 1.9 5.1 5.7 7.3 6 6 4.2 7.8 7.3
judges (2.0) (1.5) (3.0) (2.1) (1.8) (2.6) (2.2) (3.1) (2.4) (2.2)

Symbol
frequency 1.897 1.403 1.985 1.996 1.996 1.996 1.848 0.927 1.848 1.731
complexity

Averaged
phrase 0.625 0.162 1.8 2 2 1.9 1.5 0.487 1.362 1.362
complexity

Number
of phrases 2.322 1.522 2.322 0 0 2.322 2.322 1.922 2.322 2.322
complexity

Robot
dance 13727 12945 14326 14567 14547 14248 13349 13181 14627 14647
energy

Robot dance energy is computed as a function of the total distance traveled on the dance floor by
wheeled robots simulating the motions of the dancers

judges had a clear preference for dance 5. There is clearly some aspect of artistic
merit that is not captured by the complexity metrics.

3.5 The Topological Knot Theory of Intertwined Arms

In this section, we consider an enhanced form of salsa, which we refer to as ILS and
in which there are additional motion primitives (dance steps) as well as a physical
constraint imposed by requiring the dance partners to maintain hand contact. We
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Fig. 3.9 The link diagram of L with its components L1 and L2

start our analysis by assuming that in an abstract model a dancer and his/her arms
will be represented by a two component link L . The components are an infinitely
long cylinder (or line) L1 (representing the body or torso of the dancer) and a trivial
knot L2 (representing the arms) with the orientations given as in the Fig. 3.9.

It is assumed that the link representing the initial pose of a dance couple (Fig. 3.11)
is a knot sum of the links representing each dancer. In Fig. 3.10, one can see the knot
sum L#F of the links L and F with the orientations preserved and its three compo-
nents, L1, L2 and L3. We retain the color coding, blue and red, of the link segments
to represent the male (leader) and female (follower) dance partners respectively.

It is easy to conclude from Fig. 3.10 that linking number of the link sun L#F
is #(L , F) = 2 and the number of crossings cr = 4. This link diagram above is
assumed to be the starting link since it represents the link diagram for the initial pose
of the dancers when they start to dance [1].

We shall address several questions: (1) How many non equivalent links are
required to represent the poses that occur in a salsa performance? (2) What are the
changes of link attributes corresponding to the physical movements that define the
dance steps? To answer these questions, we define the set of dance moves (motion
primitives) that will be the alphabet from which dance sequences of intermediate
level salsa (ILS) are constructed. The key distinction that will be drawn with respect
to BLS treated above is that in ILS, the dancers never break hand contact. Hence
their arms and bodies remain knotted in the sense described above such that the link
diagram always has three components. To the basic moves A, B, C, D that we have
already defined (and which are pictorially represented in Fig. 3.17) we add seven
additional moves {J, K , M, N , O, P, T }, each of which continues to be performed
over the course of eight musical beats. We do not describe the foot movement used
to execute these, but rather identify the distinguishing characteristic as simply the
beginning and ending poses. It will turn out that the knottedness of the dancers’ arms
will constrain the sequencing of dance steps. Hence, unlike the beginners’ salsa
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Fig. 3.10 The knot sum of the links L and F

Fig. 3.11 The illustration of the initial and final poses and link diagram representations for
move B

considered in Sects. 3.3 and 3.4, ILS does not allow complete freedom in the choice
of letter sequences. This will, of course, affect the information theoretic metrics that
we have used to discuss complexity of dance routines.

The focus here is understanding how dance movement transitions are constrained
by the arm positions. The link diagrams corresponding to the poses illustrated in
(Fig. 3.18) are shown in Fig. 3.12. The dancers’ arms will cross in different patterns,
and these patterns are shown in the usual way as under- and over-crossings in the
figure.

Remark 3.1. Let q ji and q j f be the initial and final link diagrams representing the
initial and final poses p ji and p j f respectively for the moves j → {A, B, C, . . . , T }.
We can classify the links into three groups with respect to both the linking number
(lk) and number of crossings (cr) (Fig. 3.12).
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Fig. 3.12 Initial and final link diagrams for eleven moves in Intermediate Level Salsa (ILS)

• lk = #(L , F) = 2 and cr = 4 (e.g. qAi , qN f ,…) : 14 link diagrams (including
starting link),

• lk = #(L , F) = 2 and cr = 6 (e.g. qB f , qMi ,…): 4 link diagrams,
• lk = #(L , F) = 3 and cr = 7 (e.g. qJ f , qNi ,…): 4 link diagrams.

Remark 3.2. The purpose of the discussion here is to illuminate the constraints on
motion sequences that are imposed by the topologies of the links depicted in Fig. 3.12.
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These constraints are completely determined by the beginning and ending poses of
the dance steps. The significance of the constraints in terms of our complexity metrics
will be discussed in the next section. Refined enhancements to the sets of dance prim-
itives involving finely detailed descriptions of body movement, foot placement, and
the artistic disconnecting and reconnecting of the dancers’ hands will be discussed
elsewhere. We point out that for motion primitives A, B, C, D, the foot motions of
the dancers are shown in (Fig. 3.17).

We note that the crossing number (cr ) is not a knot (link) invariant, but it will
be shown to usefully characterize the poses corresponding to the link diagrams
of Fig. 3.12. To understand this correspondence, we define a motion operator that
describes the movement of the dancers in the transition from their initial to final
pose in each of the eleven steps. As apparent from Fig. 3.12, the motions of the male
(blue) and female (red) partners are qualitatively different from one another. The link
crossings and uncrossings arise from the female rotating her body through angles of
Δ or 2Δ with respect to the initial pose. The dance motions from beginning to ending
poses in our eleven dance primitive can be labeled as follows in terms of a motion
operator, ≤(., .):

≤(0, 0) ⇔ the female partner
begins and ends facing the
male partner in the move
(A, C, D).

≤(Δ, CW ) ⇔ the female partner rotates
by Δ in the clockwise
direction(J, O).

≤(Δ, CCW ) ⇔ the female partner rotates
by Δ in the counterclockwise
direction(N , T ).

≤(2Δ, CW ) ⇔ the female partner rotates
by 2Δ in the clockwise
direction(B, P).

≤(2Δ, CCW ) ⇔ the female partner rotates
by 2Δ in the counterclockwise
direction(K , M).

Consider move B. This has the follower rotating 2Δ in the CW direction. The change
from the initial pose pBi to the ending pose pB f in move B is represented by the
notation,

pBi ≤ (2Δ, CW ) → pB f . (3.3)

The ≤(., .) operator will be used to describe the rotations in ILS. The move descrip-
tions are listed in Fig. 3.13.

From this figure, it is clear that the physical actions of the follower is one of
the four ≤(2Δ, CW ), ≤(2Δ, CCW ), ≤(Δ, CW ), ≤(Δ, CCW ) together with the null
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Fig. 3.13 10 moves in which there is follower rotation

rotation (of move A etc.). The link transformations associated with the five motion
operations are characterized as follows.

Proposition 3.1. In ILS, the physical transformations ≤(2Δ, CW ), ≤(2Δ, CCW )

will result in topologically equivalent (under Reidemeister transformations) initial
and final link representations.

pζi ≤ (2Δ, .) → pζ f , qζi → qζ f , qζi ⊂ qζ f , ζ = B, K , M, P. (3.4)

However, the physical transformations ≤(Δ, CW ), ≤(Δ, CCW ) will have non equiv-
alent initial and final links.

pζi ≤ (Δ, .) → pζ f , qζi → qζ f , qζi ∈⊂ qζ f , ζ = J, N , O, T . (3.5)

Proof. For the proof we begin by proving the second part of our result. Links whose
linking numbers differ cannot be topologically equivalent. Hence in Fig. 3.12, one
may observe the moves J , N , O , T , which involve applications of the ≤(Δ, ·) oper-
ator are such that the linking number changes by 1, proving that the links are not
equivalent. In order to make the link diagrams of the beginning and ending pose
equal, one would need to cut need to cut and splice one of the link components as
illustrated in Fig. 3.14—the black circle showing the location of the cutting opera-
tion. In order to prove the equivalence of the links representing the poses after the
≤(2Δ, .) operator is applied, it is enough to show the proper elementary Reidemeister
transformation between the initial and final links. One can apply a Reidemeister Type
1 move (Fig. 3.2) (inverting the right or left vertical link segment L or F) to decrease
the number of crossings in the connecting link while preserving the link invariants,
and showing the equivalence with the link diagram corresponding to move A.

Remark 3.3. It is important to note that the Reidemeister moves that render the
link diagrams corresponding to ≤(2Δ, ·) motions equivalent to the ≤(0, 0) motion
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Fig. 3.14 The cut-and-splice operation of Proposition 1 that transforms the ending to the starting
link diagram (black circle in the figure is the crossing at which the cutting operation is applied in
order to alter the over and under passes of the link segments)

Fig. 3.15 Transition from move B to the move M with link diagram representations

in Proposition 1 would be impossible to physically realize by the dancers. Thus,
both the ≤(Δ, ·) and ≤(2Δ, ·) operators play an equivalent role in constraining the
motion transitions. If we relax the continual hand holding requirement, however, the
distinction between linking number changes under the ≤(Δ, ·) and ≤(2Δ, ·) operators
becomes significant. After the ≤(2Δ, ·) motions, the female dancer does not need to
move to return to the initial pose. The dancers can simply release and regrasp each
other’s hands. After the ≤(Δ, ·) motions, however, the female dancer must rotate her
body by ±Δ to return to the starting pose.

Proposition 3.1 characterizes the change of the link topology produced by the
corresponding motions in each dance step. These changes and the fact that ending
and beginning poses may have topologically distinct link diagrams places constraints
on assembling admissible sequences of moves in a dance. These may be understood
in terms of differences the among the moves illustrated in Fig. 3.12. Moves in the set
{A, C, D} start and end with the starting link. Moves in the set {T, J, K , B} only start
with the starting link, and {O, N , P, M} only end with the starting link. The move
transition pairs B M , J N , K P , T O also start and end with starting link. Move M can
be thought as an “inverse” move of move B—one that transforms its final link back
to the starting link (Fig. 3.15). This raises the question of finding all possible move
transitions in ILS. We shall describe this feasible set in terms of the link diagrams of
the beginning and ending poses.
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Fig. 3.16 The allowable transitions for each move in ILS based on the physical constraints

Proposition 3.2. Assume that q ji and q j f are the initial and final link diagram
representations for the initial and final poses p ji and p j f ,

j → {A, B, C, D, J, K , M, N , O, P, T },

respectively. Then any admissible dance sequence can be represented by a finite
concatenation of brackets [q ji , q j f ] in which any pair of successive brackets has the
final link diagram of the first bracket equal to the initial link diagram of the second
bracket.

Discussion: It is obvious that with respect to the physical constraints on the dance,
the final pose of a move performed and the initial pose of the next must be exactly
the same for the dancers to transition from one to another. Because of these physi-
cal constraints, move transitions in a dance sequence . . . [q ji , q j f ][qki , qk f ] . . . are
allowed only when the corresponding final link diagram q j f of the previous move
and the initial link diagram of the next move qki where k, j → {A, B, C, . . . T } are
the same.

By looking at the link diagram representations of the poses given in the Fig. 3.12,
one may conclude that there are three types of moves in an admissible dance sequence.
We can summarize the allowable transitions . . . [q ji , q j f ][qki , qk f ] . . . as follows.

• if j → {A, C, D} then, either k → {A, C, D} or k → {T, J, K , B}.
• if j → {T, J, K , B} then the transitions are deterministic such that, B M , J N , K P ,

T O must appear in the sequence. (This is similar to the need to have the letter u
follow the letter q in English).

• if j → {O, N , P, M} then either k → {A, C, D, } or k → {T, J, K , B}.
This may be summarized in the state transition diagram of Fig. 3.16.
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3.6 Complexity Merit of an Intermediate Level Salsa
Performance

The transition constraints imposed by the knotting and unknotting of the dancers’
arms will affect the complexity metrics of Sect. 3.3. The empirical comparison of
rankings based on these metrics with human (e.g. judges’) perceptions of artistic merit
is work in progress. The intrinsic complexity of the enhanced (ILS) dance sequences
can be discussed in terms of a Markov model of the step transitions, however, and this
complexity can be compared with the corresponding model of BLS discussed above.
Assuming no particular biases in the choice of step sequences allowed according to
Fig. 3.16, we let the probabilities of steps A, C, D, B, J, K , T following step A in
a sequence be 1/7. Assigning transition probabilities in a similar way in accordance
with the given transition constraints, we can model dance sequences as a Markov
chain with transition matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)

It is easy to see that this is a doubly stochastic matrix, and since it is aperi-
odic and irreducible, the associated invariant distribution is the uniform distribu-
tion on the 11 dance steps. That is, the invariant probabilities are μi = 1/11 for
i → {A, B, C, D, J, K , M, N , O, P, T }. The entropy of this is log2 11 = 3.46,
whereas the entropy of the four-letter sequences of beginner’s salsa is log2 4 = 2.
What is perhaps more revealing is to compare the entropy rates of the unconstrained
beginner’s salsa and the intermediate level salsa. Recall [3] that given a random
walk Xi on a graph described by a Markov transition matrix P having stationary
distribution μ1, . . . , μ11, the entropy rate is given by

−
∑

i

μi ,
∑

j

Pi j log2 Pi j .

For the systems described by (3.6) this is 1.7865, which is less than log2 4 = 2
for the unconstrained four state system of beginner’s salsa.
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In thinking about the complexity metrics of Sect. 3.3, we note that some differences
can be expected with intermediate level salsa, but some metrics will be similar. For
the intermediate level case, we have

⎛
⎝ symbol

frequency
complexity

⎞
⎠ = −

11∑
k=1

fk log2 fk . (3.7)

Since there are eleven symbols in ILS the maximum value of this measure is
log2 11 = 3.45 which is simply performing each move equally often in a given
n symbols length dance sequence. On the other hand this value remains 0 when
only one move appears the sequence. The average phrase complexity metric can be
calculated by the eq. 3.7 where

fk = (#of occurences of the k-th symbol)/4.

Thus, the complexity value for the whole sequence is calculated by taking the
average of the total number of phrases. There are four distinct possibilities of phrase
complexities, 0, 0.811278, 1, 1.5, 2 when all four symbols are equal, three symbols
are equal, two symbols are equal and when there are four distinct symbols in a
phrase respectively. These cases are exactly the same as in beginner’s salsa where
there were a total of four distinct symbols. The number-of-phrases complexity which
takes values that range between 0 to log2(total number of phrases) will also remain
roughly the same in ILS, although the set of possible distinct phrases is much larger.

It was noted that the energy consumed in performing a particular dance sequence
in our beginner’s salsa performances had a measurable influence on the judges rank-
ings [1]. Our measure of the energy consumed was simply the distance covered by
an equivalent wheeled robotic dancer that followed the planar path of the human
performers. The extension of this idea to the ILS needs to account for additional
movement since the majority of the motions in ILS are based on the dancers’ rotations
and arm movements. New sets of experiments with an enhanced set of performance
metrics are work in progress.

3.7 Conclusion

The chapter has described a number of figures of merit of dance performance and
considered both a beginner level and intermediate level salsa. The particular inter-
mediate salsa discussed in Sects. 3.5 and 3.6 entails dance movements in which the
dance partners remain in physical contact—holding each other’s hands. This phys-
ical contact restricts the possible motion sequences that can be executed insofar as
certain eight beat dance moves cannot be followed by certain other moves without
breaking hand contact. It was shown that because of this, the entropy rate of a Markov
model of the intermediate level salsa was less than that of the beginner’s salsa, even
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Fig. 3.17 Basic Salsa—four dance steps: from top to bottom A, B, C, D
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Fig. 3.18 Initial and final poses for eleven moves in intermediate level salsa (ILS)
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though the ILS uses an alphabet of eleven motion primitives as compared with four
motion primitives for BLS. This smaller entropy rate implies that dance phrases as
opposed to purely random sequences of steps appear naturally in ILS. It was also
noted in Sect. 3.4, that averaged phrase complexity of dance routines correlated well
with judges rankings.

While the topological constraints on movement are useful in developing a gram-
mar of movement in dance, trained dancers do not always maintain the physical
contact that we have studied in Sects. 3.5 and 3.6. It is hoped that further research
will illuminate the role of making and breaking physical contact in determining the
perceived artistry of dance. Even with such expressive freedom, we conjecture that
artistic performances will exhibit an underlying syntax of motion sequences. Some
evidence of this appears in the work of LaViers et al. [8].
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Chapter 4
So You Think You Can Dance? Rhythmic Flight
Performances with Quadrocopters

Angela P. Schoellig, Hallie Siegel, Federico Augugliaro and Raffaello D’Andrea

4.1 Rhythmic Flight with Quadrocopters

Fly with the music. —Song title by DJ Grande

This chapter presents a set of algorithms that enable quadrotor vehicles (such as
the ones depicted in Fig. 4.1) to “fly with the music”; that is, to perform rhythmic
motions that are aligned with the beat of a given music piece.

We design feasible periodic motion patterns based on a model of the quadrocopter,
which describes the dynamic capabilities of the vehicle. Control algorithms based on
the vehicle model stabilize the vehicle in the air and guide it along the desired flight
paths. However, without additional adaptation algorithms, the quadrocopter does not
follow the desired path with the required accuracy resulting in a motion that is not
in sync with the music. To perfect the vehicle’s flight performance, measurements
obtained from flight experiments are used to adapt the motion parameters sent to
the vehicle (‘commanded trajectory’ in Fig. 4.2). This adaptation can be done online
(during a flight performance) or offline (before a flight performance). The results are

This chapter summarizes results that have previously been published in [1–5]. Parts of those
papers are reproduced here for the sake of completeness..
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Fig. 4.1 A flight performance of multiple quadrocopters timed to music. (Photo Federico
Augugliaro)

Fig. 4.2 High-level control architecture used for implementing rhythmic flight performances. Key
components are the offline trajectory planning and online trajectory adaptation. (Position, velocity,
and acceleration refer to the translational coordinates and heading corresponds to the vehicle yaw)

flight maneuvers that closely follow the desired periodic motion pattern (‘desired
trajectory’ in Fig. 4.2) and align with the beat of the music.

This work can be viewed as a proof-of-concept result that shows the feasibility
of rhythmic flight and represents an important step toward our vision of creating
multivehicle aerial ‘dance’ performances.

4.1.1 Vision of a Quadrocopter Dance Performance

It takes an athlete to dance. But it takes an artist to be a dancer.
—Shanna LaFleur

Quadrocopters are exceptionally agile and “athletic” vehicles, but it takes more than
agility to create a musical flight performance that is both viable and convincing. We
envision a troupe of quadrocopters flying together across a big open stage—their
movement choreographed to the rhythm of the music, their performance coordinated
and skilled, and their choreography well-suited to their abilities and to the character
of the music. A quadrocopter “dance”.

A preliminary framework for designing and executing coordinated flight choreog-
raphy to music has been implemented at the ETH Flying Machine Arena (Fig. 4.3).
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Fig. 4.3 The ETH flying machine arena. Left Schematic drawing showing the motion capture
camera system that provides accurate measurements of the vehicle’s six degrees of freedom, position,
and attitude. Right Photo of the installation at ETH Zurich. (Photo Raymond Oung)

In this framework, the underlying vehicle control is done automatically, while the
high-level motion design is left to a human “choreographer”. This work-in-progress
currently enables the human operator to generate choreographies by assigning motion
elements to individual music segments that correspond to the music’s character. In
addition to the algorithms presented herein, support is provided by, for example,
a library of predefined, parameterized motion elements and a collision-free trajec-
tory generator, which can be used for smoothly connecting single motion elements.
Video sources of various quadrocopter flight performances are found at www.tiny.
cc/MusicInMotionSite.

4.1.2 Artistic Motivation

As robots have grown more advanced, they have become our mirrors, as we watch the way
they perform activities that we do as well. And as we watch, secrets are unlocked—secrets
about how we, housed in our own biological frameworks, operate.
—Rodney Brooks, roboticist and entrepreneur

The embodied mind thesis [6], which straddles such diverse fields as philosophy, psy-
chology, cognitive theory, neurobiology, robotics, and artificial intelligence argues
that all aspects of cognition are shaped by the experiences of the body; that how
we perceive the world around us (through our sensory system) and how we move
through and interact with this world (through our motor system) intrinsically deter-
mines the ways in which we think and experience. Proponents of “embodied AI”,
such as Rodney Brooks [7] and Rolf Pfeifer [8], argue that for machines to be truly
intelligent, they must have sensory and motor skills, and be connected to the world
through a body.

It is interesting to consider the idea of “embodiment” also from the perspective
of professional dancers, choreographers, and athletes—people for whom the ability
to sense and move in the world forms a critical part of their work. In a paper entitled

www.tiny.cc/MusicInMotionSite
www.tiny.cc/MusicInMotionSite
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“The Dance: Essence of Embodiment” [9] the philosopher/dancer duo Betty Block
and Judith Lee Kissell describe dance as an “embodied way of being-in the-world,”
and that “an analysis of dance is a profoundly enriching way to better understand
embodiment itself.” In other words, to dance is to be an expert in embodiment.

It is no wonder, then, that robotics researchers have turned to dance as a means
of understanding gesture and movement. Examples are provided in the subsequent
Sect. 4.1.3.2. Note that many of these robotic/dance experiments involve humanoids
and/or robotic arms that mimic human limbs. Indeed, mimicry is a proven means
of generating understanding: much can be learned by reverse-engineering human
movements and gestures.

But what happens when the “body” is not human? When the body is no longer
constrained by the limits of arms, legs, torso, and head? In this research project, where
quadrocopters learn and perform “dance”, mere mimicry of human movement is no
longer sufficient. A whole new meaning of “embodiment” begins to emerge.

It is obvious that the quadrotor body is mechanically different from the human
body. It does not have arms, legs, or a head, but instead has rotating blades. Because
it flies, it occupies three-dimensional space in a way that we humans cannot. Its
movements are fundamentally different from ours: while we generate movement by
pushing off a hard surface (such as the ground), a quadrocopter creates movement
by “pushing” on air. These fundamental differences make it a challenge to design
motions for quadrocopters that can be recognized as dance by humans, and that can
been interpreted by human eyes as being “expressive”.

Yet for all these differences, when it comes to dance performance, quadrocopters
and humans share much in common as well. First and foremost, “dance”—whether
performed by humans or by quadrocopters—is an exploration of three-dimensional
space that must respect the boundaries of both the performance space and the body
of the performer. Both humans and quadrocopters have limits to their abilities, and
not every sequence of movements is feasible. In human dance, during a ballet barre
exercise, for example, a Développé movement does not follow logically from a Plié
(see Chap. 9 ); for quadrocopters, subsequent movements require smooth transitions
without jumps in the vehicle position or attitude. Rhythmic ability is another feature
shared by both humans and quadrocopters: when music is present, human motion is
easily adapted to its meter, and with beat extraction software, this feat is accomplished
by quadrocopters, too. Another commonality is the ability to dance in groups: human
dance performances often feature troupes of dancers interacting with each other in
a shared space; advances in trajectory planning allow quadrocopters to also share
a space in a coordinated fashion without fear of collision. Humans also practice
to perfect their skills—something we can enable in quadrocopters as well using
parameter learning schemes [4]. And finally, humans teach and learn from each
other; while cooperative machine learning remains to be explored in-depth, current
research in this area is promising and suggests that shared learning could greatly
enhance the learning process.

For robotics researchers, it is these commonalities that make an experiment
in quadrotor dance so interesting. If the mechanical differences between humans
and quadrocopters make it challenging for us to see them as “dance objects” or

http://dx.doi.org/10.1007/978-3-319-03904-6_9
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“dancers”, these differences are also what make quadrocopters capable of exploring
and experiencing three-dimensional space in a way that humans physically cannot.
For example, quadrocopters can engage with the three-dimensional space of the
stage, including its full height, and can leverage air to generate movement—feats
no human can do. In other words, what is challenging about quadrotor dance is also
potentially liberating: when humans interface with quadrocopters by composing and
executing quadrotor choreography, it opens up a new means of extending our own
bodies into new physical and technological worlds.

Seen in this light, quadrocopters could become our dance partners, and the human–
machine interface could become the cybernetic means through which we extend
ourselves into new ranges of space and motion. This project is a first step toward that
vision.

4.1.3 The Interplay of Dance and Technology

Dance and technology can shake hands but not at the expense of forgetting the essence of
dance.
—Tero Saarinen, dancer and choreographer

The interplay of dance and technology has long been a space for experimentation,
and a source for inspiration, innovation, and new developments. While technology
has provided new means for dance expression and challenged dancers to rethink their
art, dance has often challenged the state of the art of technology and motivated new
technological developments. An early example is the theatrical lighting pioneered
by the dancer Loie Fuller in the 1890s. Loie Fuller incorporated multicolored light
in her performances and established stage lighting as a new dimension for dance
expression. In addition, Fuller’s work pushed the boundaries of current technology
and resulted in several patents related to stage lighting technology.

4.1.3.1 Information Technology and Dance

In the past 50 years, computer and information technology have influenced and
transformed dance. The term “dance technology” has become a synonym for the
relationship between dance and information technology [10, 11]. Attracted by the
potential of this new field, dance performers, teachers, choreographers, and computer
scientists have explored the partnering of two disciplines that are, as stated in [10],
quite different: “Dance and technology make seemingly odd partners. Dance is the
most ethereal of art forms and computer technology perhaps the most concrete of
sciences. Whereas technologists deal with the logical, the scientifically verifiable,
dancers, as artists, deal with the illogical, i.e. inspiration and finding truth in that
which cannot be spoken.”
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Fig. 4.4 The interplay of dance and technology. a Performance 100d11A0N1C00E1 of Carol Cun-
ningham, April 2003: real-time animated projection of dancers’ movement onto three large screens
using motion capture (Photo David Umberger); b Performance Apparition of Klaus Obermaier and
Ars Electronica Futurelab (www.exile.at), Ars Electronica 2004: interaction of dance and multime-
dia with real-time visual content generation; c Performance Human interface of Thomas Freundlich,
May 2012: two dancers and two industrial robots perform together (Photo Johanna Tirronen)

Work at the interface of information technology and dance has advanced both
disciplines by (i) integrating dance, emotions, and human character into computer
technology and animations, and (ii) establishing new analysis tools and means of
expression for dance performances.

Work in (i) has focused on computer graphics applications and aimed to create
human-like virtual characters that are able to dance. Human motion capture data has
been used to understand, model, and imitate human dance behavior [12, 13].

In (ii), information technology has led to new methods for expressing, creating,
assessing, and instructing dance (cf. [14, 15]). Results include interactive per-
formances of human dancers with computer-generated sound and images (e.g.,
computer-animated virtual dancers projected on a wall) [15–17], responsive

www.exile.at
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environments where the dancer’s movement controls video, audio, and/or lightning
[18, 19], computer-assisted choreography design based on a language for human
movement representation and on virtual dance animation [11, 20], motion tracking
and capture to record or teach a piece [21], and multimedia in dance education [22,
23]. Figure 4.4, photos a and b show two different stage performances that explored
the technological possibilities for new forms of dance expression. Obermaier says
[24], “The goal was to create an interactive system that is much more than simply an
extension of the performer, but is a potential performing partner”. Carol Cunning-
ham summarizes her work as follows, “Motion capture is another tool for expression.
The image may be on screen and generated by technology, but it’s an extension of
the body”. Resembling human movement (Fig. 4.4a) and extending human motion
into new spaces (Fig. 4.4b) were goals of the dance and technology partnering with
the following outcome [18]: “The new convergences between dance and technology
reflect back on the nature of dance, its physical-sensory relationship to space and the
world, its immediate, phenomenological embodiedness, its lived experience in one
place”.

4.1.3.2 Robotics and Dance

As technology has advanced in the last 10 years and robots have become more
approachable, they have found their way into dance just as information technology
has done before. The physical embodiment of robots and their abilities to interact
provide a new means for dance expression as well as for studying human–robot
interaction and human dance.

Research on robotics and dance has come a long way: from building robots that are
capable of executing human-like motions and enabling them to imitate human dance,
to enabling robot–human interactions in dance performances, adapting robot dance
to human preferences, and understanding human dance through robots. As dance has
previously been a human-centered discipline typically designed, performed, and eval-
uated by humans, research into “dancing robots” has primarily dealt with humanoid
robots and aimed for human-like behavior in robots. In this work, we consider a
new embodiment—a group of flying robots—but still face similar questions such
as: What is dance? What do humans recognize as dance? Which algorithms enable
dance-like behavior in robots?

First approaches toward robotic dance of humanoid robots tried to imitate human
dance motion. In [10] basic dance motions for a robotic arm were designed using
choreographic elements from human dance such as shape, space, time, and force. For
humanoid robots, data from human demonstrations (obtained using a motion capture
system) was used to define basic robot dance motions, which—when concatenated—
create full robot choreographies [25–28]. A perfect example for human imitation is
a female android created by Japanese roboticists, which sings and dances along with
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a troupe of humans.1 The android’s motion was created by a professional choreog-
rapher using a tool proposed in [29].

Recent work aims to understand the rules of human dance, which may ultimately
lead to a larger robot autonomy when executing dance. One approach is based on
the concept of human dance styles and detailed in the Chap. 9 of this book. Instead
of robots that follow preprogrammed motions, various styles of human movement
are defined, which in turn can be reproduced on a humanoid robot by generating
sequences of motions autonomously based on underlying rules. Other approaches
presented in this book try to understand human flocking in order to derive multiagent
behavior (see Chap. 2) and the human communication through movements (Chap. 3).
Other concepts that could explain what humans recognize as dance are skill-based
approaches [30] (defining fundamental joint relationships such as Opposite, Sym-
metry and Formation and learning likable sequences from human feedback), effects
related to motion synchrony and timed repertoire changes [31], and automatic motion
selection based on musical mood [32] or musical emotions [33, 34].

Moreover, researchers currently investigate the interaction between humans and
their robotic counterparts, and potential adaptation schemes for robots. The adapta-
tion of a robot’s dance behavior to human preferences is described in [35]. In [36–39]
the rhythmic behavior of the robot adapts to the human based on appropriate esti-
mation techniques that predict the human motion. Stage performances focusing on
the human–robot interaction include Thomas Freundlich’s performance in Fig. 4.4c
and also the work in Chap. 9 of this book. Moreover, recently two artistic perfor-
mances have featured quadrocopters on stage with human actors/dancers [40, 41];
these focused on the interplay between humans and machines, and had skilled human
operators for controlling the quadrocopters.

4.1.3.3 Relationship to Our Work

The history of technology and dance provides a great context for our experiment,
where the performers of the dance are a swarm of quadrotor vehicles. Their flight
capabilities may offer—similarly to how humanoid robots have done before—new
means of dance expression, including motions in the full three-dimensional space.
New challenges result from the nonhuman-like body shape and motion character-
istics. While work on humanoid robots has largely imitated human dance behav-
ior, choreographies for quadrocopters must rethink the question, “What do humans
recognize as dance?,” and define quadrotor motions accordingly. Nevertheless, ideas
for human dance choreography (such as shape, space, time and force) and concepts
developed for humanoid robots may partially apply and/or may be a great source for
inspiration. Overall, by studying concepts and algorithms for creating “dance-like”
performances (including human–robot interaction, adaptation to the human behavior
or motion planning) not in the context of the human body may enable us to understand
more generally what makes robots move in a way that humans can relate to.

1 Video found at http://youtu.be/3JOzuTUCq6s.

http://dx.doi.org/10.1007/978-3-319-03904-6_9
http://dx.doi.org/10.1007/978-3-319-03904-6_2
http://dx.doi.org/10.1007/978-3-319-03904-6_3
http://dx.doi.org/10.1007/978-3-319-03904-6_9
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4.1.3.4 A Final Note

Human dance has proven to be an inspiration for technology developments. Moreover,
technology has proven to extend the vocabulary of dance creation and performance
to an extent that we are often not aware of. An example of the tangible connec-
tion between robots and humans is a (human) dance style called “robot dance” that
became popular in the 1980s and that attempts to imitate a dancing robot. The style
is characterized by jerky mechanical movements. Inspiration inevitably goes both
ways: from human dance to technology and from technology to human dance. Just
as our project is a robotics research experiment, it is also an experiment in dance and
choreography.

4.1.4 First Steps Toward a Rhythmic Flight Performance

Art challenges technology, and technology inspires art.
—John Lasseter, chief creative officer at Pixar and Walt Disney Animation Studios

John Lasseter’s quote reflects the character of many past contributions at the interface
of dance and technology (cf. Sect. 4.1.3). It also provides the context for our work
toward a rhythmic flight performance of multiple quadrocopters. While the techno-
logical capabilities available today (such as small-sized off-the-shelf flying robots)
inspired us to think about “dancing quadrocopters” in the first place, implementing an
aerial choreography challenged the current knowledge in multivehicle autonomous
flight and led to novel research results, cf. [1–4, 42].

In this chapter, we focus on the research questions that are at the core of the pro-
posed project. We show how control theory can be used to approach these questions
analytically, and offer an intuitive explanation of our findings.

In particular, the topics investigated in this book chapter are:

1. Quadrocopter Dynamics: How do quadrocopters move? Which motions are pos-
sible with quadrocopters?

2. Motion Design: How to generate “dance-like” quadrocopter motions?
3. Motion Feasibility: Which motions are feasible given the actuator and sensor

constraints of the vehicle?
4. Quadrocopter Control: How do quadrocopters execute their movements?
5. Motion Synchronization: Can quadrocopters move in the rhythm of the music?

How well can they perform a rhythmic motion?
6. Rhythmic Performances: What has been accomplished to date?

The above questions are driven by the goal of creating a rhythmic flight perfor-
mance. The answers to these questions are obtained from control theoretic analysis
and design.

It is also interesting to make the connection to Chap. 5 here, where similar ques-
tions are considered for a different system, namely robotic marionettes, and tools

http://dx.doi.org/10.1007/978-3-319-03904-6_5
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from controls are used to address the issue of feasibility, motion planning, and
timing. An opposite approach is taken in Chap. 7, where music is generated from
motion, where synchronization of motion and music plays an equally important role.

4.2 Quadrocopter Dynamics: How do Quadrocopters Move?

Dance is the language of movement. It is the realization of the body’s potential as an instru-
ment of expression.
—Victorian Board of Studies Dance study design, 1994

Human dance expression is fundamentally tied to the human body and its physical
capabilities. As an “instrument of expression”, the human body seems to enable an
endless range of different movements and different movement qualities. Just imagine
how many poses there are for a human (without even considering movement): we can
stand with two feet on the ground and various hand, arm, finger, and head positions,
and can make an almost infinite number of facial expressions. Moreover, skilled
dancers can stand still on just one leg... The number of degrees of freedom of a
human body (that is, the number of independent joints and possible directions of
rotation in those joints) is large but nevertheless motions are constrained by the
limits of arms, legs, torso, and head.

In comparison, for a quadrocopter (see Fig. 4.5) there is only one position that
allows it to stand still; namely, being horizontal in the air and producing an upward
force with its propellers that is equivalent to the gravitational force acting on the vehi-
cle. Moreover, a quadrocopter has only six degrees of freedom: three translational (its
three-dimensional position) and three rotational (its attitude), see Fig. 4.5b. However,
with only four independent motors (Fig. 4.5a), quadrocopters are underactuated; that
is, rotational and translational motion cannot be controlled independently but are cou-
pled [43]. More insight into the coupling will be provided below, where we derive
a model for the quadrocopter dynamics from first principles and also specify the
constraints of the vehicle. The dynamics model and constraints define the dynamic
capabilities of the vehicle in mathematical terms. We provide an interpretation of the
findings with respect to our goal of generating rhythmic flight performances.

4.2.1 Dynamics Model of the Quadrocopter

The quadrocopter is described by six degrees of freedom: the translational position
s = (x, y, andz) measured in the inertial coordinate system O and the rotational
position (also called ‘attitude’) represented by the rotation matrix R(t) from the
body frame V to the inertial frame O as shown in Fig. 4.5b.

The translational acceleration of the vehicle is dictated by the attitude of the
vehicle and the total thrust produced by the four propellers. The translational motion

http://dx.doi.org/10.1007/978-3-319-03904-6_7
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(a) (b)

Fig. 4.5 a Control inputs of the quadrocopter. b Quadrotor position and attitude. Schematic of
the quadrocopter with: (a) the control signals sent to the vehicle being the body rates p, q, and r
and the collective thrust c, and (b) the quadrotor position and attitude V defined with respect to
the inertial coordinate system O. These control signals are converted by an onboard controller into
motor forces Fi , i ∈ {1, 2, 3, 4}

of a quadrocopter in the inertial frame O is described by


⎛ẍ(t)

ÿ(t)
z̈(t)

⎝
⎞ = R(t)


⎛ 0

0
c(t)

⎝
⎞ −


⎛0

0
g

⎝
⎞ ⊆

ẍ = c bx

ÿ = c by

z̈ = c bz − g
, (4.1)

where g is the acceleration due to gravity and c(t) is the collective thrust; that is, the
sum of the rotor forces Fi normalized by the vehicle mass m,

c = 1
m

⎠4
i=1 Fi . (4.2)

The motor forces Fi , i ∈ {1, 2, 3, 4}, represent the inputs to the quadrocopter (see
Fig. 4.5). The values (bx , by, bz) correspond to the third column of the rotation
matrix, namely (R13, R23, R33), and represent the direction of the collective thrust
in the inertial frame O.

Each rotor produces not only a force Fi , i ∈ I = {1, 2, 3, 4}, in the positive Vz
direction, but also a reaction torque Mi perpendicular to the plane of rotation of the
blade, see Fig. 4.5a, where

Mi = k Fi , k = const, (4.3)

describes the relationship between the motor force Fi and the associated reaction
torque Mi . The parameter k is given by the motor characteristics, see [43] for details.
Rotors 1 and 3 rotate in the negative Vz direction, producing a moment that acts in the
positive Vz direction; while rotors 2 and 4 rotate in the opposite direction resulting in
reaction torques in the negative Vz direction. Given the inertia matrix I with respect to
the center of mass and the vehicle frame V, the rotational dynamics of the body-fixed
frame are given by
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Table 4.1 Quadrocopter parameters

Definition Value

m Mass of vehicle 0.468 kg
L Vehicle arm length 0.17 m
Ix Inertia around vehicle Vx-axis 0.0023 kg m2

Iy Inertia around vehicle Vy-axis 0.0023 kg m2

Iz Inertia around vehicle Vz-axis 0.0046 kg m2

k Motor constant 0.016 m
Fmin Minimum rotor force 0.08 kg m/s2

Fmax Maximum rotor force 2.8 kg m/s2

I Ω̇ =

⎛ L(F2 − F4)

L(F3 − F1)

k(F1 − F2 + F3 − F4)

⎝
⎞ − Ω × IΩ, (4.4)

where Ω = (p, q, r) represent the quadrocopter angular body velocities around
the body (Vx, Vy, Vz) axes and L is the distance from each motor to the center of
the quadrocopter. The vehicle’s principal axes coincide with the vehicle frame axes
resulting in a diagonal inertia matrix with entries (Ix , Iy , Iz), where Ix = Iy because
of symmetry.

The rotation matrix R evolves according to (cf. [44])

Ṙ(t) = R(t)


⎛ 0 −r(t) q(t)

r(t) 0 −p(t)
−q(t) p(t) 0

⎝
⎞ , (4.5)

In our setup, an onboard controller closes the loop on the angular body velocities
Ω using onboard gyroscope measurements. As a result, the control signals sent to the
the quadrocopter are the collective thrust command cc and the commanded angular
body velocities Ωc = (pc, qc, rc), see Figs. 4.2 and 4.9. Based on the commanded
values (Ωc, cc) and the gyroscope measurements, the onboard controller calculates
the required motor forces Fi , i ∈ I.

The specific vehicle parameters for the quadrocopters used in this work (see
Fig. 4.1) are given in Table 4.1.

4.2.2 Vehicle Constraints

The agility of the quadrocopter is constrained by the minimum and maximum force
of a single motor, Fmin ⊂ Fi ⊂ Fmax, i ∈ {1, 2, 3, 4}, with Fmin > 0, since the
motors cannot reverse their direction. The collective thrust is bounded by

cmin ⊂ c ⊂ cmax with cmin = 4 Fmin/m, cmax = 4 Fmax/m. (4.6)
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In addition, due to the motor dynamics the rate of change of the motor forces is
bounded in reality and the turn rates must be bounded because of the limited mea-
surement range of the gyroscopes used for onboard vehicle control. We neglect both
limitations in the following sections to simplify the presentation. The bounds of the
thrust rate Ḟi and the turn rates Ω are high (23.9 kg m/s3 and 25 rad/s, respectively)
and do not significantly affect the results in Sect. 4.4.

4.2.3 Implications for a Rhythmic Flight Performance

The above equations describe the motion capabilities of a quadrotor vehicle. From
(4.1) we see that the vehicle acceleration is always perpendicular to the plane of
the rotors; that is, for a motion in the x, y-direction the quadrocopter must tilt. The
translational and rotational degrees of freedom are, therefore, coupled and cannot
be specified independently. A rotation of the quadrocopter is achieved by sending
appropriate turn rates Ωc, see (4.5). The rotational dynamics around the Vx- and
Vy-axes are symmetric, see (4.4), and fast due to the low rotational inertia terms
(Table 4.1).

One set of independent motion parameters for a quadrocopter is its three-
dimensional position over time and the evolution of the heading angle, cf. [43] and
Fig. 4.7. Compared to the human body, the “body’s potential” of a quadrocopter for
expressive movements is therefore limited to the position and heading in space over
time. Finding motion patterns that are convincingly expressive to the human eye is
not trivial and is discussed in Sect. 4.3.

4.3 Motion Design: What is a Dance Step for a Quadrocopter?

Dance is a poem of which each movement is a word —Mata Hari, dancer

As human dance choreography is typically described by sequences of basic move-
ments, we expect a flight performance of quadrocopters to be composed of basic
motion elements that—when combined into sequences—allow for a multifaceted,
meaningful quadrocopter choreography. As a first step, our goal is to develop basic,
rhythmic motion elements that can be executed by quadrocopters and timed to the
music beat. These basic rhythmic flight motions represent the “words” that may later
tell a “poem”.

Periodic motions are a natural human response to hearing a recurring music beat:
we often clap, sway, or tap our feet when we hear music. In our research, we want
the flying vehicle to mimic this behavior. Periodic motion elements thus represent
the basic building blocks of our choreography. As highlighted above, the degrees of
freedom of a quadrocopter motion are restricted to the three-dimensional position
and its heading. We therefore develop motion elements that show a periodicity in the
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Fig. 4.6 A periodic side-to-side motion with the music beats occurring at the outermost points of
the movement

vehicle position and use the vehicle’s agility to achieve temporal variety. Below we
present a parameterized motion description that enables motion variations that are
indispensable when aiming for an expressive choreography.

4.3.1 Music Analysis

The more you understand the music, the easier you can dance.
—Orlando Gutinez

Fundamental to our goal of creating rhythmic flight movements is a tight connection
of motion and music. We therefore analyze the music first and then assign appropriate
motions to the vehicle. The goal of the music analysis is to extract music features and
their respective time signatures. The result is a vocabulary that describes the song’s
temporal development. We use this time information to assign suitable quadrocopter
motions to different sections of the song.

In order to achieve rhythmic behavior, we are particularly interested in the music
beat, which represents the basic rhythmic unit of a song and plays a prominent role
in the motion design. Currently we use the BeatRoot software tool [45] to extract
beat times from a song. We store music beats and their respective start times in a text
file. This information is then used to create matching flight trajectories; for example,
movements that reflect the music tempo.

A simple example that highlights the key idea is shown in Fig. 4.6: the quadro-
copter performs a planar side-to-side motion where, at beat times, the vehicle reaches
the outermost points of the motion, either on the left or right.

4.3.2 Periodic Motions

When you dance, your purpose is not to get to a certain place on the floor. It’s to enjoy each
step along the way. —Wayne Dyer. author

We specify basic, rhythmic motion elements as the evolution of the quadrocopter’s
translational position in three dimensions sd(t) = (xd(t), yd(t), zd(t)) and its head-
ing ψd(t) over time. We introduce parameterized motion primitives

sd(p, t), ψd(p, t), (4.7)
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which depend on a set of adjustable motion parameters p and are defined over a finite
time interval t ∈ ⎜

t0, t f
⎟ → R, t f < ≤. Parameterized motion primitives allow

for variety and expressiveness in the choreography design. Consider a horizontal
circle, for example, where the radius, speed of rotation, and center point can be
adapted depending on the use case. Note that the vehicle heading ψd can be designed
independently of the position and is not explicitly considered in the following.

Our objective is to offer a similar range of motions as is used in human dance
composition. In this context, we ask: Which choices does a professional dance chore-
ographer have when creating a performance? How can we provide the tools and
degrees of freedom necessary for implementing an expressive performance on the
quadrocopter?

Four fundamental choreographic elements—time, space, energy, and structure—
are commonly used by professional dancers, choreographers, and dance teachers to
build choreography with interest, dynamics, and estethic appeal, cf. [46, 47]. These
parameters provide a framework for meaningful quadrocopter choreography, and are
described as follows:

Space Space refers to the area the dancer is performing in. It also relates to how
the dancer moves through the area, as characterized by the direction and path of
a movement, as well as its size, level, and shape.

Time Time encompasses rhythm, tempo, duration, and phrasing of movements.
Using time in different combinations can create intricate visual effects. Ideas
such as quick-quick, slow, or stop movements are examples.

Energy Energy relates to the quality of movement. This concept is recognizable
when comparing ballet and tap dance. Some types of choreography are soft and
smooth, while others are sharp and energetic.

Structure Structure represents the organization of movement sequences into larger
concepts: the combination and variation of movements using recurring elements,
contrast, and repetition. Movements can even follow a specific story line to convey
certain information through a dance.

Examples illustrating the four elements of dance are found in [46, 47].
One way of introducing parameterized, rhythmic motion primitives that capture

a wide range of different movements is as a Fourier series [48],

sd(t) = a0 +
N∑

k=1

ak cos (k ωd t) + bk sin (k ωd t) , (4.8)

where ωd = 2π/T represents the fundamental frequency corresponding to a music
beat of frequency 1/T , where beats are T seconds apart. Additional design para-
meters are the constant vectors a0, ak, bk ∈ R

3, k ∈ K = {1, 2, . . . , N } , and
N ⇔ 1; that is, p = {ωd , N , a0, ak, bk | k ∈ K}. The parameters characterize the
desired translational position sd(t) of the quadrocopter and allow us to express the
key choreographic elements:



88 A. P. Schoellig et al.

Fig. 4.7 An example of a periodic motion primitive studied in this chapter

Space The parameters a0 and ak, bk, k ∈ K define the amplitudes of the periodic
motion and, thus, the spacial dimension of the movement. These vectors also
specify the direction of the motion and the overall three-dimensional shape of the
curve.

Time The underlying rhythm is given by the frequency ωd . When the choreography
is set to music, the frequency ωd is related to the music’s tempo. Different tempos
can be combined when choosing N > 1. The overall duration of the motion can
be adjusted via t f .

Energy The higher the value of N , the more energetic and sharp are the possible
motions, cf. [48].

Structure The motion primitives described in (4.8) can be combined into sequences,
which can in turn be combined to create an overall choreographic performance.
Endless permutations are possible, much the way individual words can be com-
bined into a variety of sophisticated stories, or a series of gestures can be combined
to reveal a performer’s mood or emotion to an audience.

In short, the general motion description (4.8) reflects the fundamental choreo-
graphic elements and allows for a multidimensional choreography. Out of the vari-
ety of motions captured by (4.8), Fig. 4.7 illustrates the one with N = 3, T = 10,
a0 = (0, 0, 3), a1 = (0, 0, 1), a2 = (1, 0, 0), and b3 = (0, 1, 0), and a3, b1, b2 being
zero. A Matlab file for generating arbitrary motion primitives of the proposed type
is available online at www.idsc.ethz.ch/Downloads/QuadDance.

In order to make (4.7) and (4.8) a useful tool for choreographers, we need to
specify which motion primitives can be realized on the vehicle. The dynamics and
physical limits of the quadrocopter define the feasible sets of parameters p. This is
done in the next section.

www.idsc.ethz.ch/Downloads/QuadDance
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4.4 Motion Feasibility: What are the Physical Limits of a
Quadrocopter?

The dancer is restricted by self-limits, the limits of being in this body with these abilities and
not others.
—Sondra Horton Fraleigh in “Dance and the Lived Body: A Descriptive Aesthetics” [49]

Though dancers and athletes are trained to push the physical limits of their bodies
to extremes, they nonetheless remain constrained by the rules of physics. Quadro-
copters, too, are limited by their body’s dynamics (Sect. 4.2). For example, our
quadrocopters cannot keep a constant height when flying sideways with angles larger
than 66∈ (cf. Fig. 4.6). To create a “choreography” for quadrocopters, we must be
aware of and account for these physical limitations.

Below we describe a method for checking the feasibility of quadrocopter motions.
The approach, meant as a validation tool for preprogrammed quadrocopter perfor-
mances, is based on the first principles models in Sect. 4.2 and ensures that a desired
trajectory respects both vehicle dynamics and motor thrust limits. The goal is to deter-
mine sets of motion parameters p, cf. (4.7), (4.8), that represent rhythmic motions
that can be realized with a quadrocopter. The result of this analysis is a library of
feasible motion primitives that can be used to create multifaceted performances.

4.4.1 Motor Thrust Limits

For the subsequent feasibility analysis, we assume that motion primitives, cf. (4.7),
are twice-differentiable in time. This assumption is satisfied for the periodic motions
primitives (4.8) introduced in the previous section. Feasibility is formulated in terms
of the collective thrust limits (cmin, cmax) and the motion parameters p. The objective
is to derive a set of inequalities that specify feasible parameter sets p given the limits
(cmin, cmax).

For a desired motion primitive sd , we rewrite (4.1),

R n cd = s̈d + n g, (4.9)

where n = (0, 0, 1) and cd is the nominal thrust input required to achieve sd . Taking
the 2-norm, we can solve for cd , cd ⇔ 0,

∼R n cd∼ = ∼s̈d + n g∼ ⊆ cd = ∼s̈d + n g∼ . (4.10)

Recalling that sd = sd(p, t) and (4.6), the inequalities guaranteeing the maximum
and minimum bounds of the collective thrust are

cmin ⊂ ∼s̈d(p, t) + n g∼ ⊂ cmax, t ∈ ⎜
t0, t f

⎟
. (4.11)
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This feasibility requirement can be checked for any given desired motion
primitive sd(p, t) by calculating its second time derivative. No further calculations
are necessary. In particular, the nominal quadrocopter inputs associated with sd(p, t)
need not be determined in advance. The inequalities (4.11) exclude the majority of
infeasible parameters p and help to build an intuition as to what is feasible for a
quadrotor vehicle.

In order to be more precise, single motor constraints and turn rate constraints must
be considered, cf. Sect. 4.2.2. For those constraints explicit parameter-dependent
inequalities are generally difficult to derive (see [3] for details). Instead, in our cur-
rent software framework, we numerically assess the feasibility of a created motion
sequence before actual flight, see [50].

4.4.2 Example: Side-to-Side Motion

To demonstrate the above feasibility test, we consider a simple periodic motion that
falls into the framework introduced in (4.8): a horizontal side-to-side motion as
illustrated in Fig. 4.6. In fact, the side-to-side motion was the first rhythmic motion
that we implemented on a quadrocopter and executed to music [1].

The planar side-to-side movement is given by

xd(t) = A cos(ωd t), yd(t) = zd(t) = ψd = 0. (4.12)

The side-to-side motion is a special case of the general motion primitive description
(4.8), where N = 1 , a1 = (A, 0, 0) and a0, b1 = (0, 0, 0).

To determine feasible combinations of amplitudes A and frequencies ωd , we
calculate the second derivative of (4.12) and insert it into (4.11):

cmin ⊂
√

A2ω4
d cos2 ωd t + g2 ⊂ cmax. (4.13)

For a given pair (A,ωd), these inequalities must be satisfied for all t ∈ [0, T ].
Therefore, it is enough to consider the maximum and minimum values over T . We
obtain

Aω2
d ⊂

√
c2

max − g2 and cmin ⊂ g. (4.14)

The second inequality must be satisfied in order for a quadrocopter to be able to
land. In brief, all parameter pairs (A,ωd) satisfying the inequality (4.14) represent
side-to-side motions that stay within the collective thrust limits (4.6).

For the vehicle parameters in Table 4.1, Fig. 4.8 illustrates the feasible set of side-
to-side trajectories (A,ωd). The dark gray region contains parameter sets that are
infeasible due to the collective thrust limit, cf. (4.14). We also depict (light gray area)
the parameter sets that become infeasible when taking into account the minimum
and maximum force limits of each single motor (see Sect. 4.2.2); the corresponding
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Fig. 4.8 Feasible parameter sets for the side-to-side motion primitive. The dark gray region denotes
parameter sets that are infeasible due to collective thrust limits; light gray denotes additional para-
meter sets that are infeasible due to the minimum and maximum force limits of each single motor

derivations are presented in [3]. From Fig. 4.8 we see that if we want to perform two
side-to-side motions per second (ωd ≈ 12.6 rad/s), a motion amplitude of 0.5 m is
clearly infeasible. We also see that for the side-to-side motion the single motor force
limits exclude only a small additional number of parameter sets. The inequalities
(4.11) represent a simple means to understand which motions are feasible.

4.5 Quadrocopter Control: How do Quadrocopters Execute
Their Movements?

Technique—bodily control—must be mastered only because the body must not stand in the
way of the soul’s expression.
—La Meri, dancer and choreographer

In Sect. 4.3 we introduced rhythmic motion elements with the goal of enabling expres-
sive choreography, where the movements were defined by the desired evolution of
the quadrocopter position over time. However, similarly to human dancers who con-
stantly work on perfecting their body control, quadrocopters require sophisticated
control algorithms to guide their “bodies” along the desired trajectories. Just recall
that the smallest mistake may lead to the vehicle falling out of the sky. In this section,
we derive a motion controller that maintains the quadrocopter on the specified tra-
jectory during actual flight.

4.5.1 Trajectory-Following Controller

The trajectory-following controller (TFC) accepts as input commanded positions,
velocities, and accelerations, as well as, a yaw angle trajectory (cf. Fig. 4.2):

(sc(t), ṡc(t), s̈c(t),ψc(t)) . (4.15)
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Fig. 4.9 Cascaded control loops of the trajectory-following controller (TFC)

We usually obtain appropriate input commands directly from the desired sequence
of motion primitives (see Sects. 4.3 and (4.7)) by setting: sc(t) := sd(t) and ψc(t) :=
ψd(t). The respective time derivatives ṡc(t), s̈c(t) are also computed from the desired
trajectory sd(t), which is preplanned and known in its full length prior to flight.

The TFC is a standard component of our experimental testbed. Control is based on
precise measurements of the vehicle position and attitude (in our case, provided by a
motion capture system). The TFC receives the quadrocopter’s position s = (x, y, z),
velocity ṡ and attitude R from an estimator and, in turn outputs the body rate and
collective thrust commands (Ωc, cc) to the vehicle, see Fig. 4.9. The TFC consists
of three separate loops for altitude, horizontal position, and attitude. While the TFC
operates in discrete time, the controller design is based on the continuous-time system
dynamics representation.

The altitude control is designed such that it responds to altitude errors (z − zc)

like a second-order system with time constant τz and damping ratio ζz ,

z̈ = −2ζz

τz
(ż − żc) − 1

τ2
z
(z − zc) + z̈c. (4.16)

It uses the collective thrust to achieve this. With (4.1) and (4.16), we obtain

cc = (z̈ + g)/bz . (4.17)

Similarly, the two horizontal position control loops are shaped based on (4.1) with cc

from (4.17). Commanded rotation matrix entries bx
c , by

c result. The attitude control
is shaped such that the two rotation matrix entries bx , by react in the manner of a
first-order system; that is, for x : ḃx

c = (bx − bx
c )/τR P . This is directly mapped to the

commanded angular body velocities (pc, qc) using (4.5) and the estimated attitude R,

[
pc

qc

]
= 1

R33

[
R21 −R11
R22 −R12

] [
ḃx

c
ḃy

c

]
. (4.18)

Vehicle yaw control can be considered separately, since rotations around the body Vz-
axis do not affect the above dynamics. The yaw controller is a proportional controller
and the resulting yaw angle rate is mapped to rc using the kinematic relations of
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Fig. 4.10 Side-to-side motion, no motion parameter adaptation. Top quadrocopter response (solid)
for a desired oscillation in the x-direction (dashed). Bottom corresponding peak velocities, i.e.,
absolute value of vehicle velocity at the peaks of the desired trajectory. High peak velocities imply
a large phase error

Euler angles. The innermost loop, on board the quadrocopter, controls the angle
rates (p, q, r) to the calculated set points (pc, qc, rc).

In the ideal case, where the quadrocopter dynamics correspond to the model
(4.1) and some other mild assumptions are made (see [4] for details), the derived
controller yields perfect trajectory tracking. In summary, we have presented a control
framework that enables an autonomous quadrocopter flight along a desired trajectory
defining the vehicle position and the heading of the vehicle over time.

4.5.2 Tracking Performance of Periodic Motions

When using the derived TFC to track the side-to-side motion (4.12), we considered
before with sc(t) := sd(t) and ψc(t) := ψd(t) (that is, the desired periodic trajectory
is directly sent to the vehicle controller), we observe, at steady state, a sinusoidal
motion of the same frequency with a constant error in amplitude and phase, result-
ing in asynchrony and spatial inaccuracies, as shown in Fig. 4.10 (top figure). The
amplitude error of the quadrocopter response (black solid line) is obvious; the phase
error between the reference trajectory and the actual quadrocopter response is hardly
noticeable. However, small phase errors are very visible and audible in actual exper-
iments as humans are especially sensitive to nonzero vehicle velocity at beat times
(see [5] for more details). Correspondingly, the bottom plot of Fig. 4.10 illustrates
the velocity of the quadrocopter at beat times; that is, when the reference trajectory
reaches its maximum or minimum value.

For periodic motions in three dimensions, a similar behavior is observed: phase
shift and amplitude error are observed in each translational direction and are not
necessarily equal in size. In this case, the shape of the resulting motion can change.
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Fig. 4.11 Vertical bounce motion, no motion parameter adaptation. The vehicle’s response (solid)
can differ in shape from the desired trajectory (dashed)

For example, a desired bounce motion (Fig. 4.11) results in a bent eight-shaped
vehicle motion.

In order to achieve precise temporal and spatial tracking, we adapt the parameters
of the commanded trajectory (4.15) sent to the TFC in the next section. Later we
see that these parameters can be identified/learned prior to the flight performance in
order to effectively reduce initial transients.

4.6 Motion Synchronization: Can a Quadrocopter Move
in the Rhythm of the Music?

I like to see you move with the rhythm; I like to see when you’re dancing from within.
—Bob Marley, singer and composer

“Moving with the rhythm” is the ultimate goal of this work, where we aim to control
the motion of quadrocopters to an external music signal. As highlighted in the pre-
vious section, pure feedback controlled to insufficient quadrocopter tracking with a
noticeable phase and amplitude error.

The goal of this section is to prove the feasibility of a precise synchronization
between quadrocopter motion and music, where we use the term “synchronization”
loosely, inasmuch as it encompasses both spatial and temporal tracking accuracy. Our
strategy for coping with the aforementioned constant phase shift and amplitude error
is to adjust the motion parameters of the trajectory commanded to the underlying
trajectory-following controller (see Fig. 4.2). This means, for example, that if the
amplitude of the quadrocopter motion is larger than the desired one, we reduce
the commanded amplitude. Similarly, if the vehicle motion is lagging, we shift the
commanded trajectory by increasing the phase.
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4.6.1 Synchronization: The Basic Idea

To illustrate the basic idea of the “feed-forward” strategy, we consider the side-to-
side motion in (4.12) and Fig. 4.6, where we adapt the commanded amplitude Ac

and phase θc of the commanded trajectory sc(t) (Fig. 4.2),

xc(t) = Ac cos(ωd t + θc), yc(t) = zc(t) = ψc = 0. (4.19)

to achieve synchronization. Our original results on this topic were presented in [1].

4.6.1.1 Online Correction

The motion parameters of the commanded trajectory are set to

θc(t) = θon(t), Ac(t) = Ad + Aon(t), (4.20)

where the subscript “on” indicates the online correction terms. They are updated in
real time, during the flight.

As illustrated in Sect. 4.5.2, the response of the controlled quadrocopter system
to a side-to-side reference signal (4.12) when choosing sc(t) := sd(t) and ψc(t) :=
ψd(t) is a sinusoidal signal with the same frequency but shifted phase and different
amplitude,

x(t) = (A(t) + Ad) cos (ωd t + θ(t)) . (4.21)

To determine the additive errors in amplitude A(t) and phase θ(t), the two refer-
ence signals, rcos(t) = cos ωd t and rsin(t) = sin ωd t , are multiplied by the position
estimate x(t) and integrated over N periods, that is T = (2πN )/ωd . Assuming a
constant phase shift and an amplitude error during that time interval

θ(v) = θt = constant, A(v) = At = constant, t − T ⊂ v ⊂ t, (4.22)

we obtain

η1(t) = 1

T

⎡ t

t−T
x(t)rcos(t)dt = At + Ad

2
cos(θt ),

η2(t) = 1

T

⎡ t

t−T
x(t)rsin(t)dt = − At + Ad

2
sin(θt ),

(4.23)

and
At = 2

⎢
η1(t)2 + η2(t)2 − Ad ,

θt = − arctan (η2(t)/η1(t)) .
(4.24)

The values θt , At can be interpreted as the mean value of the phase and ampli-
tude errors during the last period, and when considering Fig. 4.10, the phase and
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Fig. 4.12 Side-to-side motion. Top online motion parameter adaptation only. Quadrocopter
response (solid) for a desired oscillation in the x direction (dashed) Bottom offline motion parameter
adaptation, with online motion parameter adaptation turned on after two periods

amplitude errors are in fact constant (after a transient phase). Therefore, (4.22) is a
valid assumption in steady state.

The online correction terms are calculated by integrating the errors according to

Aon(t) = kA

⎡ t

0
Aτ dτ , θon(t) = kθ

⎡ t

0
θτ dτ , (4.25)

where the gains kθ, kA are chosen to ensure convergence of the online correction
terms to the steady-state values θon,≤ and Aon,≤, respectively.

Using the proposed online parameter adaptation strategy (4.20), (4.25), the errors
in amplitude and phase are effectively regulated to zero, see Fig. 4.12 (top figure)
and compare to Fig. 4.10. We observe a substantial transient phase before the online
correction terms attain steady state, see Fig. 4.13. This is mainly due to the fact
that the error identification scheme (4.23), (4.24) only provides reliable values after
several periods.

4.6.1.2 Offline Identification

The steady-state values θon,≤, Aon,≤ obtained from the online correction are repeat-
able (that is, different runs of the same experiment produce the same result). Con-
sequently, the correction values can be extracted once, and later applied to improve
the transient performance; that is, the tracking during the initial period of a motion.
For the phase, we use

θc(t) = θoff + θon(t) with θoff = θon,≤. (4.26)
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Fig. 4.13 Side-to-side motion, convergence of online correction terms

The equation for the amplitude is similar. The subscript ‘off’ indicates the offline
motion parameters identified prior to the experiment. Figure 4.12 (bottom figure)
shows the corresponding result for the side-to-side motion. The transient time is
substantially decreased.

4.6.1.3 Reduced Offline Identification

Thus far, offline parameters must be identified for each side-to-side motion (Ad ,ωd)

individually. To draw further conclusions, we consider the steady-state values in the
following form: the amplitude-normalized amplification factor,

αon,≤ = (Ad + Aon,≤)/Ad , (4.27)

and the steady-state phase θon,≤ as before. Experiments in [1] have shown that the
steady-state values (αon,≤, θon,≤) depend only on the motion’s frequency ωd . That
is, a single identification run must be completed for each frequency, the vehicle should
perform at and the resulting parameters can be used for any side-to-side motion at
this frequency with varying amplitudes.

4.6.2 Synchronization in Three Dimensions

We extend the previous results into three-dimensional (3-D) motion, which is com-
posed of sinusoidal side-to-side motions in each translational direction:


⎛xd(t)

yd(t)
zd(t)

⎝
⎞ =


⎛Ax

d cos(ωx
d t + θx

d )

Ay
d cos(ωy

d t + θ
y
d )

Az
d cos(ωz

d t + θz
d)

⎝
⎞ , ψd(t) = 0, (4.28)

where θ
(x,y,z)
d represents a potential phase shift between the sinusoidal motions in

each direction. Bounces, ellipses, eights, and spirals can be obtained by appropriate
parameter choices.
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Fig. 4.14 Sequence of motions with (dashed) and without (solid) feed-forward corrections. Offline
correction terms were obtained from a reduced identification. The errors of the desired trajectory
to the response of the vehicle (sd (t) − s(t)) are plotted. The motion sequence comprises: a circular
motion in 3-D, a swing motion in 3-D, and a horizontal circle

As shown in [4], a key assumption can be made for the given 3-D motion: each
translational direction can be treated separately. To this end, the motion parameters
in the commanded trajectory sc(t) are adjusted independently for each direction
according to the online strategy presented above. In addition, the offline identification
benefits from the directional decoupling and the quadrocopter symmetry in that the
x- and y- directions exhibit the same behavior and identification in one of the two
directions is sufficient.

Consequently, it is possible to develop an identification scheme that efficiently
identifies the offline correction terms for all periodic motions that can be expressed
in our framework (4.28): a single identification run over the relevant frequency range
with a 2-D motion primitive in x or y, and z is sufficient to completely identify all
necessary feed-forward parameters. The offline values are stored in a look-up table
ready to be used when performing new motions of (4.28).

In order to show the effectiveness of the reduced identification scheme, we per-
form a sequence of periodic 3-D motions with offline parameters obtained from an
oscillatory motion in 2-D (Ax

d = Az
d = 0.4 m, ωx

d = ωz
d = ω and all other para-

meters zero). Figure 4.14 shows that the quadrocopter’s deviation from the desired
trajectory is clearly reduced when using the offline parameter adaptation strategy.
Note that the performance can be further improved by designing smooth transitions
between the motion of the sequence.

To conclude, we studied a feed-forward parameter tuning strategy that improves
the tracking performance of periodic motion primitives especially during transients
using preidentified correction terms and online parameter adaptation. The transla-
tional directions are independent, allowing for the efficient identification of a table
stored offline. In brief, we enable quadrocopters to fly to the rhythm of the music
with correctly scaled motions. This fulfills the requirements for a rhythmic motion.

4.7 Rhythmic Performances

People in the audience, when they’ve watched the dance, should feel like they’ve accom-
plished something, that they’ve gone on a journey.
—Paul Mercurio, actor and dancer



4 So You Think You Can Dance? 99

Opening night at the theater: patrons of the arts and critics take their seats while
dancers do last last-minute warm-ups and take their places backstage. Tension is
high: performance success is part practice, part sweat, and part luck. We have already
discussed in Sect. 4.6 how quadrocopters can practice and improve their performance
over time, but do sweat and luck have a role in a quadrotor performance? In control
theory, the term “robustness” refers to the ability of a system to control for uncer-
tainty; that is, for unknown effects such as wind or reduced propeller efficiencies.
Given the feedback from sensors (the overhead camera system or onboard sensors),
quadrocopters can react to uncertainty quickly and effectively—putting more effort
into the motions if propeller efficiencies are low or executing corrective movements
if unexpected external disturbances corrupt their motions. And consequently, the
resulting quadrocopter performance is mostly predictable and has been demonstrated
during several hundred demonstrations to visitors in and outside the lab.

4.7.1 Experimental Testbed

We demonstrate our algorithms on small, custom quadrocopters operated in the ETH
Zurich Flying Machine Arena, a 10 × 10 × 10 m3 mobile testbed for quadrocopter
research. The setup is similar to [51]: The system consists of a motion capture
camera system that provides precise vehicle position and attitude measurements. The
localization data is sent to a personal computer, which runs the control algorithms,
and which in turn sends commands to the quadrocopters. More details about the test
environment can be found in [52] and at: www.FlyingMachineArena.org.

4.7.2 Implementation and Robustness

Based on the rhythmic motion elements discussed in this chapter, full performances
are designed for a given soundtrack. Additional motion elements not discussed in
this chapter are used to smoothly concatenate the periodic motions (see [42] for
more details). Moreover, acrobatic motions such as flips, loops, and bang-bang-type
transitions can be incorporated in the performances to add variety; those motions are
not strictly related to the music beat. In [5], the choreography design procedure is
described from a practical point of view.

The resulting performance is completely preprogrammed. However, to allow for
a robust and reliable execution, the preprogrammed feed-forward signals are com-
plemented by several feedback and adaptation schemes.

We use an adaptation scheme for online synchronization of the motion to the
music (Sect. 4.6). Residual phase and amplitude errors in the quadrocopter response
are compensated for during the performance by adapting the commanded trajectory
online (see Fig. 4.2). The online adaptation allows us to synchronize the motion
of vehicles with slightly different dynamic properties (e.g., shifted center of mass

www.FlyingMachineArena.org
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and degraded propellers). The underlying trajectory-following controller (Sect. 4.5)
compensates for unexpected disturbances such as wind in a reactive manner based
on the measured vehicle following errors. The trajectory-following controller in turn
relies on the vehicle’s onboard controller to quickly compensate for local model
uncertainties such as degraded propeller efficiencies by, for example, increasing the
turn rate of the propellers to obtain the required thrust in the case of reduced propeller
efficiencies.

4.7.3 Choreographies

Since the start of the project, several choreographies have been designed based on the
rhythmic motion elements discussed in this chapter. The following list presents the
choreographies that are featured in the Flying Machine Arena with the song name,
the singer or composer of the song, the number of quadrocopters, and their respective
design year:

• Please don’t stop the music, Rihanna, one vehicles, 2009
• Pirates of the Caribbean, Hans Zimmer, two vehicles, 2009
• Rise Up, Yves Larock, three vehicles, 2010
• From the Clouds, Jack Johnson, four vehicles, 2011
• Armageddon, Prism, five vehicles, 2011
• Dance of the Flying Machines, Victor Hugo Fumagalli, six vehicles, 2013.

These choreographies have not only been regularly demonstrated at ETH Zurich,
where we conduct our research, but also at exhibitions such as the Hannover Messe
(April 2012, Fig. 4.15), Google I/O (June 2012), and TEDGlobal (June 2013).
Figure 4.16 shows the vehicle flight trajectories that compose the first part of the
From the Clouds performance. Associated videos are found on the project web page,
www.tiny.cc/MusicInMotionSite.

4.8 Conclusions and Outlook

Humans do not communicate by words alone. Non-verbal behavior, including dance, is a
part of the calculus of meaning.
—Judith Lynne Hanna in “To Dance is Human: A Theory of Nonverbal Communication” [53]

The evolution of robotics into human-centered applications poses important research
questions, especially with respect to human–machine interaction. As long as robots
remained the domain of industry, precision, speed, and repeatability were of primary
importance; however, as robots increasingly enter our homes, offices, and commu-
nities, there is a corresponding need for them to be able to correctly interpret and
appropriately respond to human action and behavior. In this chapter, we presented a
novel visual musical experience: multiple flying vehicles coordinate their flight to the

www.tiny.cc/MusicInMotionSite
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Fig. 4.15 The ETH Zurich Flying Machine Arena at the Hannover Messe in Germany, the world’s
biggest industrial fair, April 2012 (Photo Markus Hehn)

Fig. 4.16 Experimental flight data from the From the Clouds performance featuring four quadro-
copters

rhythm of the music and perform an aerial show; a cubic indoor flight space forms the
stage, and small autonomous quadrocopters are the actors of this performance. While
this vision was the motivation for our work, in the process of implementing this idea,
fundamental problems in trajectory planning and control were solved, including the
a priori evaluation of a trajectory’s feasibility, and a combined offline and online
identification/adaptation scheme for precise tracking of periodic motions. All these
components have been integrated into a software tool that facilitates the choreog-
raphy design, and the range of different choreographies and the number of public
demonstrations prove the feasibility and reliability of the designed algorithms. And
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yet the periodic motion and patterned behaviors presented here, though they may
be characteristic of dance, do not in and of themselves constitute it. According to
most dancers, choreographers, and audience members, it is the emotional, social, and
spiritual aspects of dance that are the more essential characteristics: a robot moving
rhythmically to a beat is no more a dancer than a metronome is a musical instrument.
In other words, when it comes to interpreting music into a series of motions that is
recognizable as dance, what is important is the human element.

Critical next steps for this project will thus be to explore how dance can be
used as a form of shared experience with which to build an understanding of intu-
itive human–machine interaction. Chapter 3 explores motion-based communication
in human salsa dance. As John Baillieul says, “The ultimate goal is to understand
human reaction to gestures and how machines may react to gestures.” Rich Barlow
describes it as follows,2 “Good dancers move seamlessly together, responding to each
other’s touch and motions; amateurs without experience reading each other’s cues
often come off looking stilted”. By investigating the nonverbal cues dance partners
use to communicate, the researchers hope to gain insight into new intuitive means of
robot–human interaction, which could enable robots to team with, and perhaps take
over from, humans in the future. Our work similarly envisions a dance “partnership”
through which human–machine interaction can be studied and enhanced; however,
our use of quadrocopters poses an additional challenge as there is little shared body
experience between a quadrocopter body and the human body. The relationship must
be founded on a shared understanding of movement alone.

Machines and humans each have their strengths and weaknesses: machines are
better at rule-based, rational tasks—like synchronization and determining feasible
motions sequences— whereas humans are better at things that are hard to describe
using rules—like conveying and understanding emotion. Performing together as
dance partners, humans and quadrocopters have the potential to engage in com-
plimentary ways. Parallel work in our research laboratory already includes human-
in-the-loop experimentation with quadrocopter control, and suggests that this kind
of human–quadrocopter partnering is feasible: the TED talk www.tiny.cc/TED_
DAndrea demonstrates gesture control of quadrocopters using a Kinect system, and
shows simple physical interaction between a human and a quadrocopter (see Fig. 4.17
and [54]). By incorporating this research into our aerial dance system, we can enable
dancers and choreographers to directly communicate with the quadrocopters using
physical interaction, or simply their body language, their gestures. Imagine an expe-
rienced dancer/choreographer guiding a suite of quadrocopters as they dash through
the air. What kinds of performances would we see then? Could his or her subtle
touch not convey all kinds of emotion? Indeed, as described in Sect. 4.1.3, techno-
logical props have long been used to augment dance performance. However, the
proposed human–quadrocopter dance “partnership” could go beyond extending a

2 www.bu.edu/today/2013/dances-with-robots

http://dx.doi.org/10.1007/978-3-319-03904-6_3
www.tiny.cc/TED_DAndrea
www.tiny.cc/TED_DAndrea
www.bu.edu/today/2013/dances-with-robots
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Fig. 4.17 Demonstration of physical interaction between a human and quadrocopters: Raffaello
D’Andrea at TEDGlobal, June 2013 (Photo James Duncan Davidson)

human’s dance performance. It could ultimately help us to better understand how
humans and machines can communicate intuitively with each other, and enable new
forms of human–machine interaction.
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Chapter 5
Robotic Puppets and the Engineering
of Autonomous Theater

Elizabeth Jochum, Jarvis Schultz, Elliot Johnson and T. D. Murphey

5.1 Puppets Manipulated by Machines Manipulated
by Engineers

Creating autonomous machines that have artistic or esthetic functions has been a
subject of inquiry since antiquity. The merging of control theory with artistic prac-
tice has shifted the approach of artists and engineers away from creating systems
that merely imitate artful or expressive gestures toward those in which the actions or
behaviors are directly related to the environment and the system dynamics. Ideally,
this research will contribute to a deeper understanding of the relationship between
art and the behavior of dynamical systems. However, as the experiments in this book
demonstrate, it can be difficult to differentiate those features which distinguish artis-
tic function from utilitarian function. Rather than precisely defining what makes a
work of art artful—itself an elusive task that has occupied art historians and esthetic
philosophers for centuries [1–3]—it can be advantageous to use an established art
form or practice as the basis for criteria and evaluation of experiments. The esthetic
frameworks of established art forms such as dance (as in Chap. 4), musical composi-
tion (as in Chap. 7), or puppetry (as in Chap. 1) provide external referents that enable
researchers to measure the degree to which systems are able to generate artistic
behaviors or artifacts.

Our project uses marionette puppetry as a testbed for exploring the automated
synthesis of control strategies for complex, highly dynamic, underactuated sys-
tems. Marionette puppetry has a unique approach to creating expressive, mimetic
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behaviors that approximate human gestures and behaviors using a range of abstracted
motions that indicate—but do not replicate—recognizable human motions. In perfor-
mance, puppets acquire a grace and agility not often seen in animatronics themselves
automated systems that aim at mimicry but whose movements are typically heavy,
slow, and perfunctory. The goal of our project is to emulate the control technique of
human puppeteers and to develop automated puppets while maintaining the natural
dynamics of marionettes. Controls strategies that preserve the marionette’s dynam-
ics are important as puppets create the illusion of life through the art of indication
rather than precise mechanical reproduction. We anticipate that our robotic mari-
onette platform will allow for a wider, more artistic range of automated motions for
entertainment robots.

Artists and engineers have long experimented with developing efficient methods
for simulating highly articulated rigid body systems [4–9]. However, these efforts
have typically focused on designing stable physical motions rather than on control
calculations. This chapter focuses on the question of how to both simulate and control
an arbitrarily complex rigid body system while maintaining scalability and conver-
gence of the resulting numerical routines. Recognizing the potential of this research
for entertainment, industrial, and medical applications, we use a robotic marionette
system (seen in Fig. 5.1) as an example of a complex system that requires carefully
embedded control that can handle many degrees of freedom. String marionettes are
interesting because they partly resist the puppeteers’ attempts to direct them: pup-
peteers are forced to compromise with the dynamics of the underactuated puppet to
create recognizable representations of human motion. A control-based analysis of
string puppetry prompts the question of whether or not puppets can be programmed
to perform autonomously—a question that has been considered with great vigor by
theater artists [10–13] and is of increasing relevance given contemporary theatrical
productions that combine animatronic technology with marionette control systems,
such as Global Creatures’ How To Train Your Dragon (2012) and King Kong (2013).

This project is a collaboration with Georgia Tech, the Atlanta Center for Pup-
petry Arts, and Walt Disney Imagineering/Disney Research. Disney Imagineering
has played a central role in developing the hardware platform. While the use of
animatronics is widespread in film, museums, and theme parks its influence on live
performance has been largely negligible. The absence of animatronics from the-
ater stages can be attributed to the tremendous technical difficulties and safety risks
posed by combining massive robots alongside human performers. However the more
likely explanation for their absence is that animatronics lacks the human feeling and
artistry found in the live performance of direct-contact puppetry. When compared to
marionettes, traditional animatronics are heavy, slow, and expensive. Robotic mari-
onettes promise to be both more agile and less costly, and could potentially expand the
possibilities for automated theatrical performances. For example, Global Creatures
2013 production of the stage musical King Kong combined traditional puppetry tech-
niques with automated marionette control to manipulate a 6 m tall silverback gorilla
alongside human performers. While the partially automated performance signaled
a new paradigm for robotic puppets, the refined gestures and expressive behaviors
still relied heavily on real-time operation by human puppeteers [14]. In this case,
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Fig. 5.1 The robotic marionette system in a is actuated by small-wheeled robots that run on the
underside of a tarp. The goal is to use motion captured from the dancers in b as reference data for
the marionettes. Software must transform the dancers’ motion into dynamically admissible motion
for the marionettes and combine these motions together using choreography

the reliance on human puppeteers indicates the tremendous technical challenges of
automating a process that, through training, happens intuitively for humans.

Controlling marionettes is a very challenging technical problem: string mari-
onettes have many degrees of freedom, have mechanical degeneracy due to the
strings, are very lowly damped, and are highly constrained. However, human pup-
peteers have demonstrated a reliable ability for controlling string marionettes and
solving these high-dimensional motion planning problems—puppeteers convinc-
ingly imitate human motion using marionettes—so we know the problems are solv-
able.

Part of this project involved the authors working with professional puppeteers
to formally understand how they prepare for performance and what decisions they
make during performances. Working alongside puppeteers at the Center for Pup-
petry Arts in Atlanta, Disney Research, and the Denver Puppet Theater provided an
opportunity to discover, in practical terms, how puppeteers see their jobs as a com-
bination of algorithmic concerns (e.g., how does one organize motion) and design
concerns (e.g., how does one produce mechanical objects that are easily manipu-
lated to produce desired motions). Puppets are complex mechanisms—controlling
them involves constant trade-off between mechanical capacity and sophistication
of expression. Puppeteers emphasize three phases of motion imitation—Imitate,
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Simplify, Exaggerate—that represent the need to capture a motion, to then sim-
plify it for reliable mechanical reproduction, and then exaggerate it for performance.
Puppeteers also make strategic decisions about how to build a puppet that will be
amenable to certain motions and how to best coordinate the physical relationship
between the puppeteer and the performing object. Puppeteers coordinate the timing
of a motion so they can interact with other puppeteers, sometimes collaborating to
control a single marionette or groups of puppets, ensuring that the marionettes remain
animated throughout the performance. Scripts of puppet plays describe the action
using four parameters: temporal duration, agent, space, and motion (i.e., when, who,
where, and what). These motions are grouped and executed according to counts that
specify when each motion begins and ends. During rehearsals and performance, the
puppeteer makes decisions about the use of force, dynamics, and movement qualities
that determine the expressive characteristics and the overall visual effect, handling
complex choreographic sequences and solving problems of uncertainty, often before
they arise. These are the processes that we set out to understand.

Using a control-based analysis, we aim to understand how puppeteers manage
complexity and uncertainty and apply these insights to autonomous theater produc-
tions and optimization problems in other critical areas. Our current hypothesis is that
choreography plays a critical role in how puppeteers manage complexity, and that the
study of marionette choreography will further our understanding of other complex
applications, such as embedded control of prosthetics (briefly discussed at the end
of this chapter). Our goals are to synthesize motion control for complex systems.
To that end, choreography provides a way of categorically identifying useful and
recognizable motions (e.g., walking, running, waving, reaching) that can be com-
bined together in phrases. How one combines and orders these motions determines
the stability and smoothness of transitions between motions.

This chapter is organized as follows: Section 5.2 introduces marionette puppetry
and articulates the distinct technical challenges of generating recognizable and artis-
tic motions using marionettes. Section 5.3 describes typical analytical approaches
in dynamic simulation and optimal control and the specific software requirements
these approaches create. Section 5.4 discusses which special considerations should
be taken into account when working in discrete time. Section 5.5 illustrates our soft-
ware approach and briefly discusses examples of systems that the software automati-
cally optimizes successfully. Section 5.6 discusses the relevant features of the current
framework and the broader impacts for automated puppetry and the engineering of
autonomous theater.

5.2 Puppets: Esthetic and Mechanical Considerations

From antiquity to the present, artists and engineers have sought to create mechanical
figures that generate expressive and lifelike behaviors [10, 15]. Puppets are part of
this lineage, and are representatives par excellence of humanity’s insatiable thirst
for bringing ordinary object to life through motion. As art and technology scholar
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Chris Salter has observed, the histories of performing machines and robotic art have
often involved a continual mingling between mimetic aspects (that is, objects that are
imitative of lifelike behavior in appearance) and machinic aspects (electromechanical
behavior that, though animate, is not anthropomorphic) rather than a disambiguation
[16]. That is, human artists are interested in designing machines that emulate aspects
of human creativity. Before the advent of computing and electronics, the approach
was to design objects that appeared lifelike and imitated human actions, such as the
eighteenth century humanoid automata built by Jacques de Vaucanson and Henri-
Louis and Pierre Jaquet-Droz [17]. Puppets are the progenitors to these and other
attempts to create mechanical life, and are part of a lineage that extends to present-day
animatronics.

Puppets can take the shape of realistic or abstract figures, and are designed for use
in theatrical settings. A puppet is generally defined as a material object that makes
temporal use of sources of power that exist outside of itself, and that are not its
own attributes [10, 18]. Animatronics are puppets that are electronically controlled
through various actuators (electrical, hydraulic, pneumatic); however, the absence of
a human performer and repetitive or open-loop performance means that they are not
typically regarded in the same way that human-powered puppets are. Setting aside
for a moment the question of human agency, we recognize that the main purpose
of a puppet is movement: to establish a meaningful presence the puppet relies on
motions to create a character or presence that is both recognizable to the spectator
and conveys a certain artistic truth. The puppet’s power of expression is therefore
not determined by how well it precisely mimics human behavior, but rather by its
ability to abstract human motions and offer an artistic projection of those motions and
behaviors. In other words, the goal of puppetry motion is not to copy but to create.
As Kingston et al. have also observed, a puppets primary purpose is to communicate
through motion (as in Chap. 1).

Puppeteers are extremely inventive, and have developed numerous methods
for controlling (often called “manipulating”) and constructing expressive, moving
objects. String marionettes are dynamically unique among puppets, and more than
other types of puppets have the potential to teach us about optimal control. Unlike
glove puppets or rod puppets which are controlled through direct, corporeal contact
(hands-on, hands-in), string marionettes are operated from above by a varying num-
ber of strings. For humanoid puppets, these strings are usually attached to the puppet’s
head, torso, shoulders, arms, and legs, and can be strung to generate specific actions
based on the specifications of the choreography. The strings can be manipulated
with a variety of controls—the most common is the multistringed wooden control or
“airplane” (crossbar) mechanism. This technique is used in Asian and European pup-
petry forms, and puppeteers can opt to vary the string lengths and attachment points
according to the needs of each production or scene. The precision of the puppet’s
motions is relative to the control of the figures—the longer the strings, the weaker
the impetus, which results in softer, less precise movements [10]. Puppeteers can
control marionettes at ground level working alongside the puppet and in full view
of the audience, or from a position high above the stage from a bridge and out of
the audience’s sight lines. In either arrangement, the puppeteer must learn to balance

http://dx.doi.org/10.1007/978-3-319-03904-6_1
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the dynamics of the puppet against the need to execute expressive choreography that
convincingly imitates—but does not replicate—human motions. Because string mar-
ionettes resist the puppeteer’s attempts to direct them, puppeteers have developed
highly evolved strategies for generating sequences of complex motions—this is what
is known as marionette choreography. Because of their dynamics, string marionettes
are arguably the most difficult type of puppet to operate. This also makes them a
good testbed for a control-based analysis.

5.3 Typical Approach

In this section, we discuss typical analytical approaches to optimal control and the
types of software infrastructure these approaches assume. We start with a discussion
of how one might describe the dynamics of a mechanical system and then discuss
computing optimal controllers for that system.

5.3.1 Dynamics

Marionettes are subject to the physics of the world: they swing and sway according to
the forces of gravity and the interplay between the different bodies—individual units
such as the torso, forearms, and legs—in the marionette. This interplay between
the bodies falls within the realm of dynamics and simulation, where the dynamic
description comes from a physics-based understanding of puppet motion. When
computing dynamics, we are typically trying to compute equations of the form

ẋ = f (x, u) (5.1)

where x = (q, q̇) and q ∈ Q describes the configuration of the system. For rigid
body systems, it has historically been convenient to write down the rigid body sys-
tem in Newton-Euler coordinates (i.e., Q = SE(3)n , where n is the number of rigid
bodies in the system. This yields a state space of dimension 12n that is subject to
constraints. For a typical humanoid marionette, for instance, the marionette alone
(no actuators) has 10 rigid bodies, so the state space would be more than 120 dimen-
sions. If one includes string actuation in the degree count, that adds one degree of
freedom for each string’s length and an additional element of SE(3) for each string
endpoint (treating the inputs as “kinematic inputs” [19]). For a typical marionette
with six strings of variable lengths, this brings the total nominal dimension of the
state space up to 12 · 10 + 2 · 6 + 12 · 6 = 204. Naturally, we do not want to be
solving for feedback controllers in a 204 dimensional space if it can be avoided. To
avoid such high dimensions, we do not want to represent Eq. (5.1) as Newton-Euler
equations and instead insist on working in generalized coordinates. In the case of
the marionette, this reduces the dimension of the state to 2m, where m is the number
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of generalized coordinates. This yields 22 configuration variables for the marionette
itself and another 18 degrees of freedom for the string actuators (six strings with
endpoints moving in R

2 ×R), yielding 80 states. By utilizing a kinematic reduction
[21, 22], we can reduce the state of the actuators down to 18 because they are fully
actuated. This gives us equations of motion of the following form:

ẋa = u

ẋ p = f (x p, xa) (5.2)

where xa is the kinematic configuration of the actuators and x p = (qp, q̇p) is the
dynamic configuration and velocity of the marionette itself. (For details on this, see
[19].) This leaves us with a much smaller, more manageable system to work with
that only has a total of 62 dimensions in its state space. Crucially, the strings are
modeled as holonomic constraints, relating the lengths of the strings to the dynamic
configurations, of the form

h(xa, qp) = 0 (5.3)

which must be maintained during simulation and control. Assuming for the moment
that Eqs. (5.2) and (5.3) can be stably simulated in an efficient manner, how do we
then construct the differential equation and constraints in a systematic manner? The
standard way to do this is based on Featherstone’s early work [9] on articulated
body dynamics. This work was largely used in the context of animation and digital
puppetry, where the requirements are substantially different than embedded control.
For example, animation requires a simulation to “look right” only once, while con-
trolled physical systems must be repeatable. Recursive approaches to calculating
dynamics [9, 23] take advantage of special representations of mechanical systems
that allow the values needed for simulation to be calculated quickly and avoid redun-
dant calculations. The work in this chapter is based on the methods presented in
[20] (based on [9]). Here, systems are represented as graphs where each node is a
coordinate frame in the mechanical system and the nodes are connected by simple
rigid body transformations (typically translations along and rotations about the X ,
Y , and Z axes, though any rigid body screw motion can be used). Transformations
are either constant or parameterized by real-valued variables. The set of all variables
establishes the generalized coordinates for the system. Figure 5.2 is an example of
a simulated marionette. The graph description can include closed kinematic chains,
but in practice the graph is converted to an acyclic directed graph (i.e., a tree) and
augmented with holonomic constraints to close the kinematic chains. This approach
leads to fast calculations of f (·, ·) in Eq. (5.2) and h(·) in Eq. (5.3). Moreover, one
can use the same structure to efficiently calculate the linearization [24], which is
critical to nonlinear optimal control calculations, discussed in Sect. 5.3.2.
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Fig. 5.2 Simulation of complex rigid bodies can take advantage of the mechanical topology of the
system. For instance, a marionette is being simulated in a using a tree structure representation of
the humanoid form in b and representing the constraints by cycles in the graph (see [20])

5.3.2 Nonlinear Optimal Control

Controlling marionettes involves choosing how the strings must be operated in order
to achieve some desired trajectory. For instance, if we wish a marionette to generate
a walking motion, the strings must pull the limbs in such a way that the body of the
marionette indicates walking. The choice of string motions will, of course, depend
on the physics-based description of the marionettes. For instance, if the masses of the
legs are very high, we might have to pull on the strings differently than if the masses
were very low. Optimal control plays a significant role in determining the outcome
because it provides an algorithmic means of choosing string lengths and endpoint
positions in a manner that takes the physics-based description of the marionettes into
account. Optimal control typically starts out with a cost function of some sort, often
of the form

J =
∫ t f

t0
L(x(t), xref(t), u(t))dt + m(x(t f ), xref(t f )) (5.4)

where L (·) represents a weighted estimate of the error between the state and the
reference state (which is potentially not a feasible trajectory for the system) such
as in the imitation problem mentioned above. We can minimize this cost function
subject to the dynamics in Eqs. (5.2) and (5.3) by using iterative descent methods. In
particular, one uses the equivalence between the constrained minimization and the
unconstrained minimization of the objective function composed with a differentiable
projection P(·) onto the constrained subspace. That is, the two minimizations

min
v∈W⊆V

g(v) = min
v∈V

g(P(v))
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(where V is the vector space and W is the differentiable submanifold of admissible
vectors) are equivalent [25]. The projection operator P(·) comes from comput-
ing a feedback law (discussed in more detail in Sect. 5.3.3). In particular, if one
interprets the “gradient” descent algorithm as starting at some nominal trajectory
ξ = (x(t), u(t)) and solving for a descent direction ζ = (z, v) that optimizes the
local quadratic model

ζ = arg min
ζ

Dg(ξ) · DP(ξ) · ζ + ⊂ζ⊂2,

then one must only solve a standard time-varying LQR problem. This means that
one must be able to compute the time-varying linearization

ż = A(t)z + B(t)v (5.5)

where A(t) = ∂ f
dx (x(t), u(t)) = D1 f (x(t), u(t)) and B(t) = ∂ f

du (x(t), u(t)) =
D2 f (x(t), u(t)). One has to be able to do so for arbitrary trajectories in the state
space, potentially including infeasible trajectories (in the case of linearizing about the
desired trajectory). Solving for the descent direction involves computing the Riccati
equations

Ṗ + A(t)T P + P A(t) + Q − P B(t)R−1 B(t)T P = 0. (5.6)

If we additionally want to guarantee quadratic convergence, then we can find a
descent direction by solving a different LQR problem

ζ = arg min
ζ

Dg(ξ) · DP(ξ) · ζ + ⊂ζ⊂2
D2 J

where

D2 J (ξ) · (ζ 1, ζ 2) = D2g(ξ) · (DP(ξ) · ζ 1, DP(ξ) · ζ 2)

+Dg(ξ) · D2P(ξ) · (ζ 1, ζ 2). (5.7)

The second derivative D2P(·) requires that we be able to also calculate ∂2 f
dx2 , ∂2 f

du2 ,

and ∂2 f
dxdu . The details of this approach can be found in [25] and elsewhere, but for our

purposes we should be able to compute Eqs. (5.2)–(5.7) in software. The difficulty of
this approach is that we are representing the optimal control problem in continuous
time while the actual computations are in discrete time. We will discuss this further
in Sect. 5.4 and we see that it is only when we perform optimal control calculations
in discrete time that we arrive at convergence of the algorithms that provide motion
imitation.
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5.3.3 Choreography and Hybrid Optimal Control

In [26–28], we developed an optimal control interpretation of puppet choreography.
In particular, we formalized choreography as a sequence of modes that can be pieced
together to form a script of motions. Each mode has its own dynamics, creating a
system with dynamics

ẋ = f(x(t), u(t)) = fi (x(t), u(t)) t ∈ (τi , τi+1)

where each i corresponds to a different mode of the system. To optimize such a
system, one needs to be able to minimize an objective function J with respect to the
switching times τi of the system. For a gradient descent algorithm, one must be able
to compute the derivative ∂ J

∂τi
—the derivative of the cost function with respect to the

switching times—which depends on the switching time adjoint equation

ρ̇ + A(t)T ρ + ∂L

∂x
= 0 (5.8)

along with a boundary condition at ρ(t f ) (see [29–32]). This adjoint equation only
needs to be computed once to compute all the derivatives of J . If one wants to compute
the second derivative of J , e.g., to utilize Newton’s method, then the second-order
switching time adjoint equation

Ṗ + A(t)T P + P A(t) + ∂2L

∂x2 +
∑

k

ρk
∂2 f k

∂x2 = 0 (5.9)

along with its boundary condition P(t f ) must be solved [30]. This adjoint equation,
along with a solution to Eq. (5.8), needs to be computed only once to obtain all
the derivatives of J . Note that the second-order switching time adjoint equation is
the same as the Riccati equation in Eq. (5.6) except that the Riccati equation has a
different final term. Indeed, both Eqs. (5.8) and (5.9) only require first and second
derivatives of fi with respect to the state, so those are all that are needed for software;
hence, the choreographic optimization requires the same software capabilities as the
smooth optimization described in Sect. 5.3.2.

5.4 Discrete Time with Scalability

As previously mentioned, the continuous representation of dynamics found in
Eq. (5.1) is not what we actually use to do computations. Moreover, when there
are constraints, such as those seen in Eqs. (5.2) and (5.3), standard methods such
as Runge–Kutta methods fail to preserve the constraints. Typically, one would
use solvers designed for Differential Algebraic Equations (DAEs) that project the
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Fig. 5.3 Software using variational integrators as the basis for simulation can accurately predict
marionette motion using comparatively large time steps. In this case, the time step is dt = 0.01 s

numerical prediction onto the set of constrained solutions defined by the constraint in
Eq. (5.3). We have found, however, that for high-index DAEs such as the marionette
a tremendous amount of “artificial stabilization” is required to make the simulation
of the DAE stable. This artificial stabilization—which typically takes the constraint
h(q) as a reference and introduces a feedback law that “stabilizes” the constraint—
changes the dynamics of the system, and if the feedback gain is high, this often creates
a multiscale simulation problem that is incompatible with real-time operation. As an
alternative, we consider variational integrators [33–39]. Variational integration meth-
ods use the stationary action principle as a foundation for numerical integration that
does not involve differential equations. This approach has several advantages such
as guarantees about conservation of momenta, the Hamiltonian, and the constraints,
as well as guaranteed convergence to the correct trajectory as the time step con-
verges to zero. More importantly, variational integration techniques exactly simulate
a modified Lagrangian system where the modified Lagrangian is a perturbation of
the original Lagrangian. The Discrete Euler-Lagrange (DEL) equations are (Fig. 5.3)

D1Ld(qk, qk+1, k) + D2Ld(qk−1, qk, k) = Fk (5.10)

h(qk+1) = 0 (5.11)

where Ld is a discretized form of the Lagrangian and Fk is an external force inte-
grated over the k time step. This forms a root solving problem in which, given qk−1
and qk , one solves for qk+1. Alternatively, one can utilize the discrete Legendre
transform to define the discrete generalized momentum pk , and then convert the root
solving problem of Eq. 5.11 into a one-step root solving problem where, given the
pair (qk, pk), one implicitly solves for the next time step pair (qk+1, pk+1). Repeat-
ing this root solving procedure forms the basis of simulation. Using this method, we
can (using a recursive tree description similar to the one described in Sect. 5.3.1),



118 E. Jochum et al.

simulate the marionette in real time using time steps of 0.01 s without adding any
sort of numerical heuristics, such as artificial stabilization. Let us say we start from
the DEL equations and assume, by application of the implicit function theorem, that
the solution exists and is locally unique [40]. Once we have made a choice of state
(we choose xk = (qk, pk)), we have an update equation of the form

xk+1 = fk(xk, uk)

just as we would if we had started from a differential equation. That is, the general
form of the discrete time equation we wish to optimize is in principle no different in
the variational integrator case than it is in the standard ODE case. More importantly,
the fact that fk is implicitly defined by the DEL equations does not affect whether
the linearization is implicitly defined. In fact, one can calculate an exact linearization
of the DEL equations, including constraints and closed kinematic chains [24]. So we
may wish to know what the discrete time version of Eqs. (5.6) and (5.7) are. (These
can be found in [41].) The difficulty is that one cannot linearize Eq. (5.1) directly
because that is the infinitesimal linearization; to get a discrete time linearization one
would nominally have to solve the state transition matrix (STM) locally over the
time step. Approximating the STM leads to a linearization that does not respect the
constraints, leading to a local optimal controller that essentially fights the constraints.
In contrast, taking variations directly with respect to xk yields an algebraic calculation
for the linearization and higher order derivatives with respect to the state. As with
variational integration, the key to linearization is to take variations with respect to
the discrete state rather than the continuous state. For nonlinear optimal control in
the discrete time setting, we need to know if the resulting projection operator (as
discussed in Sect. 5.3.2) is in fact a projection and whether it is differentiable.To
see that such a projection is valuable, consider Fig. 5.4 [42], where a planar double
pendulum trajectory is being optimized. The initial guess for the optimal solution is
the “zero” solution, the optimal solution is the solid black line, and the first iteration
of Newton’s method using the projection operation is the dotted line. Hence, one step
of Newton’s method almost solves the global optimization in this case. Naturally,
that will not always be the case, but this is an indication of how much generating a
differential projection operation can help. Let ξ = (x, u) be a desired, potentially
infeasible, curve in the space the trajectories reside in and let ξ = (x, u) be feasible
trajectories. The continuous time projection operator is defined by ξ = P(ξ) such
that

x(t0) = x(t0)

ẋ = f (x, u)

u = u − K (t)(x − x)

where the feedback gain K (t) comes from solving the Riccati equation in Eq. (5.6).
One can verify that P(·) is a projection and that it is C→ if f is C→. What do we
do if we are using Eqs. (5.10) and (5.11) instead of Eqs. (5.2) and (5.3)? Then the
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Fig. 5.4 Projection-based variational optimization of a planar double pendulum [42]

discrete projection operator Pd(·) is ξd = Pd(ξd) such that

x0 = x0

xk+1 = fk(xk, uk) (5.12)

uk = uk − Kk(xk − xk)

where the discrete time feedback gain Kk comes from solving a discrete time Riccati
equation. To see that it is a differentiable projection, we introduce the following
Lemma.

Lemma 1 Pd(·) is a projection.

Proof We need to show that the projection satisfies the property Pd(ξ̄d) =
Pd(Pd(ξ̄d)). First we calculate several terms of (a, b) = Pd(α, μ) and get
a0 = α0, b0 = μ0 − K0(a0 − α0) = μ0, a1 = f0(a0, b0) = f0(α0, μ0), and
b1 = μ1 − K1(a1 − α1). Now calculate several terms of (x, u) = Pd(a, b) and
find that x0 = a0 = α0, u0 = b0 − K0(x0 − a0) = b0 = μ0, x1 = f0(x0, u0) =
f0(α0, μ0) = a1, and u1 = b1−K1(x1−a1) = b1−K1(a1−a1) = b1. By induction,
we find Pd ≤ (α, μ) = Pd ≤ Pd ≤ (α, μ). Hence, Pd(·) is a projection operation
from discrete time representations of curves ξd to discrete time representations of
trajectories ξd .

Next we need to calculate the derivative of Pd(·), starting with ξd = Pd(ξd) (we
are going to drop the d from ξd for notational convenience).

δξ = DPd(ξ̄ ) ≤ δξ̄

So, by Eq. 5.12, we get
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δx0 = δ x̄0

δxk+1 = ∂ fk

∂xk
δxk + ∂ fk

∂uk
δuk = D fk ≤ δξk

δuk = δūk − Kk(δxk − δ x̄k).

where ∂ fk
∂xk

is shorthand for ∂ fk
∂x (xk, uk, k). (The same applies to ∂ fk

∂uk
and D fk .) As

in the continuous case, the derivative of the discrete projection is a discrete linear
system. The second derivative is also straightforward (here we let δξ̄1 and δξ̄2 be
two independent perturbations to ξ̄ ).

δ2ξ = D2P(ξ̄ ) ≤ (δξ̄1, δξ̄2)

which implies, again by Eq. (5.12), that

δ2x0 = 0

δ2xk+1 = D2 fk ≤ (δξ1
k , δξ2

k ) + D fk ≤ δ2ξk

= ∂ fk

∂xk
δ2xk + ∂ fk

∂uk
δ2uk + D2 fk ≤ (δξ1

k , δξ2
k )

δ2uk = −Kkδ
2xk .

Rewriting the second derivative, we get:

δ2xk+1 = ∂ fk

∂xk
δ2xk + ∂ fk

∂uk
δ2uk + D2 fk ≤ (δξ1

k , δξ2
k )

=
[

∂ fk

∂xk
− ∂ fk

∂uk
Kk

]
δ2xk + D2 fk ≤ (δξ1

k , δξ2
k ).

This is a discrete affine system, equivalent to a discrete linear system with an input:

δ2xk+1 = Âkδ
2xk + B̂k

Âk =
[

∂ fk

∂xk
− ∂ fk

∂uk
Kk

]
B̂k = D2 fk ≤ (δξ1

k , δξ2
k ).

Hence, the projection operation Pd is twice differentiable with derivatives that
are represented by discrete time linear difference equations, allowing us to apply
Newton’s method to optimal control problems.

5.5 Examples

We now consider the model of a humanoid marionette shown in Fig. 5.5. The mari-
onette has 40 configuration variables and is actuated by six strings. The strings are
modeled as holonomic constraints. Kinematic configuration variables—those that
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Fig. 5.5 The 3D Marionette is actuated by six strings

we assume satisfy first-order dynamics where we control the velocity of the variable
directly—control the two-dimensional position of the endpoint of each string as well
as the string length. There are no joint torques and only slight damping applied to
each dynamic configuration variable equally. In order to indicate the real-time fea-
sibility of the algorithms discussed in the previous sections, we now provide some
timing data for the marionette simulation in Fig. 5.5 we have a system that has 22
dynamic degrees of freedom, 18 kinematic degrees of freedom (corresponding to
the actuation of the strings), and six total holonomic constraints. To evaluate the
continuous dynamics that would be used in a standard integrator, one evaluation
of f (x, u) requires 2.7 ms, while the first derivative with respect to the state (i.e.,
the linearization) requires 24 ms and the second derivative with respect to the state
requires 400 ms. Note that this does not indicate how long it will take to simulate
a particular length of time because the time step is not included here as we are not
working in discrete time. With the variational integrator from Eqs. (5.10) and (5.11)
with a time step of 0.01 (no other parameters are needed when using variational
integrators, even with the degeneracies and constraints the strings introduce), the
update step requires 5.53 ms while the first derivative with respect to the state (i.e.,
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the exact discrete linearization) takes 2.4 ms and the second derivative with respect
to the state takes 130 ms. This means that, at minimum, we can simulate and evaluate
controllability in real time. Two optimizations are discussed in the following sub-
sections. The optimization in Sect. 5.5.1 uses a desired trajectory that was generated
separately by simulating the system. Section 5.5.2 discusses an optimization with a
reference generated from motion capture data.

5.5.1 Desired Motion: Simulated Trajectory

A desired trajectory was generated by simulating the system forward in time. The
lengths of the arm and leg strings were varied sinusoidally to create a “walk-
ing” motion. The configurations of the trajectory were saved. The rest of the
state (e.g, configuration velocity or discrete momentum) and the simulation inputs
were discarded and replaced with uniformly zero trajectories. This results in a
smooth desired trajectory that we expect the puppet to be able to track, but
remains an infeasible trajectory. The marionette was optimized to the desired tra-
jectory in both continuous and discrete time. Both optimizations successfully con-
verged to solutions that track the desired configuration very well. Convergence
plots for both optimizations are shown in Fig. 5.6. The source code for the dis-
crete optimization is distributed with trep at http://trep.googlecode.com in the file
/examples/puppet-optimization.py. Figure 5.6 shows that the continu-
ous optimization initially converges drastically faster than the discrete one: it tracks
the desired trajectory almost perfectly after a single step. The discrete optimization
makes slow progress initially but converges quickly after about five iterations. The
discrete optimization takes 5–50 s to finish. Each iteration takes between 15 and 60 s
depending on the descent direction type and number of Armijo steps. Although the
convergence plot is flattering for the continuous optimization, there were numerous
problems. Unlike the discrete optimization, the continuous optimization was highly
sensitive to the optimization parameters. Large ratios between the maximum and
minimum state cost cause the optimization to fail. Additionally, for a successful
continuous optimization, the terminal conditions must be significantly relaxed. The
discrete time optimization suffers from neither of these problems.

5.5.2 Desired Motion: Motion Capture Data

A more practical application of the trajectory optimization is finding trajectories
to track data acquired from a motion capture system. In this example, a desired
trajectory was generated using a Microsoft Kinect� to record a student walking in
place. This process is illustrated in Fig. 5.7. In this case, the continuous optimization
was unable to converge. The discrete optimization converged successfully and found
a trajectory that closely approximates the student’s movement. Figure 5.8 plots the

http://trep.googlecode.com
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Fig. 5.6 Convergence plots for continuous and discrete time optimizations from a simulated desired
trajectory. a Continuous time. b Discrete time

Fig. 5.7 These three images show a single frame from the motion capture optimization. The left-
most picture shows an RGB image recorded by a Microsoft Kinect�. The middle figure is the motion
capture data found from the Kinect’s depth map. The right-most figure is the optimized trajectory

desired trajectory and optimization result for the angle of the right elbow as an
example. The trajectory found by the optimization tracks the desired trajectory very
well. However, a large amount of noise was introduced. This is most likely caused
by too large of a ratio between the weight of the configuration portion of the state
compared the discrete momentum portions and the cost of the inputs.
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Fig. 5.8 The optimal trajectory for the right arm elbow tracks the desired trajectory well

5.6 Conclusions

The robotic marionette project is an example system that forces us to create software
that can both simulate and control complex mechanical systems. The marionettes
play a vital role in driving the system development—they have mechanical degen-
eracies, closed kinematic chains, and are high dimensional, but despite these features
puppeteers are able to successfully and reliably control them. Therefore, marionettes
make a good testbed for understanding whether or not our software is producing
reasonable results. Evaluating the efficacy of the control system can be determined
immediately by observing whether or not the motions and choreographic phrases are
recognizable, smooth, and approximate the reference data. Viewed this way, we see
how a control-based analysis of an existing art form allows us to conceptualize new
approaches in optimal control, and also increases the likelihood that such a system
will be used by artists to develop choreography for marionettes or other artificial,
articulated bodies. The techniques we use provide both optimal trajectories and con-
trol laws that help stabilize those trajectories. Moreover, because we formulate the
optimal control problem using a differentiable projection, we can analytically guar-
antee quadratic convergence locally around the optimal trajectory. It is also important
to note that the techniques we have applied to the marionettes are also applicable
to many other fields. For example, we have used these software techniques for the
tendon-articulated hand in Fig. 5.9 and can compute linearizations and local LQR
controllers for the hand. (This simulation capability is now being used with prosthetic
control in a collaboration with the Rehabilitation Institute of Chicago.)

Puppeteers use marionettes in dynamic, expressive ways, so we presume that
extremely conservative motions based on a “quasi-static” approach or an inverse-
kinematics approach are unlikely to produce interesting, artistic motions. Puppetry
privileges imitation over precise replication, but to be considered “artistic” the
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Fig. 5.9 The graph-based approach to calculate linearizations scales to complex mechanical sys-
tems like this dynamic model of a tendon-articulated human hand holding an object. The lineariza-
tion at this configuration shows that the system is locally controllable

imitation must rise above perfunctory or routine motions. Typically, the artistic qual-
ity of puppetry has been assumed to be the result of the interpretation and execution
of the human puppeteer, but our automated marionette platform provokes the ques-
tion of whether or not human operation is essential to a marionette’s expressiveness
and theatrical value. Although we can produce an optimal “imitation” of a human
motion in the case of a simple walking motion captured by the Kinect sensor, we
must first solve the calculations for the full marionette for a variety of motions before
we can claim that marionette imitation can be defined as an optimization problem.
We are currently working on solving these problems. It remains to be seen whether
or not a fully automated marionette can execute choreography in such a way that
transcends mere imitation and achieves artful or esthetic resonance.

One potential application of the automated marionettes is live entertainment and
theater productions that utilize large-scale animatronics and automated perform-
ers. While Disney pioneered the technologies of animatronics, enabling artists and
engineers to partially realize their shared vision of creating an autonomous theater,
Creature Technology Company and Global Creatures are developing sophisticated
animatronics for use in live performance. The 2012 production based on Dream-
works’ animated film How To Train Your Dragon and the 2013 King Kong are two
recent productions that combine large-scale animatronics with human performers
in a live production. Unlike traditional animatronics, these shows are purposefully
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designed for international tours. The demands of an international touring produc-
tion present considerable challenges: the animatronics must be able to perform reli-
ably in a wide range of venues, the choreography of these productions brings live
actors into close contact with heavy, dangerous machines, and audiences expect the
machines to be as interactive and agile as live performers. Perhaps not surprisingly,
Global Creatures has opted to work with expert puppeteers to develop choreogra-
phy for large-scale animatronics in the shape of flying dinosaurs, dragons, and a
six-meter tall silverback gorilla. The machines are controlled through a combination
of marionette-automation and teleoperated controls (known at Global Creatures as
“voodoo puppeteering”) [43]. A team of puppeteers work together to control a sin-
gle puppet (sometimes with a puppeteer seated in a chassis inside of the puppet),
while the marionette-automation enables these large puppets to execute expressive
choreography such as flying and aerial stunts—even scaling the side of a replica
of the Empire State building. This unique hybrid control system expands the range
and quality of motions that are available to the puppet, allowing the puppeteer to
develop choreography on a larger scale than has previously been imaginable: anima-
tronic choreography can now utilize the entire stage space. The level of automation
and sensing technologies used to control the puppets further distance the human
operator from the physical act of puppeteering, resulting in increasingly automated
performances that are not rote or perfunctory but are rather perceived as lively and
entertaining. This arrangement challenges the notion that autonomous theater can
only be preprogrammed or repetitive, and reignites the debate of whether or not
human operators are essential for live theater performances.

In his famous essay What is Art? the Russian novelist Leo Tolstoy wrote “To evoke
in oneself a feeling one has once experienced and having evoked it in oneself then
by means of movements, lines, colours, sounds, or forms expressed in words, so to
transmit that feeling that others may experience the same feeling—this is the activity
of art.” As artists and engineers focus their attention on emulating artistic process
through the generation of performances and artifacts based on system dynamics and
control theory, established art forms such as music, dance, and puppetry provide
important frameworks for modeling and evaluating the esthetic or artistic outcomes.
The research projects discussed in this volume are illustrative of the urge to under-
stand and emulate the intangible aspects of esthetics while evaluating the tangible
outcomes of these investigations. Whether it is through the creation of esthetic or
communicative gestures (as in Chap. 1), generating appealing or interesting musi-
cal compositions (as in Chap. 7), or expressive and engaging choreography (as in
Chap. 4), the goal is to generate esthetic behaviors that are emergent and are evoca-
tive of some human feeling. Whether the application of control theory can engender
similar esthetic responses as works of art generated by human artists remains to be
seen, but it is a question worth considering.

http://dx.doi.org/10.1007/978-3-319-03904-6_1
http://dx.doi.org/10.1007/978-3-319-03904-6_7
http://dx.doi.org/10.1007/978-3-319-03904-6_4
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Chapter 6
The Artistic Geometry of Consensus Protocols

Panagiotis Tsiotras and Luis Ignacio Reyes Castro

Mighty is geometry; joined with art, resistless.
Euripides (480–406 BC)

6.1 The Role of Geometric Patterns in the History of Art

The use of geometric patterns in art has a long history. The geometric period of
ancient Greek art (ca. 900–700 BC) is characterized by the extensive use of geometric
motifs, mainly on vase and amphorae painting. These decorative motifs (meanders,
triangles, circles, etc.) extend horizontally in multiple bands about the vase circum-
ference, and they exhibit central and translational symmetry [7, 18, 45]. Elaborate
symmetric geometric patterns also appear extensively in Islamic art, largely due to
their aniconic quality [10, 11]. Influenced by previous classical Greek, Roman, and
Sasasian works, and fueled by the intellectual contributions of Islamic mathemati-
cians, astronomers, and scientists of the time, Islamic artists created this unique new
style, which is characterized by repeated combinations and duplications of simple
geometric forms (such as circles and the squares), arranged in intricate, interlaced
geometric ornamentations whose complexity is ever increasing, offering the possi-
bility of infinite growth [15]. The exploration of infinity and symmetric growth has
also been explored by many subsequent artists. The Dutch graphic artist M. C. Escher
(1898–1972) is most famous for his exploration of infinity and of his creations of
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Fig. 6.1 The Irish Trinity Knot (triquetra) consisting of the intersection of three trochoidal-like
curves, appears often in medieval Celtic art [38]

impossible images in graphic art [43]. His work on infinite tessellations involving
repetitive symmetric patterns on the plane has apparently been heavily influenced by
the work of mathematician George Polya (1887–1985) on plane symmetry groups.
Escher studied Polya’s 17 plane symmetry groups, which led him to develop a math-
ematical approach to expressions of symmetry, which he later incorporated in his art
works. Escher’s works primarily exploit planar symmetry groups, otherwise known
as “wallpaper designs.”

In this chapter we will be dealing with similar geometric planar patterns, which,
however, exhibit circular/point symmetry as opposed to regular horizontal/vertical
plane symmetry. The interested reader is referred to the seminal work of H. Weyl
(1885–1955) [54] for an in-depth discussion on symmetry and symmetry groups.
Reference [9] also provides a nice classification of all symmetry groups in one, two,
and three dimensions.

We will investigate the generation of highly stylized geometric patterns morphed
by repeated repetitions of trochoidal curves on flat or curved surfaces, such as those
shown in Fig. 6.2. Trochoidal curves have been in the center of study by several
scientists, and are the main focus of our work. They include cycloids, ellipses (and
circles), epitrochoids, hypotrochoids, as well as cardioids, astroids, limaçons, and all
polar coordinate roses [16]. Although ancient Greeks had discovered trochoids (for
instance, the epicycloid had been used by ancient Greeks to describing the movement
of the planets long before N. Copernicus (1473–1543) and J. Kepler (1571–1630)
established the correct view of heliocentric planet movement in the heavens), the use
of trochoids in art seems to have been limited, except in architecture. For example,
the Persian astronomer and mathematician Nasir Al-Din al-Tusi (1201–1274) studied
the two-cusped hypocycloid [34].

Trochoidal-like curves also appear in Western medieval art. The triquetra symbol
(also known as the Irish Trinity Knot), which is usually illustrated as the intersection
of three vesicae piscis shapes, appears often in Celtic artwork (Fig. 6.1). This symbol
is also prominently depicted in the U-937 runestone, which is one of the four Funbo
Runestones, and has been attributed to the 11th century runemaster Fot [41].
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Fig. 6.2 The trochoidal family of curves, which includes cycloids, epitrochoids, hypotrochoids,
cardioids, astroids, and limaçons, is the main focus of our work. Trochoids have been studied by
several scientists and artists. a Interlace of three trochoidal curves on the plane. b Interlace of three
trochoidal curves on the sphere

It is the German artist of the sixteenth century Albrecht Dürer (1471–1528),
however, who is credited to be the first to have incorporated trochoids (specifically,
hypotrochoidal curves) in his art [47]. He introduced the hypocycloid curve along
with the more general family of trochoid curves, in his 1,525 four-volume geome-
try treatise The Art of Measurement with Compass and Straightedge. After Dürer,
purely trochoidal curves seem to have been absent from the artistic world up until the
invention of the spirograph by English engineer Denys Fisher (1918–2002), intro-
duced during the 1965 Nuremberg International Toy Fair. The introduction of the
spirograph has created a momentum in the use of trochoidal curves in the Pop Art,
Op Art, and Psychedelic Art movements since the 1960s, with several American and
European artists incorporating them into their works. Perhaps the first artist in this
new line of trochoid admirers is Seattle-based painter Jeffrey Simmons (1968– ),
who conceived a seven-painting collection titled Trochoid [46]. These paintings rely
on large hypotrochoids as central features, and were produced with the use of a
special-purpose device constructed by the artist himself. English artists Ian Dawson
(1969– ) and Lesley Halliwell (1965– ), also make use of trochoids, although using
a very different technique [8, 17]. In their work, they create large colorful shapeless
compositions by putting together large numbers of hypotrochoids generated using
spirographs. The same technique has also been utilized by Pittsburgh-based illustra-
tor David Pohl, who has used the spirograph as a tool to explore the recurring theme
of repetition as a means to illustrate the cyclical nature of life [37]. The American
architect Louis Kahn (1901–1974) has also used cycloids in his design of the Kimbell
Art Museum [35].
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6.2 A Brief of Consensus Protocols

In this chapter, we show how elaborate patterns that are closely related to trochoidal
curves can be generated as the paths followed by a team of interacting agents moving
on the plane. In the literature of multi-agent control systems, problems involving the
coordination of a team of agents such as flocking, swarming, etc., are referred to as
consensus problems, and the underlying control strategies enforcing team coordina-
tion are commonly referred to as consensus protocols.

Consensus problems have been extensively used for many years in the area of
distributed computing and management science. Their recent popularity in the con-
trols community stems from their utilization in formulating and solving a variety of
multi-agent, mobile network problems [32, 40]. In this chapter, we propose a gener-
alization of the standard consensus algorithm used widely in the literature [12, 27,
31], and we show how this algorithm can be utilized to generate intricate geometrical
patterns for the ensuing agent paths. Using minimal assumptions, the proposed feed-
back control is able to generate geometric patterns for the agent trajectories that go
beyond formation-type geometric models, which deal mainly with identical agents
in cycle pursuit [21, 25, 36, 49].

Our inspiration comes from gyroscopic control strategies used in the wheeled
robotics community [52] for obstacle avoidance. Since the proposed control law
introduces circulation in the underlying vector field, it cannot be derived from a
scalar potential, and hence it does not belong to the family of consensus control laws
that are gradient-based. As an added benefit of the proposed extension, it is shown
that this control law results in consensus points that lie outside the convex hull of
the initial positions of the agents. This may be useful for obstacle avoidance and/or
consensus with deception, for instance.

As a direct consequence of the proposed extended consensus protocol, in the
second part of this chapter we particularize this control law to the case of periodic
and quasi-periodic pattern generation, and show how it can be used to generate
elaborate, esthetically beautiful patterns.

6.3 Motivating Example

In order to demonstrate the main idea, we start with the simplest of cases, namely,
two agents (N = 2) in the plane. The extension to the case of an arbitrary number of
agents follows readily from this case and it is given in the next section, along with
the stability analysis of the overall system with all interacting agents. To this end,
assume a given global coordinate frame E with origin O and two agents at locations
r1 and r2, respectively. The kinematic equation for each agent is given by

ṙi = ui , i = 1, 2. (6.1)
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Fig. 6.3 Several modern artists have experimented with the use of trochoidal curves in their work.
a Warmth of the Sun (1999). Oil and alkyd on canvas by J. Simmons. (Reprinted with permission
[46]). b A80 (2000). Ink on gesso on primed board by I. Dawson. (Reprinted with permission [8])

We assume that only the relative distance r12 = r1 − r2 is known to agent no. 1
and, similarly, only the relative distance r21 = −r12 is available to agent no. 2. It can
be easily shown [27] that the control law

u1 = −Δ1r12, u2 = −Δ2r21, Δ1 + Δ2 > 0 (6.2)

achieves consensus. That is, the distance between the two agents will tend to be zero
as the time progresses. Furthermore, with the control law in (6.2), the two agents
will meet somewhere along the line segment initially connecting r1(0) and r2(0).
Our first objective is to modify (6.2) in order to allow convergence of the agents to
points that do not necessarily belong to the line segment (in general, the convex hull)
defined by the initial position vectors.

The main observation here is that the control law (6.2) does not make use of
all available geometric information to each agent. For instance, agent no. 1 knows
not only the vector r12 but also all vectors (directions) perpendicular to r12, which
can then be used in a feedback strategy. Similarly, for agent no. 2, this additional
information in the control law, inferred from—but distinct than—the relative position
vector between the agents, can lead to more flexibility for trajectory design. To this
end, let q12 and q21 be such that q12 · r12 = q21 · r21 = 0, and assume the following
control laws1

u1 = −Δ1r12 + ζ1q12, u2 = −Δ2r21 + ζ2q21 (6.3)

Later, it will be shown that this control law also achieves consensus for Δ1 + Δ2 > 0
and ζ1, ζ2 ∈ R.

1 Owing to the freedom in choosing q12 and q21, we define a “position orientation” such that
r12 × q12 = r21 × q21.
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In preparation for the general case, let us now introduce coordinates, with respect

to a global frame E , leading to [ri ]E ⊆= xi ∈ R
2, (i = 1, 2) and [r12]E = [r1]E −

[r2]E = x1 − x2. Let the error vector z ∈ R
2 of the relative distance between the two

agents be

z
⊆= x1 − x2 = d11x1 + d21x2 = (DT ⊂ I2)x, (6.4)

where D = [
1 − 1

⎛T and where x = [xT1 , xT2 ]T ∈ R
4. Furthermore, let [q12]E ⊆=

p = Sz where S is the skew symmetric matrix

S =
⎝

0 −1
1 0

⎞
. (6.5)

It is clear that pTz = zT p = 0. It can then be easily seen that the control law (6.3)
can be written compactly, as follows

u = −(∂ ⊂ I2)(D ⊂ I2)z + (B ⊂ I2)(D ⊂ I2)Sz

= −(∂ D ⊂ I2)z + (B D ⊂ S)z, (6.6)

where u = [uT
1 , uT

2 ]T ∈ R
4 and ∂ = diag(Δ1, Δ2) and B = diag(ζ1, ζ2). From

(6.4) it follows that the error equation is given by

ż = (DT ⊂ I2)ẋ = (DT ⊂ I2)u

= −(DT ⊂ I2)(∂ ⊂ I2)(D ⊂ I2)z + (DT ⊂ I2)(B ⊂ I2)(D ⊂ I2)Sz

= −
⎠⎜

DT∂ D
⎟ ⊂ I2

)
z +

⎠⎜
DTB D

⎟ ⊂ S
)

z.

Stability is determined by the eigenvalues of the matrix ACL = −⎜
(DT∂ D)⊂ I2

⎟+⎜
(DTB D)⊂ S

⎟
. A simple calculation shows that spec(ACL) = {−(Δ1 +Δ2)± i(ζ1 +

ζ2)}. Hence consensus is achieved asymptotically as long as Δ1 + Δ2 > 0. The
“classical” consensus control law (6.2) corresponds to the case when ζ1 = ζ2 = 0.
When B →= 0 stability is still maintained, however, the transient response is different.
Furthermore, the point where consensus is achieved can be selected to lie outside
the line segment connecting x1(0) and x2(0) by a proper choice of the gains ζ1 and
ζ2. This is demonstrated in Fig. 6.4 where the result of a simulation with the data
x1(0) = (−1, 1)T, x2(0) = (2, 3)T, ∂ = diag(0.1, 1), B = diag(−0.5, 2) is shown.
For this example the two agents meet at the point with coordinates (−2, 1).

6.4 Extension to N Agents in the Plane

For the general case, consider N agents in the plane. Assume that their location
is given by the state variables xi ∈ R

2 for i = 1, . . . , N , expressed in the same,
common global frame E , satisfying the differential equations
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Fig. 6.4 Numerical example with “skew-symmetric” feedback. The skew-symmetric term creates
a vector field with circulation

ẋi = ui , i = 1, . . . , N . (6.7)

To the N agents we associate a graph G that describes the communication topology
between the agents. That is, G has N nodes and M edges (links), with each edge
denoting knowledge of the relative position between the corresponding agents. We
can define the incidence matrix D ∈ R

N×M with elements as follows [1]. We assign
di j = +1 (−1) if the i th node is the head (tail) of j th edge, and di j = 0 otherwise.
If the i th agent is a neighbor with the j th agent, then they are connected by an edge,
and we have the difference (error) variable

zk =
N∑

τ=1

dτk xτ =
{

xi − x j , if i is the head,

x j − xi , if j is the head,
(6.8)

where zk ∈ R
2 for k = 1, . . . , M . If the columns of D are linearly independent, that

is, if the graph does not contain cycles, then the vectors zk are linearly independent [1].
Note also that the graph is connected if and only if rank D = N − 1 [14, 31].

Introducing the stack vector x = [
xT1 · · · xTN

⎛T ∈ R
2N , the state equations (6.7) can

be written compactly as
ẋ = u, (6.9)

where u = [
uT

1 · · · uT
N

⎛T ∈ R
2N . Following (6.6), we propose the control law

u = −(∂ D ⊂ I2)z + (B D ⊂ S)z, (6.10)
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where z = [
zT1 · · · zTM

⎛T ∈ R
2M , and where ∂ = diag(Δ1, . . . , ΔN ) and B =

diag(ζ1, . . . , ζN ). The standard consensus algorithm results as a special case of
(6.10) where B = 0.

Convergence Analysis

From (6.8) it can be easily shown that the error vector z can be written compactly as
follows

z = (DT ⊂ I2)x . (6.11)

From (6.10) the differential equation for x is then given by

ẋ = −(∂ D ⊂ I2)(DT ⊂ I2)x + (B D ⊂ S)(DT ⊂ I2)x

= −⎜
(∂ DDT) ⊂ I2 − (B DDT) ⊂ S

⎟
x

= −⎜
(∂ L) ⊂ I2 − (BL) ⊂ S

⎟
x, (6.12)

where L
⊆= DDT ∈ R

N×N is the graph Laplacian [27]. Let 1N
⊆= (1, 1, . . . , 1)T ∈

R
N denote the N -dimensional column vector of ones, and recall that L1N = 0 [14,

27]. For any ρ ∈ R
2 we have that

⎜
(∂ L)⊂ I2 −(BL)⊂S

⎟
(1N ⊂ρ) = (∂ L1N )⊂ρ−

(BL1N )⊂(Sρ) = 0. It follows that the vector 1N ⊂ρ spans the null space of the matrix
in (6.12). The equilibrium point x̄≤ of the linear differential equation (6.12) therefore

satisfies the condition x̄≤
⊆= limt⇔≤ x(t) = 1N ⊂ x≤ for some x≤ ∈ R

2, from
which it follows that limt⇔≤ x1(t) = limt⇔≤ x2(t) = · · · = limt⇔≤ xN (t) = x≤,
thus achieving consensus.

Let the coordinates of the final consensus point be x≤ = [x≤ y≤]T ∈ R
2. We

have the following proposition.

Proposition 1 [51]. Let v1, v2 ∈ R
2N be such that span{v1, v2} = R∈⎜

(∂ L) ⊂
I2 − (BL) ⊂ S

⎟
. The final rendezvous point is given by

x≤ =
⎝
x≤
y≤

⎞
=

[
vT1 (1N ⊂ I2)

vT2 (1N ⊂ I2)

⎡−1 [
vT1 x(0)

vT2 x(0)

⎡
. (6.13)

If ∂ = 0 there is not “rendezvous” point. Instead, the agents follow closed
trajectories centered around the point given by equation (6.13).
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6.5 Periodic and Quasi-Periodic Trajectories

Given an interconnection topology, the particular choices of the gain matrices ∂ and
B can be used to generate specific trajectory patterns for the ensuing agent paths.
Since we are mainly interested in periodic or quasi-periodic trajectories, next we
restrict the discussion to the case ∂ = 0. By letting ∂ = 0 in (6.10) the control law
becomes

u = (B D ⊂ S)z, (6.14)

and the closed-loop system reduces to

ẋ = ((BL) ⊂ S) x . (6.15)

The shape and frequencies of the resulting paths are therefore determined by the
eigenvalues and eigenvectors of the matrix (BL) ⊂ S. Recall from the properties of
the Kronecker product [6] that the eigenvalues of the matrix (BL) ⊂ S are of the
form αμ, where α ∈ spec(BL) and μ ∈ spec S. Additionally, the corresponding
eigenvectors are of the form v ⊂ u where v ∈ C

3 is the eigenvector of the matrix
BL associated with α and u ∈ C

2 is the eigenvector of the matrix S associated with
μ. Since det(αIN − BL) = det(αIN − B DDT) = det(αIM − DTB D) it follows
that the nonzero eigenvalues of the matrix BL coincide with the nonzero eigenvalues
of DTB D. Because the latter matrix is symmetric, all eigenvalues of BL are real.
Consequently, all eigenvalues of (BL)⊂S lie on the imaginary axis. It follows that the
solutions of (6.15) consist, in general, of a superposition of sine and cosine functions,
perhaps multiplied by polynomials in t (in the case of multiple eigenvalues).

Let BL = V J V −1 be the spectral decomposition of the matrix BL . It can be
easily shown that

e((BL)⊂S)t = (V ⊂ I2) e(J⊂S)t (V −1 ⊂ I2). (6.16)

The spectral decomposition of the matrix BL thus provides all information needed
to investigate the nature of the solutions of (6.15). In fact, additional information can
be gathered owing to the special structure of the state matrix in (6.15).

Lemma 1. Let A be an n × n square matrix and let S be the 2 × 2 skew-symmetric
matrix given in (6.5). Then

eA⊂S = cos A ⊂ I2 + sin A ⊂ S. (6.17)

Proof. Notice that S2k = (−1)k I2 and S2k+1 = (−1)k S, k = 0, 1, 2, . . . and recall
that

eA⊂S =
≤∑

k=0

1

k!
⎜

A ⊂ S
⎟k

.
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The right-hand side of the previous equation can be expanded as follows

≤∑
k=0

1

(2k)!
⎜

A ⊂ S
⎟2k +

≤∑
k=0

1

(2k + 1)!
⎜

A ⊂ S
⎟2k+1

=
≤∑

k=0

1

(2k)!
⎜

A2k ⊂ S2k⎟ +
≤∑

k=0

1

(2k + 1)!
⎜

A2k+1 ⊂ S2k+1⎟

= ⎜ ≤∑
k=0

(−1)k

(2k)! A2k⎟ ⊂ I2 + ⎜ ≤∑
k=0

(−1)k

(2k + 1)! A2k+1⎟ ⊂ S.

Making use of the fact that for a square matrix A,

cos A =
≤∑

k=0

(−1)k

(2k)! A2k, sin A =
≤∑

k=0

(−1)k

(2k + 1)! A2k+1,

the result of the lemma follows immediately.

We therefore have the following proposition.

Proposition 2 The solution of (6.15) is given by

x(t) = ⎜
cos(BLt) ⊂ I2 + sin(BLt) ⊂ S

⎟
x(0), (6.18)

= (V ⊂ I2)
⎜

cos(J t) ⊂ I2 + sin(J t) ⊂ S
⎟
(V −1 ⊂ I2)x(0),

for all t ∼ 0 and all x(0) ∈ R
2N .

The structure of the state matrix in (6.15) (e.g., its eigenvalues and eigenvectors)
thus can provide a great deal of information regarding the paths followed by the
agents in the Cartesian coordinate frame, as well as the relative location of the agents
on these paths (i.e., their relative phasing). For instance, one can ensure that the
agent trajectories either form closed paths with given phasing, or they form a dense
set of trajectories, ensuring that almost every point in a given region will be visited
at least once by one or more agents. Such orbits could be desirable, for instance, in
surveillance or area coverage applications (see Fig. 6.8). Moreover, as shown in the
next section, these orbits are also esthetically appealing. In that respect, geometric
beauty serves as a functional element for the solution of meaningful engineering
problems.
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Fig. 6.5 Representative examples of epitrochoids and hypotrochoid curves. a Epitrochoid curves
The blue curve has d < r , while the second one has d > r . Both epitrochoids have R = 4, r = 2
(hence k = 2). b Hypotrochoid curves The blue curve has d > r , while the second one has d < r .
Both epitrochoids have R = 6, r = 1.5 (hence k = 4)

6.6 Orbit Pattern Generation

In this section, we show that the solutions of (6.15) result in elaborate geometric
trochoidal patterns. As is seen by (6.18), the solutions depend on the gain matrix B,
the Laplacian matrix L that encodes the connectivity, as well as the initial conditions
x(0).

6.6.1 A Family of Achievable Paths

The solutions in (6.18) fall in the general class of trochoidal curves. An epitrochoid
curve is generated by a point P attached at a radial distance d from the center of
a circle of radius r , which is rolling without slipping around a circular track of
radius R; see Fig. 6.5a. The distance d can be smaller, equal, or greater than the
radius r of the rolling circle. The ratio of the circular two tracks k = R/r indicates
the number of points at which the agent is closest to the center of the circular track.
These are referred to as crests. In the special case when r = d, the curve becomes
an epicycloid with k cusps; at these points, the curve is not differentiable. Note that
ellipsoidal paths correspond to the case when k = 0. A hypotrochoid is generated
by a point P attached at a distance d from the center of a circle of radius r , which
rolls inside a circle of radius R; see Fig. 6.5b. Again, the distance d can be smaller,
equal, or greater than the radius r of the rolling circle; this radius, however, cannot
exceed that of the circle R.

As mentioned in the introduction, the trochoidal family of curves is very rich
and includes many of the well-known curves such as ellipses and circles, (epi/hypo)
cycloids, cardioids, limaçons, etc. The most well-known example of a trochoid curve
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is the cycloid—the “courbe merveilleuse” of M. Chasles (1793–1880). The cycloid
often appears as the solution to many problems in mathematics, physics. For instance,
Bernoulli’s brachystochrone problem in the Calculus of Variations, and the paths
followed by charged particles in crossed electric and magnetic fields turn out to be
cycloids. Because of its recurring appearance as the solution of many problems the
cycloid has been the center of investigation by several mathematicians, and its study
has not escaped controversy. It fact, owing to the many disputes it provoked between
mathematicians over the centuries it has been called the “Helen of geometers” [5], in
reference to the beautiful Helen of Troy who caused many quarrels among men, and
whose abduction by Paris, the son of Priam King of Troy, caused the Trojan War.

In the next section, we investigate a few interesting cases of trochoids resulting
from the solution of (6.18).

6.6.2 Illustrative Example: Three Agents

In this section, we investigate in greater detail the simple nontrivial case, namely,
three agents in the plane (N = 3), connected either in a path graph (M = 2) or a
complete graph (M = 3). For a path graph interconnection the incidence matrix is
given by

D =
⎢
⎣−1 0

1 −1
0 1

⎤
⎥ . (6.19)

A straightforward calculation shows that the two nonzero eigenvalues of the matrix
BL for this case are given by

ζ1

2
+ ζ2 + ζ3

2
±

⎦
ζ2

1 − 2ζ1ζ3 + 4ζ2
2 + ζ2

3

2
.

For the complete graph the incidence matrix is given by

D =
⎢
⎣−1 0 1

1 −1 0
0 1 −1

⎤
⎥ . (6.20)

The nonzero eigenvalues of the matrix BL for this case are given by

ζ1 + ζ2 + ζ3 ±
⎦

ζ2
1 + ζ2

2 + ζ2
3 − ζ1ζ2 − ζ2ζ3 − ζ3ζ1.

The ratio of the two nonzero eigenvalues is equal to k + 1 for an epitrochoid or
k − 1 for a hypotrochoid. Note that if k turns out to be an irrational number, then the
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Fig. 6.6 Orbits with three agents using the extended consensus protocol; path graph. a B =
diag(1, 2.0034,−1). b B = diag(−1, 2,−1). c and d B = diag(0, 1,−6.5933)

number of crests is infinite, which means that the curve is not closed; instead, the
trajectories form a dense subset of the space [19]. See Figs. 6.6 and 6.7.

An orbit redesign can yield periodic orbits of a particular shape that can be used
for coordinated, distributed surveillance, and perimeter monitoring applications; see,
for instance, Fig. 6.8. Such an orbit redesign may require a complete interconnection
topology [51].

An interesting case occurs when the closed-loop system has two zero eigenvalues
at the origin. In this case the trajectories exhibit secular motion. Figure 6.9a shows
the trajectories when B = diag(0.5,−1,−1). It can be easily verified that in this
case the relative orbits for the three agents are all circles; see Fig. 6.9b.

There is of course a plethora of possibilities to explore, and one can only imagine
the different ways to use the flexibility offered by this serendipitous marriage of
art, geometry, and multi-agent control system for solving meaningful, real-world
engineering problems.



142 P. Tsiotras and L. I. R. Castro

−15 −10 −5 0 5 10 15 20 25 30

−20

−15

−10

−5

0

5

10

x

y
(a)

−20 −15 −10 −5 0 5 10

−5

0

5

10

15

20

x

y

(b)

−20 −10 0 10 20 30

−30

−25

−20

−15

−10

−5

0

5

10

x

y

(c)

−30 −20 −10 0 10 20 30
−25
−20
−15
−10
−5

0
5

10
15
20
25

x

y

(d)

Fig. 6.7 Orbits with three agents using the extended consensus protocol; path graph. a and b
B = diag(1,−2.9054, 0.5). c B = diag(1,−1,−0.5). d B = diag(−0.75, 1.67259,−2)

6.7 A Gallery of Orbits

Using the extended consensus protocols one can clearly generate a myriad of beautiful
geometric patterns, by changing the gain matrix B and by choosing a suitable graph
Laplacian L in (6.15). Figures 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 provide a glimpse
on the plethora and variety of geometric patterns generated using the consensus
control law in (6.15) for the case of three and four agents on the plane. We urge the
reader to try his/her own skills at generating visually pleasing curves using Eq. (6.15).

In addition to monitoring and surveillance applications already mentioned, these
and similar geometric patterns, can also be used in all cases where the resulting
motion of a group of agents is to be determined distributively, solely by inter-agent
interactions. For instance, they could serve as periodic motion primitives for exe-
cuting elaborate choreographic patterns for human dancers or small autonomous
robotic vehicles, as it is done, for example in the work of Schoelling et al. [44] and
Leonard et al. [22] elsewhere in this book. Indeed, one can envision situations where
swarm dance patterns—accompanied perhaps by music—can evolve to agents paths
resembling those shown in Figs. 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12. One needs
only to impose the correct communication topology in the underlying graph and the
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Fig. 6.8 Trochoidal paths that could be used by three agents to patrol a pentagon-shaped area.
Satellite image courtesy of USGS [39]
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Fig. 6.9 B = diag(0.5,−1,−1) and initial conditions x1(0) = (6, 8), x2(0) = (−7, 5), x3(0) =
(5,−10) (path graph interconnection). The figure on the right shows the relative orbits

correct gain weights. Although such an idea may seem intuitive and appealing, we
should offer a word of caution: in all our developments so far we have not taken into
consideration the case when two agents happen to be at the same location at the same
time. That is, collision avoidance is not built-in a priori into (6.15) and, depending on
the size of the agents with respect to the size of these orbits, may indeed be a problem
during implementation. Along these lines, a much needed future research direction
is the design of such geometric patterns for dance or flock formation (or other more
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engineering oriented applications such as patrolling or surveillance) while—at the
same time—incorporating collision avoidance guarantees.

6.8 Extensions to Pattern Generation on Curved Surfaces

The previous methodology can be easily extended to generate similar intricate tro-
choidal paths on any two-dimensional manifold. Although the classical consensus
protocol has been extended to the case of agents moving on a sphere [30] or a
general manifold [42, 50], in this work we will follow an alternative—more direct
approach—to generate trochoidal curves on a sphere, by taking advantage of the
fact that a two-dimensional manifold is a surface that “locally” looks like a two-
dimensional plane. Given therefore a two-dimensional manifold M (in this case, a
sphere, M = S

2) we can define local coordinates y1 = δ1(q) and y2 = δ2(q),

where q ∈ M, and where δ
⊆= (δ1, δ2) : M 
⇔ R

2 is a homeomorphism between
an open subset of M and an open subset of R2.

Using the spherical coordinates δ ∈ [−π, π ] (azimuth) and θ ∈ [−π/2, π/2]
(elevation), the equations of any point of the orbit on the unit sphere is given by

x = cos θ cos δ, y = cos θ sin δ, z = sin θ. (6.21)

Assume now that the equations of motion of each agent on the sphere obey the
equations (6.7), where xi = (δi , θi ) are the coordinates for each agent, for i =
1, . . . , N . We again assume that the agents implement the control law

u = (B D ⊂ I2)p = (B D ⊂ S)z, (6.22)

where p = (IM ⊂ S)z. Results from implementing this control law for various
values of the matrices B and D are shown in Fig. 6.13. Figure 6.13 shows examples
of trochoidal patterns on a two-dimensional unit sphere using the formulas (6.21).

Still another alternative approach to generate paths on the sphere is to use the
(inverse) stereographic or geodesic projections onto the two-dimensional sphere of a
pattern generated by the proposed extended consensus protocol on the plane. Recall
that the stereographic projection πs : S2\{(0, 0, 1)} 
⇔ R

2 is defined via the expres-
sions

x = x
1 − z

, y = y
1 − z

, (6.23)

for (x, y, z) ∈ S
2, that is, x2 + y2 + z2 = 1. Alternatively, the geodesic projection

πg : S2\S1 
⇔ R
2 is defined via the expressions

x = x
z
, y = y

z
, (6.24)
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Fig. 6.10 A menagerie of orbits with three agents using the extended consensus protocol; com-
plete graph. a B = diag(−1, 1, 3), b and c B = diag(0.5, 2, 0.5), d B = diag(−1,−0.1936, 1),
e B = diag(4,−4,−4), f B = diag(−5, 3, 2), g and h B = diag(−2.4736, 3, 2)
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Fig. 6.11 Sample orbits with four agents using the extended consensus protocol; path graph.
a and b B = diag(2, 0.1826,−0.6126, 2), c B = diag(2, 1.7141,−0.8257, 2), d B =
diag(2, 3.622, 2.336,−1), e B = diag(−1,−1.145, 1.297,−1), f B = diag(0.15,−1, 0.15,−1),
g B = diag(0.15,−1, 0.15, 1), h B = diag(5,−2,−2, 5)
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Fig. 6.12 Sample orbits with four agents using the extended consensus protocol; complete graph.
a–c B = diag(−1,−1,+1,−1), d and e B = diag(−2,−2,−2, 2), f B = diag(5,−2,−2, 5), g
B = diag(5,−0.866,−3.208, 5), h B = diag(3.229,−2,−1.515, 5)
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where S
1 = {(x, y) ∈ R

2 : x2 + y2 = 1} is the equator. The geodesic projection
creates larger distortions of distances near the equator.

Figure 6.14 shows the results by applying the geodesic projection on a surface
of revolution. The “vase” shown in this figure was generated using the parametric
equations

x = (2 + cos u) sin v, y = (2 + cos u) cos v, z = u, (6.25)

where u and v are the local coordinates on the two-dimensional vase manifold.
Although not as elaborate or elegant as the vases of the Greek geometric period
shown in Fig. 6.14, one nonetheless cannot help but admire the richness of the
geometric patterns shown in Fig. 6.14, generated by the simple control law (6.10).

6.9 Discussion: The Mathematics of Aesthetics

An often repeated dictum of common wisdom is that “beauty is in the eye of the
beholder.” But is it? Although it is clear that perception of appeal or beauty is mainly
an objective process (no ontological esthetic feeling is known), it is also equally clear
that there exist esthetically attractive visual stimuli that transcend personal taste and
seem to invoke the same feelings of acceptance or pleasure (equivalently, distasteful-
ness or displeasure) among the majority of human observers. Several psychological
studies seem to indicate that the human visual perception system is wired to be
drawn to (overt or covert) symmetric, orderly patterns [4, 23, 24]. Plato (427–347
BC) was the first to state that “balanced things are always beautiful.” Besides, isn’t
true that the creative artistic process, in general, produces order from disorder? If
symmetry and order is the embodiment of harmony and beauty, and their lack is the

manifestation of the opposite2 (the constant struggle between and
in ancient Greek culture) shouldn’t perhaps be possible to describe certain esthetics
using formal methods?

In his influential essay Inquiry into the Origin of Our Ideas of Beauty and Virtues
the British philosopher Francis Hutcheson (1694–1746) attempted to answer this
question, by showing how beauty depends on formal qualities. He suggested that
beauty is “uniformity amidst variety.” Thus, according to Hutcheson, richly varied
compositions that are organized in accordance with some underlying unifying prin-
ciple are beautiful [28]. The contemporary theory of the psychology of esthetics
actually replaces the prominence of classical symmetry with the somewhat similar,
albeit vague, notion of “organic unity” [33].

2 Not everyone is in agreement, of course, with the classical notion of beauty and symmetry. One
can easily argue that nonsymmetric patterns may also be esthetically pleasing as long as they do not
result in chaos [26]. Recent psychological studies of works of modern art actually claim that it is
the cognitive processes themselves that are involved in understanding, classifying, and evaluating
a work of art which determine positive, self-rewarding esthetic experiences [20]. Even so, good
gestalts tend to give preference to symmetry over nonsymmetry [13].
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.13 Sample orbits on a sphere with three [(a)–(d)] and four [(e)–(f)] agents using the extended
consensus protocol; path graph. a and c B = diag(0, 1,−6.5933), b B = diag(−2.4736, 3, 2), d
B = diag(1,−2.9054, 0.5), e B = diag(1, 2, 2.0034,−1), f B = diag(2, 0.1826, 0.6126, 2)
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(c) (d)
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Fig. 6.14 Sample orbits on a vase with three agents using the extended consensus protocol; path
graph. a B = diag(−2.4736, 3, 2), b B = diag(4,−4, 4), c B = diag(0, 1,−6.5933), d B =
diag(−1, 2,−1), e B = diag(1,−8.7289, 1), f B = diag(1,−1,−0.5),
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Motivated by such observations, the American mathematician G. Birkhoff (1884–
1944) introduced the concept of an esthetic measure, a single number that describes
the esthetic appeal of an object [3]. Since then, several versions and modifications
of Birkhoff’s original esthetic measure have been proposed, all of which defining
the esthetic measure—in one form or another—as the ratio of order over disorder,
equivalently, symmetry over complexity.

More formally, Birkhoff’s esthetic measure M is defined by

M = O

C
, (6.26)

where O is the order or harmony of the observed work, and C is the object’s complex-
ity. As also Birkhoff himself recognized, formalizing these concepts, which depend
on the context, biases of the observer, and so on, is difficult. Whereas there is a
consensus among researchers that O is essentially a measure of the object’s symme-
tries, there seems to be less of an agreement on how one measures its complexity.
One proposal that has come forth is that C is related to the redundant informa-
tion conveyed [2, 29]. This has given rise to several information-theoretic measures
(“informational aesthetics measures”) based on Kolmogorov complexity, Shannon’s
information theory and physical entropy [41]. The field of computational esthetics
has evolved around these ideas in an effort to define and quantify artistic creativity
using mathematical algorithms [48].

What does the field of computational esthetics have to do with control theory? In
this work we have shown that control algorithms can be used to generate geometric
patterns in a natural manner. Is not difficult for one to envision generalizations leading
to more complicated art forms. Most importantly, recall that a large part of control
theory deals with the maximization of a given payoff. In this context, it would be
intriguing to investigate control algorithms that attempt to maximize the esthetic
measure within a given class.

6.10 Conclusions

We have presented an extension of the classical consensus algorithm for multi-agent
systems to achieve consensus outside the convex hull of the initial conditions of
the agents. As a by-product of this idea, we have shown how to generate agent
trajectories leading to intricate geometric patterns in the plane using only relative,
local information. Future work will concentrate on developing a general theory for
orbit design for an arbitrary number of agents in two, and three dimensions. Apart
from their inherent esthetical appeal, these orbits can have immediate applications
in the area of coordinated, persistent surveillance and monitoring using a team of
agents interacting using local information. An interesting lingering question that still
remains to be answered, is whether one can classify these curves according to their
esthetic appeal using a properly defined esthetic measure.
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Chapter 7
Generating Music from Flocking Dynamics

Cristián Huepe, Marco Colasso and Rodrigo F. Cádiz

7.1 Order, Disorder, Flocks, and Music

While it may be impossible to determine precisely what defines appealing and
interesting music, it can be argued that, in order to have these qualities, sounds
should contain enough elements of order and disorder, coherence and decoherence,
or structure and variation throughout a musical piece. These can appear in different
ways and at various levels; in the interplay between expected and surprising note
sequences found in engaging melodies, in the superposition of perfectly and imper-
fectly coinciding harmonics required for a rich chord, or in the mixture of regular
and syncopated rhythms that build a driving percussion layer, to name a few. Another
important component is the inclusion of multiple elements that can both combine
into a coherent musical structure or disband into independently acting parts. Music is
often based entirely on fragile harmonic or rhythmic structures that fluctuate between
states of order and disorder, constantly consolidating and collapsing. Composers
explicitly explore these extremes, for example, in the interplay between instruments
in an orchestra, between melodic lines in counterpoint [1], between collective and
solo parts in a Jazz performance [2], or in the dense chromatic melodies of some
contemporary music [3].
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A similar interplay between coherence and decoherence can be observed in the
dynamics of groups of agents following decentralized control algorithms that can
lead to consensus or to solutions where they act independently [4–6]. These can
be described as either displaying ordered collective dynamics or remaining in a
disordered state. An example of such systems that has received much attention in
recent years is given by autonomous agents that move according to “flocking” algo-
rithms [7–9]. These algorithms are inspired by the study of the coordinated collective
motion observed in bird flocks, fish schools, or insect swarms [10–13]. They attempt
to mimic such behavior by implementing motion control rules followed by each
individual based only on its local information, but that can lead the group to achieve
consensus and move as a whole.

The analysis above leads us to postulate that parallels can be drawn between
the dynamical structures found in flocks and in music [14]. We will explore here
these connections by studying different approaches for mapping one into the other.
By comparing the resulting sounds, we will examine which approaches can best
capture the main features of the flocking dynamics, as understood intuitively by our
hearing, and which can produce interesting musical results. While the mapping of
mathematical algorithms to music has a long history as a creative tool, our work
takes a somewhat different approach, inspired by the relationship between emergent
phenomena in complex systems and music.

Our guiding principle is that the components of a musical piece combine to pro-
duce collective effects that are more than the sum of the parts, much like the individual
dynamics of physical or biological components often combine to generate emergent
collective results. Conversely, music is simply a one-dimensional function of time
that describes the sound signal, but it can somehow contain various emergent prop-
erties of the system that generated it. In this context, our exploration of different
mappings between flocks and sound allows us to ask fundamental questions about
the possibility of generating interesting and appealing music from complex systems
and about our ability to perceive emergent phenomena (here an order–disorder state
transition) through sonic perception. Our study could lead to various applications,
such as science-inspired art or the development of new sonification techniques for
mapping datasets into music that take advantage of the brain’s ability to extract
structures from sound [15–18].

We find in this book other examples of mathematical algorithms playing an active
role in live performances. In Chap. 9 “Style-based Robotic Motion in Contemporary
Dance Performance” by LaViers et al., a framework for generating robotic motion
was employed in a performance with a humanoid robot and real dancers. In Chap. 8
by Godbehere and Goldberg, “Algorithms for Visual Tracking of Visitors Under
Variable-Lighting Conditions for a Responsive Audio Art Installation”, the motion
of visitors in a gallery space was captured by a camera and processed by track-
ing software to trigger sonic responses that were part of an audio art installation. In
addition to these works demonstrating human–machine performances, other chapters
also relate to our study by considering interesting artistic expressions that result from
multi-agent control theory. In Chap. 6 by Tsiotras and Reyes Castro, “The Artistic
Geometry of Consensus Protocols”, intricate periodic, and quasi-periodic geometric

http://dx.doi.org/10.1007/978-3-319-03904-6_9
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patterns are generated by using a multi-agent consensus motion control protocol to
draw lines on a surface. Finally, Chap. 2 “In the Dance Studio: An Art and Engineer-
ing Exploration of Human Flocking” by Leonard et al applies multi-agent flocking
algorithms similar to the model considered below to decide the movements of dancers
in real-time during the performance. A combination of this approach with ours opens
the interesting possibility of a live piece where dancers follow flocking-like dynamics
in their motion, which is then captured by cameras and tracking software to gener-
ate the corresponding music (also in real-time) using one of the algorithm that we
explore here.

Other studies have also developed algorithms for generating music based on
flocking or swarming dynamics (two terms that, in this context, are often consid-
ered as equal). Their focuses, however, have been quite different from ours. In [19],
for example, a Boids algorithm [20] was implemented where each agent emits its own
sound wave (a filtered noise impulse) that is spatialized according to position. These
sound waves then interact constructively or destructively based on their phases and
amplitudes, producing interesting effects that depend on the parameters of the flock-
ing dynamics. In [21], a Boids algorithm was used to generate music based on the
dynamics of goal-directed swarms. These consisted of three different agent species
that gain energy when colliding with randomly distributed energy sources and lose
energy in all other interactions. A different instrument is assigned to each species,
one with a clear tonal musical timbre, one with a chirping sound, and one with a
more complex timbre. At each collision a musical note is produced, with its pitch
determined by each agent’s energy level. In [22], a flocking simulation was imple-
mented in a three-dimensional space that is divided into different acoustic regions.
Whenever an agent enters a particular region, a predefined musical pattern is made
audible. In Swarm Music [23], a swarm of interacting particles is also moving in a
three-dimensional space, but here MIDI events are produced based on the coordi-
nates of each particle, which control their pitch, their amplitude, and the time interval
between them. In Swarm Lab [24] the goal was to design a swarming system that
is well suited for generating music. A user controllable swarm of sound-generating
particles was implemented to allow some of the relevant properties of the swarm to be
heard, such as its spatial position, heading direction, or the tightness of its collective
motion. Finally, a different objective was pursued in [25], where human motion is
captured by a video camera and used to influence a flock’s behavior, with the state of
each agent then used to control a MIDI instrument. The user thus assumes the role
of a conductor, influencing the flock’s musical activity.

In sum, flocking and swarming dynamics present a number of exciting research
avenues that can be explored from a complex systems and artistic perspective. While
they are often based in very simple dynamical rules, these algorithms can produce
results that are sophisticated enough to outperform the designer and create new
structures that cannot be predicted by the elements used in their construction [26].
They are, therefore, a natural choice for exploring the potential of what could be
called performing machines [23].

We develop below our exploration on generating music from flocking dynamics. In
Sect. 7.2, we present the flocking algorithm used throughout our analysis. Section 7.3

http://dx.doi.org/10.1007/978-3-319-03904-6_2
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describes the software developed for our study. In Sect. 7.4, we detail the different
approaches that were considered for mapping flocking dynamics into sound and the
musical results obtained for the algorithms and parameters tested. In Sect. 7.5, we
describe the composition of Ritmos Circadianos, a piece based entirely on flocking
dynamics that was created for a robot orchestra by one of the co-authors of this work
(Rodrigo F. Cádiz). Finally, Sect. 7.6 includes our discussion and conclusions, where
we elaborate on the natural connections that can be established between flocking
dynamics and music, and suggest other possible approaches for mapping one into
the other.

7.2 A Minimal Flocking Algorithm

We consider as a starting point a minimal algorithm that generates flocking dynamics
and achieves collective motion; the Vicsek model [27], which has become a referent
in the field. This model has several features that make it well suited for our study. It is
simple, relatively easy to implement, and does not require excessive computational
resources, while still capturing the essential aspects of more sophisticated flocking
algorithms. It has been extensively studied since its inception in 1995, which allows
us to start our exploration on solid grounds. It displays many of the characteristic
features of complex statistical systems, such as nonequilibrium dynamics, a noise-
driven order–disorder transition, and self-organization. An additional advantage of
considering a flocking algorithm is that its results are directly observable as motion
in physical space. This lack of hidden degrees of freedom facilitates the simultaneous
examination of the model dynamics and its corresponding generated sounds. Finally,
the natural origin of flocking motion is appealing for creative musical work, since
natural themes are often artistically inspiring due to their ubiquity in our common
human experience.

The Vicsek model is defined as follows. A group of agents advancing at a fixed
common speed v0 are coupled only through alignment interactions that steer them
toward the mean heading direction of all agents within a given radius. Specifically,
a set of N point-like agents are placed in a two-dimensional square box with side L
and periodic boundary conditions. At every time-step t, the system is fully defined
by the set of agent positions xi (t)i=1,··· ,N and their heading angles θi (t)i=1,··· ,N . For
the next time-step, the state of the system is computed through:

θi (t + Δt) = Ang

{ ⎛
Zi (t)

Vel
⎝
θ j (t)

⎞ ⎠ + η ξi (t) (7.1)

xi (t + Δt) = xi (t) + Δt v0Vel [θi (t)] . (7.2)

Here, the Ang{.} function outputs the angle of its vector argument and the Vel[.]
function produces a unit vector that points in the direction of its angle argument. Noise
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Fig. 7.1 Polarization order parameter ψ as a function of noise η for the standard Vicsek algorithm
used in this paper. As the noise level is decreased, the agents start aligning their heading directions
and go from a disordered state to an ordered state where they advance in a common direction. The
three curves result from simulations with equal mean density but different number of agents. We
observe a sharp transition in large systems and a smooth transition in smaller systems. However,
even for the N = 30 case that we use in our sonifying exploration, the ordered and disordered states
can be clearly distinguished

of intensity η is introduced by adding to each agent’s heading angle a delta-correlated
random variable ξi (t) that is uniformly distributed in the interval [−1/2, 1/2]. The
set Zi (t) includes the j indexes of all agents that are within a distance R of agent i .

The equations above define a standard Vicsek algorithm. For low enough noise η,
they converge to a consensus state where all agents are heading in a similar direction.
For high noise values, the system disorganizes and agents point in random directions.
In order to quantify the degree of order in the system, we define the polarization order
parameter as

ψ = 1

v0 N

N⎛
i=1

vi (t), (7.3)

which is proportional to the total momentum of the group. It will be equal to 0 in the
disordered state and to 1 in the polarized flocking state.

We chose to use the Vicsek model dynamics as the starting point of this investiga-
tion because it is a minimal algorithm and one of the best studied models for collective
motion. For large N values, it displays a sharp transition between its ordered and
disordered phases at a critical noise level (see Fig. 7.1). In both phases, agents tend
to group into clusters of a variety of sizes (despite the lack of attractive interactions)
that are continuously splitting and merging, with a higher proportion of large clusters
occurring at low noise levels. Some clusters head in the same approximate direction
while others drift in different directions until they intersect the trajectories of others.
Due to the finite interaction range, clusters have no influence over each other until
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they come closer than distance R. Within a cluster, agents must move in a common
direction. It has also been shown that, even in the ordered state, no fully stationary
solutions exist in finite systems with nonzero noise. Instead, random fluctuations will
always produce intermittent bursts where all order is lost before a new heading direc-
tion is selected [28]. Finally, note that the lack of explicit attraction terms implies
that, for any nonzero noise level and in the absence of boundaries, agents will spread
over larger and larger areas and all clusters will end up disintegrating by splitting or
losing agents. The presence in our simulation of periodic boundary conditions fixes
instead the mean density of agents in the system.

The dynamics of clusters and single agents described above produce a rich com-
bination of ordered and disordered, individual and collective, and coherent and deco-
herent motion that could potentially translate into interesting musical pieces. In order
to explore this possibility, we must first implement specific algorithms that map the
spatial dynamics to sound, a task that we address in the following sections.

7.3 Software Tools

We developed software tools to explore the sounds generated by our flocking
simulations in real-time, which allowed us to interactively test different approaches
and parameters. The Vicsek algorithm was programmed first in Java, together with
the computation of the quantities required for the mapping approaches described
in Sect. 7.4. This code was then imported into Jitter, a visual processor and editor
embedded inside MaxMSP. All sound synthesis algorithms were implemented in the
MaxMSP audio programming environment [29, 30], a visual programming language
for music, and multimedia that is widely used in the computer music community.

Figure 7.2 displays a snapshot of the control and output panels of the MaxMSP
patch developed for our analysis. The top panel contains faders that allow the user
to interactively control the simulation and mapping parameters. It also displays the
polarization ψ and other order parameters describing the state of the simulation.
The middle panel includes a high-pass filter curve with adjustable roll-off, used to
avoid low-frequency rumble, and a scrolling real-time spectrogram of the generated
sounds. The tabs on the bottom panel allow the activation and control of the differ-
ent algorithms that map the flocking dynamics to sound. Note that the amplitudes
Ai (t) and wave frequencies ωi (t) computed in Sect. 7.4 are not directly translated
into sounds. Instead, this panel controls a final processing stage, carried out within
MaxMSP, that allows us to increase audibility by setting the range of sound frequen-
cies covered (choosing a linear or exponential mapping between ωi (t) and the output
sound frequencies) and by selecting if Ai (t) = 0 will correspond to complete silence
or to low volume.

Finally, notice that the bottom panel also includes tabs for AM sound generation
and granular synthesis. While these modules were implemented in our program
and can produce richer musical results, we will not discuss them in this work. We
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Fig. 7.2 Control and output panels of the MaxMSP patch developed for mapping the flocking
dynamics to sound. The top panel has faders that allow the user to interactively control the parameters
of the flocking simulation and of the mapping algorithm. It also displays averaged quantities like the
order parameter ψ for the current state of the simulation. The middle panel includes an adjustable
high-pass filter and displays a spectrogram of the generated sound in real-time. The tabs on the
bottom panel control general features, such as the accessible frequency range, of the different
mappings that can be implemented. A separate window (not shown) displays the spatial dynamics
of the flocking simulation, with graphic properties controlled by an additional panel
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focus instead on simple sinusoidal sound generators based mainly on frequency
modulation (FM), since our purpose here is to explore the basic features of the
different approaches presented in Sect. 7.4.

7.4 From Emergent Dynamics to Emerging Sounds

We now consider three different approaches for mapping flocking dynamics into
sound. First, a simple direct approach. Then, one based on the synchronization of
oscillators; the coupled oscillators approach. And finally, one built on a friction-like
process; the physical friction approach.

7.4.1 The Direct Approach

The most straightforward procedure to map the results from our flocking simulations
into sounds is to directly relate the state of each agent (given by its position and
velocity) to the corresponding amplitude Ai (t) and frequency ωi (t) of a sinusoidal
function Ai (t) sin[ωi (t)t]. Of the three approaches explored in our study, this is the
only one that has been investigated in the literature. It has been tried with oscillators
[31], granular synthesis [32], and pre-recorded sounds [31]. In these works, well-
known swarm intelligence simulations (such as ant foraging [33] or flocking [34–37]
simulations) are typically used as the basic model, with the expectation that they will
generate sounds that at first seem to disperse randomly but eventually organize.
The state of the individual agents is used to create the microscopic sonic structure,
whereas the emergent behavior results in the macroscopic structure of the musical
composition [31].

In our study, we identified the x coordinate of agent i directly with ωi (t) and its
y coordinate with the frequency αi (t) of an amplitude modulation (AM) function
Ai (t) = Amax sin[αi (t)]. In the example below, however, we do not use this AM
component, keeping instead the amplitude constant in order to simplify our analysis.

When the direct approach is used, the resulting sounds mimic the individual
dynamics of each agent, but they do not convey the strong feeling of cohesiveness,
structure, and emergence that is apparent to the eye when viewing the simulations.
Panels a and b on Fig. 7.3 show snapshots of the simulations in the disordered
(η = 0.87) and ordered (η = 0.07) states, respectively. Panels c and d display the
corresponding spectrograms of the sounds obtained using the direct approach. Panel
e shows a case where the noise level was changed dynamically during the simulation,
to transition from the disordered to the ordered regime. All spectrograms presented
correspond to approximately 15 s of sound. In the sounds and spectrograms resulting
from this approach, the dynamics of each agent can often be distinguished, but other
collective structures, such as the clusters, do not seem to be reflected in the musical
mapping. The resulting sounds are quite simple. In the disordered state, they mainly
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Fig. 7.3 Mapping from flocking dynamics to sounds using the direct approach. Top: Snapshots
of the positions and headings of the agents in the disordered (a) and ordered (b) states. Note that
various cluster sizes can be observed, including single-particle ones. c and d Spectrograms of the
sounds generated in the disordered and ordered states, respectively. e Spectrogram of the transition
from a disordered to an ordered state; the resulting change of dynamics can be clearly seen and
heard
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consist of several independently fluctuating frequencies. When the noise is reduced,
as the system organizes, these sounds typically start rising or decreasing in pitch as
a function of time. For very low noise, in the fully organized state, the frequencies
of all oscillators will increase or decrease continuously at a similar rate. Although
the sonic impression of the direct approach does allow the listener to distinguish
between the ordered and disordered phases, the lack of additional structure yields a
musical result that quickly becomes monotonous. In addition, the periodicity of the
box implies that when the frequency associated to a given particle reaches its edge,
it must instantaneously jump to its opposite extreme value.

7.4.2 The Coupled Oscillators Approach

In this approach, the idea is to go beyond the direct mapping of individual positions
and velocities to sounds. Instead, we search for a way to capture the coherence of
the trajectories of different agents over time. This can be achieved by associating to
each agent an additional variable that controls its sonic output, and evolving it based
on agent interactions. The value of this variable is thus decoupled from the current
state of the system.

We implemented an algorithm where the frequency of the sound-generating sine
wave associated to each agent i is defined as a new variable ωi (t) that couples to the
frequencies of its neighboring agents through a simple continuous-time consensus
protocol. Each agent is given a randomly selected preferred frequency ω0

i in the
interval [0, 1], which remains fixed throughout the run. The value of the ωi (t) of
each agent is evolved in parallel to the flocking algorithm, following

dωi (t)

dt
= β1 [Ωi (t) − ωi (t)] , (7.4)

Ωi (t) = 1

β2 + ñi

⎜
⎟β2ω

0
i +

⎛
j∈Si

ω j (t)


 . (7.5)

Here, Si contains the j-indexes of all ñi agents within the sonic interaction range
RS of agent i, that is, with ⊆x j − xi⊆ < RS . We define RS > R in order to have the
interaction between sound generators reflect a group cohesiveness that goes beyond
the coordinated motion of neighbors within the Vicsek interaction range R, which is
trivially guaranteed by this flocking algorithm. The dynamics resulting from Eq. (7.4)
drives ωi (t) towards Ωi (t). When agent i is within a distance RS of other agents, the
Ωi (t) that results from Eq. (7.5) is a weighted average between its current neighbors’
frequencies and its own preferred frequency ω0

i . When agent i moves again in isola-
tion, Ωi (t) = ω0

i and ωi (t) thus converges back to its own preferred frequency. Note
that all ωi (t) will remain in the interval [0, 1] if initialized within this range. Parame-
ter β1 controls the rate at which each agent’s frequency converges toward its current
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target frequency Ωi (t), whereas β2 controls the weight of its preferred frequency ω0
i

with respect to the mean frequency of its current neighbors when computing Ωi (t).
For large β2, the preferred frequency of each agent will remain almost unperturbed
when interacting with other agents. For small β2, the frequencies of all agents within
a cluster will become almost identical if they flock together long enough.

Regarding the amplitude, we are interested here in implementing dynamics that
will enhance the audibility of sounds associated to interacting agents. We thus define
the amplitude Ai (t) of the oscillator associated to each agent i as a function of the
number of neighbors ñi within its sonic interaction range RS , through the expression

Ai (t) = ñi Amax + Amin

ñi + 1
. (7.6)

With this definition, Ai (t) is equal to Amin when agent i has no neighbors and grows
with ñi , saturating at Amax when it has many neighbors.

The coupled oscillators approach produces sounds that are harder to identify with
specific spatial dynamics, but that still clearly reflect, indirectly, the emergence of
polarization order. In the disordered phase, neighbors are coming together and sep-
arating so often that no consensus frequency appears. The result is a cacophony
of voices (as long as Amin is large enough to make these audible), each with its
own ωi (t) ⊂ ω0

i , which also display rapid frequency fluctuations driven by random
encounters of small groups of agents. In the ordered phase, by contrast, agents typi-
cally spend longer time within a cluster, and therefore with the same neighbors. The
frequencies of their corresponding oscillators will have more time to converge, even
if clusters are still constantly splitting and merging, which can produce substantial
sporadic variations of ωi (t) over time. The interplay of all these effects yields more
interesting and appealing musical results than in the direct approach, both in the
ordered and disordered states.

Our exploration of the coupled oscillators approach is summarized in Fig. 7.4. It
presents runs with RS = 2R, β1 = 0.78, β2 = 0.30, and η = 0.85 or η = 0.03.
As in Fig. 7.2, panels a and b display snapshots of the agent dynamics and panels
c and d, spectrograms of the resulting sound in the disordered and ordered phases,
respectively. In the disordered state (a and c), each agent spends most of its time
in small clusters or isolated. The spectrogram shows several horizontal lines corre-
sponding to their randomly selected preferred frequencies ω0

i . These are interrupted
by quick frequency variations due to brief agent encounters. The resulting sounds
are perceived as a layer of quiet, broadly distributed dissonant tones with several
louder superimposed trickling-like pitch fluctuations. When the noise is decreased
and agents form more coherent clusters (b and d), we observe and hear in this run
a loud stable note containing frequencies around 1.5 kHz, which corresponds to a
persistent isolated cluster. In addition to this, there are a range of fluctuating sounds
of lower amplitude, at frequencies below 1.0 kHz, which result from other less per-
sistent clusters and some isolated agents. These produce interesting dynamics as the
clusters split and merge. When a splitting event occurs, for example, the smaller
component or single particle that left the main cluster will jump to its preferred
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Fig. 7.4 Mapping from flocking dynamics to sound using the coupled oscillators approach. We
present the same corresponding snapshots and spectrograms as in Fig. 7.3. a and c Disordered state.
b and d Ordered state. e Transition from disordered to ordered state
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frequency very rapidly, while the larger cluster will take much longer to reach its
new mean cluster frequency. Finally, panel e displays a transition in which the amount
of noise in the system is reduced during the run. We observe and hear that, as the
lower noise level shifts the system from a disordered to an ordered state, particles
can form larger and more persistent clusters which drive their frequencies closer.
However, clusters still split and merge randomly, thus producing successive, musi-
cally interesting convergences, and divergences of frequencies, which can be seen
later on the same spectrogram.

7.4.3 The Physical Friction Approach

In this approach, the aim is to implement an algorithm that captures elements of
what we could intuitively associate to the physical response of a group of interacting
moving particles. The purpose is to take advantage of our evolved ability to connect
sounds to their physical sources, that is, to the objects and processes that produce
them.

In order to construct a minimal algorithm that yields a physics-inspired sonic
response, we consider an artificial, friction-like process that produces sounds as
agents “rub” against each other. While in some physical processes (such as the
drawing of a bow against violin strings) the frequencies of the sounds produced
depend only on the fundamental oscillation modes of the participating objects, in
others (such as the friction within a rotating motor), they depend on the relative
speed of the moving parts. Here, we base ourselves on the latter type of processes
and make the frequency of the sound generated by each agent proportional to its
relative speed with respect to the moving average position of its neighbors. We thus
define the frequency produced by agent i as

ωi (t) = 1

2v0

∥∥∥∥∥∥

⎜
⎟ 1

ñi

⎛
j∈Si

v j (t)


 − vi (t)

∥∥∥∥∥∥ (7.7)

Here, v0 is the constant particle speed imposed in the Vicsek dynamics,vi (t) and v j (t)
are the corresponding velocities, and Si is the set of ñi indexes of all agents within
the sonic interaction range RS of agent i at a given time. With this definition, ωt (t)
takes values between 0 and 1. It can then be mapped linearly or exponentially to a
range of sound frequencies, as in the previous algorithms. We complete the definition
of the physical friction approach by using for the sinusoidal wave associated to each
particle i the same amplitude Ai (t) that was defined in Eq. (7.6) and used in the
coupled oscillators approach. This amplitude increases with the number of neighbors,
starting from Amin for ñ = 0 and reaching the saturation value Amax for large ñ.

Figure 7.5 displays examples of the results obtained with the physical friction
approach for η = 0.61 and η = 0.09. Here, the disordered state (panels a and c)
produces a random sequence of short sounds of all possible frequencies. This results
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Fig. 7.5 Mapping from flocking dynamics to sound using the physical friction approach. We present
the same corresponding snapshots and spectrograms as in Fig. 7.3. a and c Disordered state. b and
d Ordered state. e Transition from disordered to ordered state
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from the many random encounters between particles and gives an intuitive sonic
impression of the dynamics, especially if one initially listens to it while viewing the
simulations. For runs in the ordered state (panels b and d), we observe (and hear) very
different dynamics. Almost all oscillators approach the ωi (t) = 0 state, here set to
around 700 Hz, which corresponds to zero relative velocity. In other runs, the oscil-
lator frequencies organized into different groups of low ω, corresponding to clusters
of different sizes. This is due to the fact that more closely packed regions (usually
related to specific clusters) will have lower mean relative velocity between its com-
ponents, because the higher number of interactions will better suppress fluctuations.
This can be seen on panel e, which displays a transition from the disordered state
to the ordered state, obtained by changing the noise level during the run. Starting
from a disordered state, we can observe (and hear) the transition as the suppression
of the initial random short notes while they shift toward the ωi (t) = 0 state. As the
system gets ordered, there are often “sparkles” of groups of notes that appear on
different parts of the spectrum. This corresponds to cluster fragmentations, which
can produce significant relative velocities, and to smaller groups that display larger
internal fluctuations. The combination of all these dynamical effects often generates
sounds with rich textures that can be musically appealing.

7.5 From Emergent Dynamics to Emerging Music

We now present an example of the artistic possibilities of our approach by describing
a musical piece generated through flocking dynamics. Ritmos Circadianos is a piece
for robot orchestra, composed in 2012 by Cádiz (one of the co-authors of the current
study), based on the concept of circadian rhythms and generated entirely using an
extension of one of the flocking-based music algorithms described above. This work
was specifically composed for the Logos Foundation’s Man and Machine Robot
Orchestra [38], on the occasion of the World Music Days Festival of Contemporary
Music that took place in several cities in Belgium on October of 2012.

The Man and Machine Robot Orchestra, based in Ghent, features over 50 robotic
musical instruments, including organ-like instruments, monophonic wind instru-
ments, string instruments, percussion instruments, and noise generators. All were
designed and built by Godfried-Willem Raes, a Belgium composer and inventor,
who has been dedicated to this task for over 25 years. Several of these robots are
shown on Fig. 7.6. The Logos Foundation started in 1968 as a collective of experimen-
tal composers and musicians. According to [38], the motivation for Logos’ interest
and involvement in robotics stems from the view that loudspeakers as sound sources
are mere virtualizations of an acoustic reality. Therefore, they undermine concerts
as social rituals. The dissociation between the musicians’ gestures and sonic results
takes away the rhetoric that characterizes live performances. In contrast, by using
automated acoustic instruments, music flows from concrete physical sound sources
under precise computer control, making explicit the coupling between gestures and
produced sounds.
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Fig. 7.6 Composer Rodrigo F. Cádiz working with the logos man and machine robot Orchestra in
the tetrahedron concert hall at the logos foundation in Ghent, Belgium

In Ritmos Circadianos, the robots go through several cyclical rhythmic patterns
similar to the circadian rhythms experienced by humans and other living systems. The
term circadian comes from the Latin words circa and diem, meaning “approximately”
and “day”, respectively. A circadian rhythm is any biological process that displays an
endogenous, entrainable cycle of approximately 24 h. These rhythms are driven by an
internal circadian clock. They have been widely observed in plants, animals, fungi,
cyanobacteria, and humans. Although circadian rhythms are endogenous, they adjust
to the cycles of the local environment through external cues, the most common of
which is daylight. Well-known examples of human circadian rhythms are the sleep-
wake cycle and the body-temperature cycle, which can be modeled using networks
of coupled oscillators [39]. The flocking algorithm and coupled oscillators approach
described in previous sections are used in Ritmos Circadianos to generate and control
in real-time the dynamical behavior of the musical material performed by the robot
orchestra. The state of each flocking agent is coupled to the states of other agents
in its neighborhood, which corresponds to having each one adjust to the circadian
rhythms of others. Making the robots experience a human-like clock and rhythm
constitutes the gist of the composition.

Ten pitched and two percussion instruments of the robot orchestra were chosen
for this composition. These were: Heli, an automated helicon; Llor, consisting of 12
large automated stainless steel shell-bells; Sax, an automated sax; Klar, an automated
clarinet; So, an automated tuba; Vibi, an automated vibraphone; Qt, a quartertone
organ; Vox, an automated pipe organ; Fa, an automated bassoon; Vacca, consisting
of 48 automated cow bells; Snar, an automated snare drum; and Troms, a set of
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automated drums. Each instrument was linked to one agent of a Vicsek flocking
simulation with twelve agents. The variables that dictated the performance of each
instrument were directly derived from the outputs of the simulations, utilizing the
coupled oscillators approach described in Sect. 7.4.2. The performance is generated
in real-time by running the flocking model on a MaxMSP patch that controls the
orchestra using the MIDI protocol, through a 64-channel MIDI interface, as can be
seen in Fig. 7.6. The piece lasts for 10 min and 24 s and is structured around 26
sections of 24 s each, producing a direct analogy between the length of each section
and a 24 h circadian cycle. Each section lasts exactly ten bars, with a tempo of 100
beats per minute. For each section a different combination of model parameters and
instruments was used, according to the information listed in Table 7.1.

The pitch material of the composition is derived from the correspondence between
the ωi wave frequency of each agent in the swarming model and the pitch range of
each robot instrument. The ωi wave frequencies are converted from a continuous
range in Hertz to quantized MIDI notes, according to each instrument’s range. This
implies that whenever all agents in the flock are coupled (and, therefore, all their
oscillator frequencies are constant and almost the same), each instrument of the
orchestra will produce a fixed tone, but these could be very different in pitch for
each instrument, depending on their ranges. The sound intensity of each melodic
sequence is derived from the spatial coordinates xi , yi of each agent. When an agent
approaches the center of the navigation space, the intensity of the tones produced
by its corresponding robot increase. As the agents move away from the center, their
corresponding intensities decrease.

In terms of the rhythmic material, very complex rhythmic patters can be produced
by each agent’s behavior, which is probably the most interesting aspect of this piece
from a musical viewpoint. Each instrument of the orchestra experiences a particular
rhythmic pattern derived from the state of its corresponding agent. The basic rhythmic
pattern of each instrument is given by the superposition of up to three different
regular pulses that turn on the MIDI notes (and then let the instrument follow its
natural decay curve). The number of pulses superimposed for each instrument and
the range of their temporal periods are specified by the composer. These temporal
periods are rescaled independently within these ranges by a factor that depends on
the current state of its corresponding agent. More specifically, on its ωi (t) and on:
the absolute value of the difference between its heading angle and the mean heading
angle of all agents for the first regular pulse, its xi position for the second one, and
its yi position for the third one. A master clock runs through the entire piece to give
it an overall structural coherence, producing a synchronizing event that resets all
pulses to the same starting point every 24 s cycle, at the beginning of each section.
The combination of all these rhythmic patterns results in each instrument displaying
different degrees of regularity. If the angle of an agent is not very different from
the mean angle, its pattern will regularize. But in the opposite case (that typically
occurs for high angular noise levels) its pattern becomes very irregular. Note that
the relationship between the rhythmic pattern, pitch, and ωi (t) of each agent can
produce very interesting poly-rhythmic dynamics and pitch textures when several
instruments play at the same time. In contrast, when only a few instruments are
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Table 7.1 Parameters and instruments used in the 26 sections of Ritmos Circadianos

Section Model parameters Instrumentation
r ηp ηa β1 β2

1 8 0 0 0.2 0.3 Heli, Llor
2 8 0.1 0.01 0.2 0.3 Heli, Sax, Llor, Klar, So
3 3.1 0.1 0.2 0.2 0.3 Heli, Sax, Llor, Klar, So
4 3.1 0.1 0.2 0.2 0.3 Heli, Vibi, Sax, Qt, Vox, Klar, So
5 2.1 0.5 0.6 0.6 0.2 Heli, Vibi, Sax, Qt, Vox, Llor, Klar, So
6 2.1 0.5 0.6 0.6 0.2 Fa, Qt, Klar, So
7 2.1 0.5 0.6 0.6 0.2 Sax, Klar
8 2.1 0.8 0.8 0.5 0.5 Vibi, Vox, So, PERC
9 7.1 0.1 0.2 0.5 0.5 Sax, Fa, Klar, So
10 7.1 0.05 0 0.5 0.5 Vibi, So
11 8.1 0.05 0.3 0.5 0.5 Vibi, Qt
12 8.1 0.45 0.3 0.5 0.5 Vacca, Vibi
13 3.1 0.85 0.7 0.5 0.5 Vacca, Vibi
14 8.1 0.45 0.3 0.5 0.5 Vacca
15 8.1 0.45 0.3 0.5 0.5 Vacca, Vibi, PERC
16 3.1 0.45 0.3 0.5 0.5 Heli
17 8.1 0.01 0.01 0.5 0.5 Heli, Fa
18 7.1 0.05 0.03 0.9 0.1 Heli, Vibi, So
19 8.1 0.01 0.01 0.5 0.5 Heli, Vacca, Vibi, Sax, Fa, Vox, Klar, So
20 8.1 0.01 0.01 0.5 0.5 Vox
21 8.1 0.01 0.01 0.5 0.5 Heli, Vacca, Vibi, Sax, Fa, Vox, Klar, So, PERC
22 1.1 0.81 0.81 0.3 0.4 Vacca, PERC
23 1.1 0.81 0.81 0.3 0.4 Vacca, Sax, Fa, Vox, Klar, PERC
24 1.1 0.51 0.51 0.3 0.4 Heli, Vacca, Vibi, Sax, Fa, Qt, Vox, Llor, Klar, PERC
25 4.1 0.15 0.23 0.4 0.5 Heli, Vibi, Llor, So
26 8 0 0 0.2 0.3 Heli, Llor

Several parameters were changed from section to section in order to generate different musical
results: the radius of interaction r , the position noise ηp , the angle noise ηa , the convergence rate
β1 and the preferred frequency weight β2. The instrumentation was also varied for each section as
listed. PERC denotes the usage of the percussion instruments Troms and Snar

overlapped, more clear and stable rhythmic patterns tend to emerge. All the elements
of the composition process described above are summarized as a block diagram on
Fig. 7.7.

Figure 7.8 shows a musical score representation of the last two measures of section
24 and the first three of section 25. In section 24, several layers of rhythmic complexity
and fast changing melodies can be observed. This is due to the relatively high levels of
position and angular noise that the model has for that section, as shown in Table 7.1.
In contrast, section 25 presents more stable melodies with low rhythmic activities,
mainly due to the low levels of noise. In this section, the radius of influence is
considerably higher than in the previous one, resulting in a more homogeneous overall
texture. In this example, both sections contain similar amounts of convergence rate
and preferred frequency weight factors, which implies that each robot tends to reach
its natural frequency in a similar fashion and timescale.
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Fig. 7.7 Block diagram of the composition process for Ritmos Circadianos. The parameters of the
flocking model determine the pitch and rhythmic material. A circadian clock with a cycle of 24 s
is used to generate the different sections of the composition and the rhythmic patters performed by
the robot instruments

As reviewed by the press [40], the premiere of this work was very successful.
The behavior of the flocking model resulted in engaging sonic performances by
the robot orchestra. Its phase transitions generated clearly audible contrasts in the
musical flow. This, combined with the inclusion of different rhythmic patterns based
on circadian rhythms, produced an innovative and appealing piece of music. Since
the flocking model contains a controllable amount of noise, each performance was
slightly different, while exhibiting similar parts and transitions.

7.6 Music and Complex Systems

Flocking algorithms seem to be a natural starting point for linking complex systems
and music. The individual or collective motion of independent interacting agents
moving in space resembles in many ways the dynamics of performers navigating a
large set of musical possibilities as they play together, or of the various components
of a musical piece combining to achieve a coherent musical result. By exploring
different mappings between motion in physical space and dynamics in these abstract
musical spaces, we can generate a broad variety of sounds, with different frequen-
cies, rhythms, intensities, and textures. We have shown above that even the first
steps of this exploration can yield interesting results. These include: establishing
an intuitive connection between flocking dynamics, mapping algorithms, and their
emergent sounds; finding features of complex dynamical systems that can translate
into interesting musical results; and understanding how characteristic emergent prop-
erties, such as the order–disorder transition in the Vicsek model explored here, will
be reflected in the resulting sounds.
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Fig. 7.8 Musical score of Ritmos Circadianos, showing the transition from section 24 to section
25. The figure shows the last two measures of section 24 and the first three of section 25



7 Generating Music from Flocking Dynamics 175

An interesting question that follows from this work is if our exploration can bring,
in turn, new insights to the scientific and engineering communities that study collec-
tive motion in biological and robotic systems. We argue that this is indeed the case. At
a practical level, the use of our brain’s evolved ability to extract underlying structures
from sounds has been underutilized as a tool for examining data. Our work could lead
to new sonification approaches either by providing specific mapping alternatives or
by helping to develop intuition on how to translate complex dynamics into meaning-
ful sonic information. At a conceptual level, our work could also help inspire novel
approaches for characterizing flocks and collective motion. For example, the results
obtained using the coupled oscillators and physical friction approaches show that
sounds based only on the dynamics of encounters between agents allow us to clearly
distinguish the ordered and disordered phases, thus suggesting the use of statistics
based only on these encounters as novel order parameters. Furthermore, the search
for dynamics that produce appealing musical results forces us to consider a new set
of factors in the design and control of flocking systems in general.

Beyond the possibility of establishing specific connections between music, flock-
ing dynamics, and control theory, a broader fascinating question is the relationship
between music and complex systems in general. Although music has often been
related to science through acoustics, mathematical rhythmic or harmonic structures,
sound synthesis, and music-generating algorithms, the emergence of the science of
complexity (supported by powerful and ever-growing computational and data analy-
sis tools) allows us to develop a somewhat new perspective in which music can be
viewed in the context of self-organization and emergence. The connection between
these fields appears at multiple levels. At the individual perception scale, it is reflected
in the neurological processes that are involved in producing specific effects (emo-
tional, psychological, physiological, etc.) in a given listener. At the music creation
level, in the combination of multiple sonic components required to produce a desired
result. At the appreciation level, in the complex network of social interactions that
underlies the collective evaluation of a musical piece and the evolution of musical
styles. From this perspective, different aspects of the musical experience could be
naturally described through the language of complex systems, self-organization, and
emergence.

A further connection between music and complex living systems is suggested
by the concept of criticality. There has been a long-standing argument proposing
that organisms must evolve to be close to a critical state [41, 42]. In recent years,
various experimental analyses have shown critical signatures in the dynamics of
different biological systems [43, 44], including the brain [45, 46]. The reasoning that
leads to this argument can be summarized as follows. For a living system to survive
evolutionary pressures it must be able to quickly adapt to changes in the environment
by exploring new alternatives. On the other hand, it must also be robust enough to
stop perturbations from destroying its essential biological features. These conflicting
constraints suggest that living systems must evolve toward dynamics that are “at the
edge of chaos” [47], which are able to remain close to strong attractors when needed,
but also to rapidly switch to chaotic trajectories that allow them to explore different
adaptations to address a broad range of challenges. Given these general arguments,
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it is reasonable to hypothesize that music must follow similar constraints in order to
be attuned to living beings. This may be the reason why appealing music must have
the combination of coherence and decoherence or predictability and surprise that we
described in our Introduction.

In this context, the analysis that we carried out here can be viewed as a first
step that explores how music and complex systems come together using a specific
flocking algorithm. Even at this initial stage, we observed that a diversity of mapping
strategies can allow the listener to easily detect the order or disorder in the system
through its sonic impression. We have also shown that indirect measures of the
flocking dynamics (as used in the coupled oscillators approach) or those that appeal
to our real-world intuition (as in the physical friction approach) often produce more
interesting and appealing musical results. Furthermore, the successful creation of
the musical composition Ritmos Circadianos demonstrates the artistic possibilities
of our perspective.

The work presented here is by no means exhaustive; a number of alternative
ways of mapping flocking to sound could be considered. A natural extension of the
coupled oscillators approach would be to implement a Kuramoto model that couples
the oscillators of neighboring agents [48]. This model has been used to describe
the synchronization of clapping [49] and for human–machine music performance
interactions [50]. However, to fully implement its dynamics, the phase of each agent
would have to be computed as fast as the audio sampling rate for all agents. This
process is time-consuming and would not allow a real-time interactive exploration
of the parameter space with the current software tools. Another possible extension
would be to consider a different physics-based approach. An interesting possibility
is to compute the oscillations that a cluster would produce as a whole if interpreted
as an elastic membrane. This is similar to the approach in [37], where it is found that
the relationship between swarm simulations and sound generation is characterized
by a certain conclusiveness, which stems from the fact that they are both based on
a model of the same physical phenomenon: the dynamics of an elastic object. This
approach would also require the development of new software tools to be able to
produce sound in real-time.

As suggested by the discussion above, our work could lead to a broad range of
applications. Given the connections between biology, complex systems, and music,
these could include: searching for critical features or other signatures in music that
can be correlated to biological dynamics, using these connections to inspire musi-
cal compositions based on complex dynamical systems, or taking advantage of our
intuitive ability to extract features from music to develop sonification approaches for
data analysis.
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Chapter 8
Algorithms for Visual Tracking of Visitors
Under Variable-Lighting Conditions
for a Responsive Audio Art Installation

Andrew B. Godbehere and Ken Goldberg

8.1 Installation Concept and Visitor Experience

The responsive audio art installation “Are We There Yet? : 5,000 Years of Answering
Questions with Questions” was on exhibit at the Yud gallery of the Contemporary
Jewish Museum in San Francisco, CA from March 31–July 31, 2011. Video and
documentation of the project was archived at http://are-we-there-yet.org. The image
in Fig. 8.1 depicts a view of the Yud Gallery from its entrance and the illustration in
Fig. 8.2 depicts a schematic of the installation design.

Conceived by Ken Goldberg and Gil Gershoni, visitors enter the gallery and
encounter soaring walls and windows carving the space with sunlight. A voice asks:
“Can we talk?” As visitors move, they discover that the sound moves with them. “Are
you experienced?” Deeper in the gallery, questions become more abstract, “Who is a
Jew?”, “Is patience a virtue?”, “Is truth a matter of perspective?” Each visitor creates
their own unique experience as questions take on new contexts and meanings.

The installation evoked an early stage in Jewish history when the open desert
created opportunity for revelation; it presented new perspectives on the fundamental
search and questioning that lies at the heart of Jewish identity. The Yud Gallery,
designed by Daniel Libeskind and depicted in Figs. 8.1 and 8.2, acknowledges the
second Commandment, emphasizing the auditory over the visual. Localized speakers
were strategically positioned to preserve the open gallery space. Visitors experienced
the work as a responsive sequence of questions that encouraged movement throughout
the space to explore, discover, and consider.

The project was also inspired by the Talmudic representation of multilayered
Jewish intellectual discourse. The Talmud is a surprisingly contemporary model for
communal conversation in the digital age. Rather than resolving each issue with an
authoritative unified “answer,” each page of the Talmud reflects the spiraling layers
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Fig. 8.1 The skylit atrium that was the site for this installation at the Contemporary Jewish museum
in San Francisco, CA from April–July 2011

Fig. 8.2 Concept design for installation showing local speaker arrangement in gallery

of debate and celebrates the dissent at the heart of Jewish thought and tradition.
Open inquiry is fundamental to electronic connectivity and social networking: the
culture of new media encourages participation and a natural skepticism about the
authenticity and authority of information.

Launched in advance of the exhibition, the “Are We There Yet?” companion
website (http://www.are-we-there-yet.org) gave viewers the chance to learn more

http://www.are-we-there-yet.org
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about the exhibit, suggest their own questions for inclusion, and visually explore the
suggestions of others. In the gallery space, a kiosk with a custom iPad interface and
live, streaming interactive projection system gave visitors an opportunity to view and
submit their own questions.

This chapter describes the computer vision system and a coupled interactive sound
system we developed for the installation. A single fixed camera mounted on the
ceiling of the gallery and custom algorithms were used to dynamically monitor the
position of visitors in the space and to trigger hundreds of prerecorded audio files
containing questions.

To address the challenges of constantly changing lighting conditions of the skylit
gallery and background noise produced by the camera, we developed an adaptive sta-
tistical background subtraction algorithm. Outliers (foreground pixels) in each frame
are defined statistically, and grouped together into connected components. Our sys-
tem rejected small components while considering larger components as candidates
for labeling as visitors. Dynamic information, based on interframe consistency (and
the notion that visitors do not move very rapidly) is used to further reject noise.

8.1.1 Technical Overview

In the remainder of this chapter, we present details on the design of a computer
vision system that separates video into “foreground” and “background”, and subse-
quently segments and tracks people in the foreground while being robust to variable
lighting conditions. Using video collected during the operation of the installation,
under variable illumination created by myriad skylights, we demonstrate a marked
performance improvement over existing methods in OpenCV 2.1. The system runs in
real-time (15 frames per second), requires no training datasets or calibration (unlike
feature-based machine learning approaches [50]), and uses only 2–5 s of video to
initialize.

Our system consists of two stages: first is a probabilistic foreground segmenta-
tion algorithm that identifies possible foreground objects using Bayesian inference
with an estimated time-varying background model and an inferred foreground model,
described in Sect. 8.2. The background model consists of nonparametric distributions
on RGB color-space for every pixel in the image. The estimates are adaptive; newer
observations are more heavily weighted than old observations to accommodate vari-
able illumination. The second portion is a multi-visitor tracking system, described in
Sect. 8.3, which refines and selectively filters the proposed foreground objects. Selec-
tive filtering is achieved with a heuristic confidence model, which incorporates error
covariances calculated by the multi-visitor tracking algorithm. We describe the track-
ing subsystem in Sect. 8.3. We apply a bank of Kalman filters [24] and match tracks
and observations with the Gale-Shapley algorithm [19], with preferences related
to the Mahalanobis distance under the estimated error covariance. Finally, a feed-
back loop from the tracking subsystem to the segmentation subsystem is introduced:
the results of the tracking system selectively update the background image model,
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Fig. 8.3 Algorithm Block Diagram. An image I (k) is quantized in color-space, and compared
against the statistical background image model, Ĥ(k), to generate a posterior probability image.
This image is filtered with morphological operations and then segmented into a set of bounding
boxes, M(k), by the connected components algorithm. The Kalman filter bank maintains a set
of tracked visitors Ẑ(k), and has predicted bounding boxes for time k, Z̆(k). The Gale-Shapley
matching algorithm pairs elements of M(k) with Z̆(k); these pairs are then used to update the
Kalman Filter bank. The result is Ẑ(k), the collection of pixels identified as foreground. This, along
with image I (k), is used to update the background image model to Ĥ(k + 1). This step selectively
updates only the pixels identified as background

avoiding regions identified as foreground. Figure 8.3 illustrates a system-level block
diagram. Figure 8.4 offers an example view from our camera and some visual results
of our algorithm.

The operating features of our system are derived from the unique requirements
of an interactive audio installation. False negatives, or people the system has not
detected, are particularly problematic because the visitors expect a response from
the system and become frustrated or disillusioned when the response doesn’t come.
Some tolerance is allowed for false positives, which add audio tracks to the instal-
lation; a few add texture and atmosphere. However, too many false positives create
cacophony. Performance of vision segmentation algorithms is often presented in
terms of precision and recall [37]; many false negatives corresponds to a system with
low recall. Many false positives lowers precision. We discuss precision, recall, and
the F2-score in Sect. 8.1.5.

Section 8.4 contains an experimental evaluation of the algorithm on video col-
lected during the 4 months the system operated in the gallery. We evaluate perfor-
mance with recall and the F2-score [22, 30]. Our results on three distinct tracking
scenarios indicate a significant performance gain over the algorithms in OpenCV 2.1,
when used with the recommended parameters. Further, we demonstrate that the feed-
back loop between the segmentation and tracking subsystems improves performance
by further increasing recall and the F2-score.
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Fig. 8.4 Probabilistic Foreground Segmentation and Tracking Pipeline. Upper Left Raw image.
Lower Left Posterior probability image. Lower Right Filtered and thresholded posterior image.
Upper right Bounding boxes of tracked foreground objects and annotated confidence levels

8.1.2 Related Work

The OpenCV computer vision library [8, 10, 23, 28], offers a variety of probabilis-
tic foreground detectors, including both parametric and nonparametric approaches,
along with several multi-target tracking algorithms, utilizing, for example, the mean-
shift algorithm [13] and particle filters [35]. Another approach applies the Kalman
Filter on any detected-connected component, and does not attempt collision resolu-
tion. We evaluated these algorithms for possible use in the installation, although they
exhibited low recall: visitors in the field of view of the camera were too easily lost,
even while moving. This problem is due to the background model update method.
Every pixel of every image is used to update the histogram, so pixels identified as
foreground pixels are used to update the background model. The benefit is that a sud-
den change in the appearance of the background in a region is correctly identified as
background; the cost is the frequent misidentification of pedestrians as background.
To mitigate this problem, our approach uses dynamic information from the tracking
subsystem to filter results of the segmentation algorithm, so only the probabilistic
models associated with background pixels are updated.
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The class of algorithm we employ is not the only class available for the prob-
lem of detecting and tracking pedestrians in video. A good overview of the various
approaches is provided by Yilmaz et al. [54]. Our foreground segmentation algorithm
is derived from a family of algorithms which model every pixel of the background
image with probability distributions, and use these models to classify pixels as fore-
ground or background. Many of these algorithms are parametric [12, 20], leading
to efficient storage and computation. In outdoor scenes, mixture-of-gaussian models
capture complexity in the underlying distribution that single Gaussian distribution
models miss [23, 40, 46, 55]. Ours is nonparametric: it estimates the distribution
itself rather than its parameters. For nonparametric approaches, kernel density esti-
mators are typically used, as distributions on color-space are very high-dimensional
constructs [16]. To efficiently store distributions for every pixel, we make a sparsity
assumption on the distribution similar to [29], i.e., the random variables are assumed
to be restricted to a small subset of the sample space.

Other algorithms use foreground object appearance models, leaving the back-
ground unmodeled. These approaches use support-vector machines, AdaBoost [18],
or other machine learning approaches in conjunction with a training dataset to develop
classifiers that are used to detect objects of interest in images or videos. For tracking
problems, pedestrian detection may take place in each frame independently [2, 49].
In [36], these detections are fed into a particle-filter multi-target tracking algorithm.
These single-frame detection approaches have been extended to detecting patterns of
motion, and Viola et al. [50] show that incorporation of dynamical information into
the segmentation algorithm improves performance. Our algorithm is based on differ-
ent operating assumptions, notably requiring very little training data; initialization
uses only a couple seconds of video.

A third, relatively new approach, is Robust-PCA [11], which neither models the
foreground nor the background, but assumes that the video sequence I may be decom-
posed as I = L + S, where L is low-rank and S is sparse. The relatively constant
background image generates a “low-rank” video sequence, and foreground objects
passing through the image plane introduce sparse errors into the low-rank video
sequence. Candès et al. [11] demonstrate the efficacy of this approach for pedestrian
segmentation, although the algorithm requires the entire video sequence to generate
the segmentation, so it is not suitable for our real-time application.

Generally, multi-target tracking approaches attempt to find the precise tracks that
each object follows, to maintain identification of each object [7]. For our purposes,
this is unnecessary, and we avoid computationally intensive approaches like particle
filters [35, 36, 53]. Our suboptimal approximation of the true maximum likelihood
multi-target tracking algorithm allows our system to avoid exponential complexity [7]
and to run in real-time. Similar object-to-track matching utilizing the Gale-Shapley
matching algorithm is explored in [5].

There is an emerging interest in applications of control algorithms to art [6, 21,
25–27, 44], as evidenced by this book.

Our work on analyzing human motion for esthetic ends is reminiscent of the
flocking control analysis of Leonard et al “In the Dance Studio: An Art and Engi-
neering Exploration of Human Flocking,” see Chap. 2 in this book. In that work,

http://dx.doi.org/10.1007/978-3-319-03904-6_2
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computer vision approaches are employed in tracking and analyzing flocking behav-
iors of dancers in a live performance. We employ similar tools to track motions of
individuals to craft a unique acoustic experience for each visitor on the fly.

Flocking is also explored by Huepe et al in “Generating Music from Flocking
Dynamics,” Chap. 7 in this book. Aggregate motion of (simulated) groups are used to
generate a musical soundtrack in real time. Using flocking and ad hoc computational
mappings, spatial movement is transformed naturally into music.

Work by LaViers et al, “Style-based Robotic Motion in Contemporary Dance
Performance,” in Chap. 9 goes further in analyzing the style of movement of indi-
vidual dancers and applies the results to live dance performance. Their work draws
from former work by Egerstedt, Murphey, and Ludwig on the control of marionettes
[15], where a hybrid systems analysis of marionettes is used in conjunction with
choreography to create a live puppet-show performance.

The growing body of literature on artistic applications suggest a spectrum of
opportunities and open problems in control theory.

8.1.3 Notation

We consider an image sequence of length N , denoted {I }N−1
k=0 . The kth image in the

sequence is denoted I (k) ∈ Cw×h , where w and h are the image width and height
in pixels, respectively, and C = {(c1, c2, c3) : 0 ⊆ ci ⊆ q − 1} is the color-space
for a 3-channel video. For our 8-bit video, q = 256, but quantization described in
Sect. 8.2.1 will alter q. We downsample the image by a factor of 4 and use linear
interpolation before processing, so w and h are assumed to refer to the size of the
downsampled image.

Denote the pixel in column j and row i of the kth image of the sequence as
Ii j (k) ∈ C. Denote the set of possible subscripts as I ⊂ {(i, j) : 0 ⊆ i < h, 0 ⊆
j < w}, referred to as the “index set”, and (0, 0) is the upper left corner of the image
plane. For this paper, if A → I, let Ac → I and A

⋃
Ac = I. Define an inequality

relationship for tuples (x, y) as (x, y) ⊆ (u, v) if and only if x ⊆ u and y ⊆ v.
The color of each pixel is represented by a random variable, Ii j (k) ≤ Hi j (k),

where Hi j (k) : C ⇔ [0, 1] is a probability mass function. Using a “lifting” oper-

ation L , map each element c ∈ C to unique axes of R
q3

with value [Hi j (k)](c)
to represent probability mass functions as vectors (or normalized histograms), a
convenient representation for the rest of the paper. Note that 1T Hi j (k) = 1, when

conceived of as a vector; 1 ∈ R
q3

. Denote an estimated distribution as Ĥi j (k). Let
Ĥ(k) = {Ĥi j (k) : (i, j) ∈ I} represent the background image model, as in Fig. 8.3.

A foreground object is defined as an 8-connected collection of pixels in the image
plane corresponding to a visitor. Define the set of foreground objects at time k
as X(k) = {τn → I : n < R(k)}, where τn represents an 8-connected collec-
tion of pixels in the image plane, and R(k) represents the number of foreground
objects at time k. Let F(k) = ⋃

τ∈X(k) τ be the set of all pixels in the image

http://dx.doi.org/10.1007/978-3-319-03904-6_7
http://dx.doi.org/10.1007/978-3-319-03904-6_9
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associated with the foreground. We define the minimum bounding box around each
contiguous region of pixels with the upper left and lower right corners: let x+

n =
arg min(i, j)∈I(i, j) s.t. (i, j) ∈ (u, v) ∼(u, v) ∈ τn , and x−

n = arg max(i, j)∈I(i, j)
s.t. (i, j) ⊆ (u, v) ∼(u, v) ∈ τn . The set of pixels within the minimum bounding
box of τn is τ̄n = {(i, j) : x−

n ⊆ (i, j) ⊆ x+
n }. Then, let F(k) = ⋃

n<R(k) τn , the
set of all pixels within the minimum bounding boxes around each foreground object.
F(k) → I is referred to as the foreground bounding box support of the image I (k).

The tracking algorithm returns a set Ẑ(k) → I, indicating the pixels identified as
foreground, described in more detail in Sect. 8.3. Throughout, variants of the symbol
Z will refer to collections of tracks, not to the set of integers.

8.1.4 Assumptions

We make the following assumptions:

1. Foreground regions of images are small.
In general, there are relatively few visitors and this assumption holds. In some
anomalous circumstances, this assumption may be violated, during galas and
special events. We implemented a failsafe in these circumstances to allow the
system to reinitialize and recover.
Let B(k) ⊂ F(k)c represent the set of pixels associated with the background.
Assume that |B(k)| 
 |F(k)|.

2. The color distribution of a given pixel changes slowly relative to the frame rate.
The appearance is allowed to change rapidly, as with a flickering light, but the
distribution of colors at a given pixel must remain essentially constant between
frames. In practice, this condition is only violated in extreme situations, as when
lights are turned on or off. High-level logic helps the algorithm recover from a
violation of this assumption.
Interpreting Hi j (k) as a vector, ∃δ > 0 such that for all i, j, k,⎛⎛⎛⎛Hi j (k) − Hi j (k + 1)

⎛⎛⎛⎛ < δ, where δ is small.
3. To limit memory requirements, we store only a small number of the total possible

histogram bins. To avoid a loss of accuracy, we make an assumption that most
elements of Hi j (k) are 0. In other words, each pixel can only take on a few colors
relative to the total number of possible colors.
The support of the probability mass function Hi j (k) is sparse over C.

4. By starting the algorithm before visitors enter the gallery, we assume that the
image sequence contains no visitors for the first few seconds. ∃K > 0 such that
R(k) = 0 ∼k < K .

5. Pixels corresponding to visitors have a color distribution distinct from the back-
ground distribution.
Consider a foreground pixel Ii j (k) such that (i, j) ∈ F(k), has probability mass
function Fi j (k). The background distribution at the same pixel is Hi j (k). Inter-
preting distributions as vectors, ||Fi j (k) − Hi j (k)|| > β for some β > 0. While
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this property is necessary in order to detect a visitor, it is not sufficient, and we
use additional information for classification.

6. Visitors move slowly in the image plane relative to the camera’s frame rate.
Formally, assuming τi (k) and τi (k + 1) refer to the same foreground object
at different times, there is a significant overlap between τi (k) and τi (k + 1):
|τi (k)∩τi (k+1)|
|τi (k)∪τi (k+1)| > O , O ∈ (0, 1), where O is close to 1.

7. Visitors move according to a straight-line motion model with Gaussian process
noise in the image plane.
Such a model is used in pedestrian tracking [31] and is used in tracking the
location of mobile wireless devices [33]. Further, the model can be interpreted
as a rigid body traveling according to Newton’s laws of motion. We also assume
that the time between each frame is approximately constant, so the Kalman filter
system matrices of Sect. 8.3 are constant.

8.1.5 Problem Statement

Performance of each algorithm is measured as a function of the number of pix-
els correctly or incorrectly identified as belonging to the foreground bounding box
support, F(k). First, tp refers to the number of pixels the algorithm correctly iden-
tifies as foreground pixels: tp(k) = |F(k)

⎝ Ẑ(k)|. f p is the number of pixels
incorrectly identified as foreground pixels: f p(k) = |F(k)c ⎝ Ẑ(k)|. Finally, f n is
the number of pixels identified as background that are actually foreground pixels:
f n(k) = |F(k)

⎝ Ẑ(k)c|. As in [37], define “precision” as p = tp
tp+ f p and “recall”

as r = tp
tp+ f n . For our interactive installation, recall is more important than precision,

so we use the F2-score [22, 30], a weighted harmonic mean that puts more emphasis
on recall than precision:

F2 = 5pr

4p + r
(8.1)

The problem is then: for each image I (k) in sequence {I }N−1
k=0 , find a collection of

foreground pixels Ẑ(k) such thatF2(k) is maximized. The optimal value at each time
is 1, which corresponds to an algorithm returning precisely the bounding boxes of
the true foreground objects: Ẑ(k) = F(k). We use Eq. 8.1 to evaluate our algorithm
in Sect. 8.4.

8.2 Probabilistic Foreground Segmentation

In this section, we focus on the top row of Fig. 8.3, which takes an image I (k) and gen-
erates a set of bounding boxes of possible foreground objects, denoted M(k).Ẑ(k),
the final estimated collection of foreground pixels, is used with I (k) to update the
probabilistic background model for time k + 1.
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8.2.1 Quantization

We store a histogram Ĥi j (k) on RGB color-space for every pixel. Ĥi j (k) must be
sparse by Assumption 3, so the number of exhibited colors is limited to Fmax , a
system parameter. Noise in the camera’s electronics, however, spreads the support
of the underlying distribution, threatening the sparsity assumption. To mitigate this
effect, we quantize the color-space. We perform a linear quantization, given parameter
q < 256, and interpreting Ii j (k) ∈ C as a vector, Îi j (k) = ∅ q

256 Ii j (k)∞. The floor
operation reflects the typecast to integer in software in each color channel. Note that
this changes the color-space C by altering q as indicated in Sect. 8.1.3.

8.2.2 Histogram Initialization

We use the first T frames of video as training data to initialize each pixel’s estimated
probability mass function, or background model. Interpret the probability mass func-
tion Ĥi j (k) as a vector in R

q3
, where each axis represents a unique color. We define

a lifting operation L : C ⇔ F → R
q3

by generating a unit vector on the axis
corresponding to the input color. The set F is the “feature set,” representing all unit
vectors in R

q3
. Let fi j (k) = L( Îi j (k)) ∈ F be a feature (pixel color) observed at

time k. Of the T observed features, select the Ftot ⊆ Fmax most recently observed
unique features; let I → {1, 2, . . . T }, where |I| = Ftot , be the corresponding time
index set. (If T > Fmax , it is possible that Ftot , the number of distinct features
observed, exceeds the limit Fmax . In that case, we throw away the oldest observa-
tions so Ftot ⊆ Fmax .) Then, we calculate an average to generate the initial histogram:
Ĥi j (T ) = 1

Ftot

⎞
r∈I fi j (r). This puts equal weight, 1/Ftot , in Ftot unique bins of

the histogram.

8.2.3 Bayesian Inference

We use Bayes’ Rule to calculate the likelihood of a pixel being classified as fore-
ground (F) or background (B) given the observed feature, fi j (k). To simplify notation,
let p(F | f ) represent the probability that pixel (i, j) is classified as foreground at
time k given feature fi j (k). Using Bayes’ rule and the law of total probability,

p(B| f ) = p( f |B)p(B)

p( f |B)p(B) + p( f |F)p(F)
(8.2)

We calculate p( f |B) = fi j (k)T Ĥi j (k), as Ĥi j (k) represents the background
model. The prior probability that a pixel is foreground is a constant parameter, p(F),
a design parameter that affects the sensitivity of the segmentation algorithm. As there
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Fig. 8.5 Probabilistic Foreground Segmentation System Block Diagram for a single pixel. Feature is
the observed RGB color. Its observed likelihood is referenced from the existing empirical probability
distribution on color-space for the pixel. Bayes’ rule enables us to calculate the probability that the
pixel is part of the foreground

are only two labels, p(B) = 1− p(F). Without a statistical model for the foreground,
however, we cannot calculate Bayes’ rule explicitly. Making use of Assumption 5,
we let p( f |F) = 1 − p( f |B), which has the nice property that if p( f |B) = 1,
then the pixel is certainly identified as background, and if p( f |B) = 0, the pixel is
certainly identified as foreground. After calculating posterior probabilities for every
pixel, the posterior image is P(k) ∈ [0, 1]w×h where Pi j (k) = p(F | fi j (k)) =
1 − p(B| fi j (k)).

8.2.4 Filtering and Connected Components

Given the posterior image, P(k), we perform several filtering operations to prepare
a binary image for input to the connected components algorithm. We perform a
morphological open followed by a morphological close on the posterior image with
a circular kernel of radius r , a design parameter, using the notion of morphological
operations on grayscale images discussed in [47, 48]. Such morphological operations
have been used previously in segmentation tasks [32]. Intuitively, the morphological
open operation will reduce the estimated probability of pixels that are not surrounded
by a region of high-probability pixels, smoothing out anomalies. The close operation
increases the probability of pixels that are close to regions of high-probability pixels.
The two filters together form a sort of smoothing operation, yielding a modified
probability image P̆(k) (Fig. 8.5).

We apply a threshold with level ξ ∈ (0, 1) to P̆(k) to generate a binary image
P(k). This threshold acts as a decision rule: if P̆i j (k) ∈ ξ,Pi j (k) = 1, and otherwise,
Pi j (k) = 0, where 1 corresponds to “foreground” and 0 to “background.” Then,
we perform morphological open and close operations on Pi j (k); operating on a
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binary image, these morphological operations have their standard definition. The
morphological open operation will remove any foreground region smaller than the
circular kernel of radius r ≥, a design parameter. The morphological close operation
fills in any region too small for the kernel to fit without overlapping an existing
foreground region, connecting adjacent regions.

On the resulting image, the connected components algorithm detects 8-connected
regions of pixels labeled as foreground. For this calculation, we make use of
OpenCV’s findContours() function [9] which returns both contours of connected
components, used in Sect. 8.3.2, and the set of bounding boxes around the connected
components, denoted M(k). These bounding boxes are used by the tracking system
in Sect. 8.3, so we represent them as vectors: for m ∈ M(k), m ∈ R

4 with axes
representing the x, y coordinates of the center, along with the width and height of
the box.

8.2.5 Updating the Histogram

The tracking algorithm takes M(k), the list of detected foreground objects, as input
and returns Ẑ(k), the set of pixels identified as foreground. To update the histogram,
we make use of feature fi j (k), defined in Sect. 8.2.2.

First, the histogram Hi j (k) is not updated if it corresponds to a foreground pixel:
if (i, j) ∈ Ẑ(k), then Hi j (k + 1) = Hi j (k).

Otherwise, let S represent the support of the histogram Hi j (k), or the set of
nonzero bins: S = {x ∈ F : xT Hi j (k) ⇐= 0} → F . By the sparsity constraint,
|S| ⊆ Fmax . If feature fi j (k) has no weight in the histogram ( fi j (k)T Hi j (k) = 0)
and there are too many features in the histogram (|S| = Fmax ), a feature must be
removed from the histogram before updating to maintain the sparsity constraint. The
feature with minimum weight (one arbitrarily selected in event of a tie) is removed and
the histogram is renormalized. Selecting the minimum: f ∈ arg minx∈S xT Hi j (k).
Removing f and re-normalizing:

Ĥi j (k) = Hi j (k) − fT Hi j (k)f

1 − fT Hi j (k)
(8.3)

Finally, we update the histogram with the new feature:

Hi j (k + 1) = (1 − α)Ĥi j (k) + α fi j (k) (8.4)

The parameter α affects the adaptation rate of the histogram. Given that a particular
feature f ∈ F was last observed θ frames in the past and had weight η, the feature
will have weight η(1 − α)θ . As α gets larger, the past observations are “forgotten”
more quickly. This is useful for scenes in which the background may change slowly,
as with natural lighting through the course of a day.
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8.3 Multiple Visitor Tracking

Lacking camera calibration, we track foreground visitors in the image plane rather
than the ground plane. Once the foreground/background segmentation algorithm
returns a set of detected visitors, the challenge is to track the visitors to gather useful
state information: their position, velocity, and size in the image plane.

Using Assumption 7, we approximate the stochastic dynamical model of a vis-
itor as follows: zi (k + 1) = Azi (k) + qi (k), mi (k) = Czi (k) + ri (k), qi (k) ≤
N (0, Q), ri (k) ≤ N (0, R), R = σ I ,

A =
⎠
⎜A≥ 0 0

0 A≥ 0
0 0 I2

⎟
 , A≥ =

[
1 1
0 1

]

C =

⎠
⎜

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎟
⎡⎡ , Q =

⎠
⎜Qx 0 0

0 Qy 0
0 0 Qs

⎟


where I2 is a two-dimensional identity matrix. State vector zi (k) ∈ R
6 encodes

the x-position, x-velocity, y-position, y-velocity, width, and height of the bound-
ing box, respectively, relative to the center of the box. mi (k) ∈ R

4 represents the
observed bounding box of the object. Q, R ⇒ 0 are the covariances, parameters
for the algorithm. Let Z(k) = {zi (k) : i < Z(k)} be the true states of the Z(k)
visitors. Let Ẑ(k) = {ẑi (k) : i < Ẑ(k)} be the set of Ẑ(k) estimated states. Let
Z̆(k) = {z̆i (k) : i < Z̆(k)} be the set of Z̆(k) predicted states. M(k) is the set of
observed bounding boxes at time k, and M̆(k) = {m̆i : m̆i = Cz̆i (k), i < Z̆(k)} is
the set of predicted observations.

Given this linear model, and given that observations are correctly matched to the
tracks, a Kalman filter bank solves the multiple target tracking problem. In Sect. 8.3.1,
we discuss the matching problem. When observations are not matched with an exist-
ing track, a new track must be created in the Kalman filter bank. Given an observation
m ∈ R

4, representing a bounding box, we initialize a new Kalman filter with state
z = (CT C)−1CT m, the pseudo-inverse of m = Cz, and initial error covariance
P = CT RC + Q. In Sect. 8.3.2, we discuss criteria for tracks to be deleted. After
matching and deleting low confidence tracks, the tracking algorithm has a set of
estimated bounding boxes, M̂(k) = {m̂n = Cẑn(k) : n < Ẑ(k)}. The final result
must be a set of pixels identified as foreground, Ẑ(k) → I, and we need to convert mi

from vector form to coordinates of the corners of the bounding box to generate Ẑ(k),
which is used to evaluate performance at time k in Sect. 8.4. Using superscripts to
denote elements of a vector, m1

n and m2
n are the x and y coordinates of the center of

the box. m3
n and m4

n are the width and height. To convert the vector back to a subset

of I, let m−
n = (m1

n − m3
n

2 ,m2
n − m4

n
2 ) ∈ I and m+

n = (m1
n + m3

n
2 ,m2

n + m4
n

2 ) ∈ I. If
any coordinate lies outside the limits of I, we set that coordinate to the closest value
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within I, to clip to the image plane. Let νn = {(i, j) : m−
n ⊆ (i, j) ⊆ m+

n }. Finally,
Ẑ(k) = ⋃

n<Ẑ(k) νn → I, the set of pixels within the estimated bounding boxes.

8.3.1 Gale-Shapley Matching

Matching observations to tracks make multiple-target tracking a difficult problem:
in its full generality, the problem requires recomputation of the Kalman filter over
the entire time history as previously decided matchings may be rejected with the
additional information, preventing recursive solutions. To avoid this complexity,
suboptimal solutions are sought. In this section, we describe a greedy, recursive
approach that, for a single frame, matches observations to tracks to update the Kalman
filter bank.

While some algorithms, e.g., mean-shift [13], use information gathered about the
appearance of the foreground object to aid in track matching, our algorithm does
not: we assume that individuals are indistinguishable. Here, observation-to-track
matching is performed entirely within the context of the probability distribution
induced by the Kalman filters. We make use of the Gale-Shapley matching algorithm
[19], the solution to the “stable-marriage” problem.

In what follows, we describe the matching problem at time k. Formally, we are
given M, the set of detected foreground object bounding boxes, and Z̆, the set of
predicted states. Let |M| = M and |Z̆| = Z . Introduce placeholder sets M⊥ and
Z⊥ such that |M⊥| = Z and |Z⊥| = M . Further, M⎝M⊥ = ⊥ and Z̆

⎝
Z⊥ = ⊥.

These placeholder sets will allow tracks and observations to be unpaired, implying
a continuation of a track with a missed observation [45], or the creation of a new
track. Define extended sets as M+ = M⋃M⊥ and Z

+ = Z̆
⋃

Z⊥. Note that
|M+| = |Z+|, a prerequisite for applying the Gale-Shapley algorithm [19]. Let
G ⊂ |M+|.

We now describe the preference relation necessary for the Gale-Shapley algorithm.
Let mi ∈ M and z̆ j ∈ Z̆.z̆ j is the predicted state of track j . The Kalman filter
estimates an error covariance for the predicted state: Pj ⇒ 0. We are interested in
comparing observations, not states, so the estimated error covariance of the predicted
observation, m̆ j = Cz̆ j , is C Pj CT + R, from the linear system described at the start
of Sect. 8.3. The Mahalanobis distance between two observations under this error
covariance matrix is

d(mi , m̆ j ) =
⎢
(mi − m̆ j )T (C Pj CT + R)−1(mi − m̆ j ) (8.5)

To make a preference relation, we exponentially weight the distance: ηi j =
exp(−d(mi , m̆ j )), ηi j ∈ (0, 1). As the distance approaches 0,ηi j ⇔ 1. Mak-
ing use of Assumption 6, we place constraints on the distance: for some thresh-
old ξmin ∈ (0, 1), if ηi j < ξmin (equiv. the distance is too great), then we deem
the matching impossible, by Assumption 6. The symmetric preference relation
φ : M+ × Z

+ ⇔ R is as follows:
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φ(mi , z̆ j ) =

⎣⎤⎥
⎤⎦

0 mi ∈ M⊥ or z̆ j ∈ Z⊥
ηi j ηi j ∈ ξmin

−1 ηi j < ξmin

(8.6)

Equation 8.6 indicates that if a track z̆ j or observation mi is to be unpaired, the
preference relation between z̆ j and mi is 0. If the Mahalanobis distance is too large,
the preference relation is −1, so not pairing the two is preferred. Otherwise, the
preference is precisely the exponentially weighted Mahalanobis distance between
the predicted observation m̆ j and mi .

Then, the Gale-Shapley algorithm with Z
+ as the proposing set pairs each z ∈ Z

+
with exactly one m ∈ M+, resulting in a stable matching. That is, if observation i
is paired with track j , and another observation n is paired with track k, if ηi j < ηik ,
then ηik < ηnk , so while observation i would benefit from matching with track k,
track k would lose, so no rematching is accepted. Gale and Shapley prove that their
algorithm generates a stable matching, and that it is optimal for Z

+ in the sense
that, if w j is the final score associated with z j ∈ Z

+ after matching, then
⎞

j η j is
maximized over the set of all possible stable matchings [19]. Thus, tracks are paired
with the best possible candidate observations.

We refer to the final matching as the set M → Z
+ × M+, where |M| = G.M is

the input to the Kalman Filter bank as in Fig. 8.3. Then, each pair (z,m) ∈ M is used
to update the Kalman filter bank: depending on the pairing, this creates a new track,
or updates an existing track with or without an observation. The Kalman update step
generates Ẑ(k) and Z̆(k + 1).Ẑ(k) is used to generate M̂(k) and Ẑ(k) as described
at the beginning of Sect. 8.3, and Z̆(k + 1) is used as input for the next iteration of
the Gale-Shapley Matching algorithm.

8.3.2 Heuristic Confidence Model

We employ a heuristic confidence model to discern people from spurious detections
such as reflections from skylights. We maintain a confidence level ci ∈ [0, 1] for
each tracked object zi ∈ Ẑ(k), which is a weighted mix of information from the
error covariance of the Kalman filter, the size of the object, and the amount of
shape deformation of the contour of the object (provided by OpenCV). Typically,
undesirable objects are small, move slowly, and have a nearly constant contour.

In the following, we drop the dependence on time k for simplicity and denote time
k + 1, with a superscript +.

Consider an estimated state ẑ ∈ Ẑ, with error covariance P . Let cdyn =
exp(− det(P)/ξdet ), with parameter ξdet . Intuitively, as the determinant of P
increases, the region around ẑ which is likely to contain the true state expands,
implying lower confidence in the estimate. Let csz = 1 if the bounding box width
and height are both large enough, csz = 0.5 if one dimension is too small, and
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Fig. 8.6 Foreground annotations on two frames of the ManyVisitors sequence. Left OpenCV.
Right Our approach. This image conveys that the results from OpenCV have higher precision but
significantly lower recall, resulting in the F2-scores of Fig. 8.7

csz = 0 if both are too small, relative to parameters w and h representing the min-
imum width and height. The third component, csh , is derived from the Hu moment
(using OpenCV functionality), measuring the difference between the contour of the
object at time k − 1 and time k. Let νdyn, νsz, νsh be parameters in [0, 1] such that
νdyn + νsz + νsh = 1; these are weighting parameters for different components of
the confidence model. Then, given a parameter β,

c+ = (1 − β)c + β(νdyncdyn + νszcsz + νshcsh)

When a track is first created at time k, c(k) = 0. After the first update, if at time
r > k, c(r) < ϕ, another parameter, the track is discarded.

8.4 Results

We evaluate the performance of our proposed algorithm in comparison with three
methods in OpenCV 2.1. Performance is measured according to precision, p, recall,
r, and the F2 measure F2, introduced in Sect. 8.1.5. These are evaluated with respect
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to manually labeled ground-truth sequences, which determine F(k). We compare our
algorithm against tracking algorithms in OpenCV using a nonparametric statistical
background model similar to what we propose, CV_BG_MODEL_FGD [28]. We compare
against three “blob tracking” algorithms, which are tasked with segmentation and
tracking: CCMSPF (connected component and mean-shift tracking particle-filter colli-
sion resolution), CC (simple connected components with Kalman Filter tracking), and
MS (mean-shift). These comparisons, in Fig. 8.7, indicate a significant performance
improvement over OpenCV across the board. A visual comparison illustrating the
tradeoff between precision and recall in its effect on the F2 score is in Fig. 8.6. We
also explore the effect of the additional feedback loop we propose, by comparing
our “dynamic” segmentation and tracking algorithm with a “static” version, which
utilizes only the top row of the block diagram in Fig. 8.3. In the “static” version,
the background model is not updated selectively, and no dynamical information is
used. Figure 8.8 illustrates a precision/recall tradeoff. In both comparisons, we see
an F2 gain similar to the recall gain, so recall is not shown in the former and F2
in the latter comparisons, due to space limitations. These comparisons, along with
annotated videos of algorithm output, are available at http://automation.berkeley.
edu/ACC2012Data/.

In each experiment, the first 120 frames of the given video sequence are used to
initialize the background models. Results are filtered with a gaussian window, using
8 points on either side of the datapoint in question. We evaluate performance on
three videos. The first is a video sequence called StationaryVisitors where
three visitors enter the gallery and then stand still for the remainder of the video.
Situations where visitors remain still are difficult for all the algorithms. Second is
a video sequence called ThreeVisitors with three visitors moving about the
gallery independently, a typical situation for our installation. Figure 8.8 illustrates
that this task is accomplished well by a statistical segmentation algorithm without
any tracking. Third is a video with 13 visitors, some moving about and some standing
still, a particularly difficult segmentation task; this is called the ManyVisitors
sequence.

8.5 Conclusions

This chapter presents a single-camera statistical tracking algorithm and results from
our implementation at the Contemporary Jewish Museum installation entitled “Are
We There Yet?." This system worked reliably during museum hours (5–8 h a day)
over the 4 month duration of the exhibition under highly variable lighting conditions.
We would also like to explore how the system can be extended with higher level
logic. For example, we added a module to check the size of the estimated foreground
region; when the lights were turned on or off, and too many pixels were identified as
foreground, we would refresh the histograms of the background image probability
model, allowing the system to recover quickly. In future versions, we would also
like to explore automatic parameter adaptation, for example, to determine the prior

http://automation.berkeley.edu/ACC2012Data/
http://automation.berkeley.edu/ACC2012Data/
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Fig. 8.7 Comparisons with OpenCV. Results indicate a significant improvement in F2 score in
each case. The recall plots have very similar characteristics and demonstrate our claim of improved
recall over other approaches; these plots and more are available on our website. Situations when
visitors stand still are a challenge for all algorithms, indicated by drastic drops. When the F2
score approaches 0 for OpenCV’s algorithms, our algorithm’s performance is significantly reduced,
although in general, it remains above 0, indicating a better ability to keep track of museum visitors,
even when standing still
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Fig. 8.8 Comparisons between “dynamic” and “static” versions of our algorithm. While the
dynamic feedback loop improves the overall F2 score, illustrated on our website, we illustrate here
that the approach improves recall at the price of precision. The StationaryVisitors sequence
illustrates the high gains in recall with the dynamic algorithm when visitors stand still. In more
extreme cases, as in ManyVisitors, this difference is exaggerated. The ThreeVisitors
sequence shows very similar performance for both algorithms, indicating selectively updated back-
ground models are less useful when visitors are continuously moving

probabilities in high-traffic zones such as doorways. We welcome others to experi-
ment with our data and use the software under a Creative Commons License. Source
code and benchmark datasets are freely available in OpenCV. For details, visit: http://
automation.berkeley.edu/ACC2012Data/.

http://automation.berkeley.edu/ACC2012Data/
http://automation.berkeley.edu/ACC2012Data/
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8.5.1 Reviews

A 2-minute video describing the installation is available at http://j.mp/awty-video-hd.
Installation reviews and documentation are available at http://are-we-there-yet.org.
Below is a sample of published reviews the installation received.

– Molly and Seth Samuel, KALW NPR [43] : “...The exhibit is designed so every
visitor hears a different combination of questions. the room seems to know exactly
where I am. It feels like the questions are following me as I walk around.”

– Jonathan Curiel, SF Weekly [14]: “The contemplative walk is rightfully cele-
brated as a ritual of high importance, and here, at last, is the perfect museum hybrid:
an audio-visual exhibition that asks visitors thought-provoking questions...getting
the words out in midstroll—in a skylit room designed by Daniel Libeskind, no
less—is an exceptional blessing.”

– David Pescovitz, BoingBoing [39]: “The project pulls a thread dating back thou-
sands of years through Jewish culture and weaves it with innovative digital tech-
nology to create a unique, playful, poetic, and perhaps even spiritual experience
as you wander the room.”

– Emily Savage, J-Weekly [17]: “...The walls are white and bare, and the only
sensation is crisp, clear sound... the sensation isn’t like one you’ve felt before.”

– Glenn Rosenkrantz, Covenant Foundation [41]: “Take the ages-old Jewish
impulse to question and challenge. Add 21st century technology. And mix it up a
bit with educators emerging embrace of new media. The result is potent.”

– Molly Samuel, CNN [42]: “A new exhibit at the Contemporary Jewish Museum
in San Francisco doesn’t just challenge visitors. It questions them... Cameras track
each visitor, then a computer uses statistical models to understand who is where,
where they’ve been, and where they’re heading.”

– Huffington Post [4]: “...Gershoni and Goldberg have ingeniously made the scope
as open as possible, anyone with internet access can paticipate, question, challenge,
and create.”

– Sarah Adler, SF Chronicle [1]: “...Everyone who attends is encouraged to submit
questions to be added to the ever-evolving exhibit. The project is not about finding
answers, but rather about learning how many questions remain undiscovered.”

– Stephanie Orma, SF Weekly [38]: “Bay Area artists Ken Goldberg and Gil
Gershoni challenge us to slow down, ask questions, and embrace contemplation.
For they believe that it’s questions—not answers—that help us understand the past
and propel us forward in society and in our lives.”
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Chapter 9
Style-Based Robotic Motion in Contemporary
Dance Performance

Amy LaViers, Lori Teague and Magnus Egerstedt

The topic of this chapter might, most simply, be considered “dancing robots.” Indeed,
to provide an artistic outlet for the concepts presented in [18–22], an original work
of contemporary dance was choreographed and performed April 6, 2013 and April
13, 2013 in Clough Undergraduate Learning Commons at Georgia Institute of Tech-
nology. The four professional dancers and NAO Aldebaran humanoid robot pictured
in Fig. 9.1 were members of the cast. What follows is a discussion of how principles
from technical publications were included in the choreography of a contemporary
modern dance showing entitled Automaton.

Thus, a method for taking human movement and animating a version of it on
a robot will be provided. This is accomplished not from a direct joint angle map-
ping from one highly articulated skeleton (the human) to a deficient one (the robot).
Instead, the method provides a way to extract key stylistic features of human move-
ment (recovered via motion capture) and use them to instantiate a general movement
model. With this approach, novel sequences, which are in the same style, can be
produced rather than simple imitation of the original sequence. However, such a nar-
rative, casting the work as simply a method for mimicry, short changes the diverse
applications this work can have. The aim is to use engineering and art to tease out an
understanding of human behavior, which is key to applications in robotics, human-
centered technology, and the performing arts.
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Fig. 9.1 The four dancers in Automaton along with the humanoid robot used in the show. Photo
by Christian Moreno

9.1 The Robot as an Onstage Character

The robot used in Automaton is immediately engaging to audiences. The robotic
figure calls to mind experiences of humanoids in pop culture, film, and fantasy.
This presents unique challenges and opportunities from a choreographic perspective.
Because the robot conjures up the audience member’s impressions about robots,
one of the opportunities is to challenge these preconceived ideas. People can feel
quite differently about a piece of technology that is human-shaped (for example, see
Fig. 9.2). While few people would personify their ice maker or iPhone, visitors to our
lab immediately ask what the robot’s name is (and sometimes give it one themselves).

Thus, one of the choreographic goals of Automaton is to blur this boundary
between human-shaped and non-human-shaped technology as well as the boundary
between humans and programmed devices. At the interface where humans interact
with technology, their own movements are induced by the automated aspects asso-
ciated with a given piece of technology [12]. In this sense, humans often mimic
robotic qualities in their movements. The confluence of the discrete description of
movement presented in following sections, a robot to implement it on, and trained
dancers who could also execute that description with a high level of accuracy made
Automaton a perfect setting to explore the interaction of natural human movement
with the movement induced by a programmed device.

In the third movement of the piece, two dancers perform with the NAO humanoid
robot. This trio explores the idea that there is some level of expected behavior and
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Fig. 9.2 Two dancers depict the robot being aggressively confronted. The extent to which this
image conjures up empathy for a plastic container for motors, circuit boards, and a processor is
surprising until its human shape is taken into account. Photo by Christian Moreno

reaction from any being or device with which a person interacts. For example, the
dancers engage in a game of patty cake. This is a set of movements, a series of
alternating hand claps between two people, that are essentially pre-programmed in
many children (at least in Western culture). In the trio one dancer breaks the pattern
of the movement—in a sense malfunctioning—and causes his partner to have a
moment of extreme confusion. The confused partner then turns to the robot and
makes it his new patty cake partner. But the robot also breaks the traditional pattern
of patty cake. Here both the human and the robot “malfunctioned”—seemingly on
purpose—or started playing a new game, causing the human partner, in a twist of
irony, to experience a situation he seemed not to know how to navigate, a plight that
typically affects robotic systems—particularly in dynamic environments.

This vignette displays a reversal of roles: instead of humans evolving under
unknown patterns where next movements are not predictable, they engaged in a
child’s game with preset movements. Because the robot can easily mimic such pre-
programmed movements, it can play along too. But what happens to a human when
the rules of this game are slightly different? In this case (and in many others), the
human malfunctions just like a robot presented with an unpredicted situation. This is
analogous to an autonomous car that was designed for operation in the U.S., where
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cars drive on the right side of the road, that has just been dropped in the U.K., where
cars drive on the left side of the road—it would crash instantly. This metaphor mirrors
aspects of human behavior as well.

Beyond the theatrical episode described here, how can we make a robot move
automatically in a given style of movement? This is the subject of this chapter,
which will proceed as follows: Sect. 9.2 presents a discussion of movement and
movement style from the point of view of a certified Laban movement analyst (CMA),
Sect. 9.3 gives an overview of how stylistic features might be extracted from human
movement, Sect. 9.4 describes how we build style “knobs” in order to capture key
aspects of movement style from real data, Sect. 9.5 describes how this method for
stylistic movement generation was applied during the performance of Automaton,
Sect. 9.6 presents a human study conducted at the showings of Automaton, and finally
conclusions are presented in Sect. 9.7.

9.2 A Description of Movement Style

Style becomes recognizable through a gestalt of integrated elements. An aspect of
style is static, determined by a core group of features that repeat, like the compo-
sitional pattering of a quilt or a dialect. However, we are continually moving from
this recognizable source, while we invite new combinations into our repertoire. How
does our core influence our creativity, and vice versa? We are instinctual. We adapt.
We invent. We control. We play. The possibilities that unfold expand our capacity to
communicate, inviting us to be bold, focused, flexible, whimsical, fierce, generous,
etc... The psyche does have some control, and it gives us insight into aspects of our
culture and our identity.

At our core, in our most natural state, movement is authentic–expressing the
relationship between the kinesthetic, creative and psychological dimensions of the
body. Our movement vocabulary emerges, including the attitudes and emotions that
are embedded in our psyche. There is a continuous interplay between the space inside
and outside of the body that embraces our survival mechanisms and of course, our
need to connect. As we are becoming fully embodied human beings, our personal
movement can already be noted in our unique walk, the tone of our personality,
conversational gestures, the body’s carriage, and the space we inhabit. This is what
defines our personal movement style. Whether we invest in this natural state, or
transform, control, and manipulate the body’s language to express something specific,
we are still synchronizing, sometimes balancing, the layers of movement itself.

More broadly, if a viewer recognizes the style of dance as a waltz, it is not just
because it is in 3

4 time. It is a particular dance within a prescribed genre–composed
of its vocabulary, qualitative use of energy, composition in space, and predominant
shapes. A waltz maintains a formal carriage in the upper torso in partnership with
another dancer; the whole body sweeps and arcs through the space, creating under
curves and sustaining peaks with a patterned timing of steps. And break dancing
moves are architectural puzzles, like a Rubik’s cube. The improvisational structure
allows the mover to play with resiliency, momentum and balance. Body surfaces
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leverage and spin off the floor; weight is shifted quickly from the hands to the feet, to
the head, inverting the center of gravity and discovering tripods. Personal movement
styles can potentially live inside a dance genre or speak loudly on their own.

Choreographers and movement artists develop distinctive movement vocabularies
and sequences of movements that become phrase material or dances. Their move-
ment language is an autobiographical manifestation of skeletal and muscular range,
creativity, cultural values, and geographic resources. Ultimately the way in which any
mover webs the layers, and invests in each of them, is what their style becomes. The
dance is both a patterning of movement and a representation of aesthetic choices. A
choreographer’s style will become more imprinted as they discover new relationships
and shape the nexus.

The movement style of Martha Graham, a modern dance pioneer, is iconic. Her
shape, standing on one leg with the other leg arcing out into space, foot flexed, is sup-
ported by a contraction in the torso. Her arms balance with seriousness and emotion.
The shape of her body, one arm reaching up in the vertical and one reaching for-
ward in the saggital, as her back pulls backwards, molds the space. Graham’s direct,
bold, architectural movement vocabulary defined her womanhood in the 1940s. Her
choreography swept powerfully left and right, pierced the diagonal, and dropped to
the earth, like a shaft of light.

The description in the previous paragraph can be credited to the work of movement
theorist Rudoph Laban who provided a framework for movement analysis. When
observing movement, Laban defined four areas: Body, Effort, Shape, and Space.
Each area contains numerous layers. For example, when observing movement with
a body lens, you can see what part of the body is initiating; how the movement is
sequencing throughout the body; how the body develops connections through the
spine and out to the limbs; what part of the body is grounded to allow for mobility;
how breath supports movement range; and how the senses and intellect inform the
qualitative nature of the movement.

Flow, weight, space and time are the motion factors of Effort, Laban’s term to
describe our inner attitude towards movement. These qualitative choices, often in
combination with each other, are an essential component of a personal movement
style. While conscious of flow, a dancer’s movement fluctuates between bound and
free. The dancer can use their center of gravity or levity to produce a quality of light-
ness, limpness, force, or resiliency. The dancer can approach the environment with
directness or interact with its volume. And lastly, the timing of the dancer’s move-
ment can be impulsive, impactful, sustained, or increase and decrease in response to
body rhythms or the mover’s surroundings.

9.3 Interpreting Human Motion for Robotics

How can we organize the multidimensional life of movement, including its emo-
tional and cultural context? This section reviews the work of others and outlines our
approach for directly interpreting measurement of human movement, which is not
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the subject of the remainder of the chapter but is an important context within which
to consider it.

In [3] Bregler coins the term movemes—in analogy to the linguistic concept of a
phoneme—which is cited in many following publications, often offering an alternate
technical definition to this same general concept. A moveme is a motion primitive, and
some combination of several movemes can desribe real human movement. The term
may be viewed as synonomous with the goal to develop an appropriate mathematical
definition that can segment these primitives from real data—in either two (i.e., video)
or three (i.e., motion capture) dimensions. The concept comes up in many arenas:
general pattern recognition [6, 8, 9, 31, 33], robotics [7, 14, 17, 27, 28], and gait
analysis [23, 32]. The basic search that pervades even between these academic arenas
is for atomic nuggets of movements which can recombine, in the same way phonemes
are the sounds that create words, to successfully recreate and form novel full-fledged
movement sequences.

A large body of research has also aimed at understanding motion patterns for
application to vision and animation with the hopes of implementing character to on
screen avatars. Some work [2, 26, 29] has a more statistical bent while others [1, 11,
13, 15, 16, 25] aim more directly at generation of novel motion sequences according
to various constraints and character-driven rules. Similarly, attempts at “stylizing”
robotic motion such as [10], aim to facilitate better human-robot interaction through
a similar, character-driven philosophy.

The work in the “Controls and Art” community, as loosely defined in this book,
has embraced some of the same artistic questions as those we tackle here. Consider in
Chaps. 2, 7, and 8 how the authors’ technical work enables specific artistic expression
in dance performance, museum installations, and musical composition, respectively.
In Chap. 2 the authors put forward a formal model for salsa, a pair dance. The work
in Chaps. 1 and 4 deals with questions of sequencing and movement arrangement for
quadrotors.

The remainder of this section describes our approach for interpreting high-level
aspects of human movement—such as style. Subsequent describe the implementation
of the extractions outlined here on a robot—particularly as in Automaton. Imagine
the scenario depicted in Fig. 9.3. On the left side, envision a robot endowed with style
“knobs.” As the values set by these parameters are changed, the style of the robot’s
motion changes accordingly; this motion may be viewed as a trajectory of joint
angles over time. On the right side, consider human movement recorded by motion
capture; also a quantity in the form of joint angles over time. Optimizing a measure
of similarity between these two signals—which can be improved by adjusting the
setting of the style “knobs”—would provide the setting for the style parameters that
best describes the human motion. In this way, a measure of style can be achieved.

For example, to solve for parameters which best describe the shape of a trajectory
between given start and end points over a specified interval, consider the optimal
control problem

http://dx.doi.org/10.1007/978-3-319-03904-6_2
http://dx.doi.org/10.1007/978-3-319-03904-6_7
http://dx.doi.org/10.1007/978-3-319-03904-6_8
http://dx.doi.org/10.1007/978-3-319-03904-6_2
http://dx.doi.org/10.1007/978-3-319-03904-6_1
http://dx.doi.org/10.1007/978-3-319-03904-6_4
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Fig. 9.3 The figure shows a conceptual overview of how the stylistic parameters might be used to
measure high level aspects of human motion. On the left imagine a signal (perhaps implementable
on a robot) that we are able to generate by varying the value of different stylistic parameters; on the
right real data of human movement, such as a motion capture recording. The circle indicates we
are comparing these two signals in order to measure an aspect of the real data

min
u

Ju =
∫ T

0
F(x,τ,δ)dt + β(x(T ),τ(T ),δ) (9.1)

s.t.

{
ẋ = f (x, u) x(0) = x0
y = h(x)

(9.2)

where x ∈ R
n is the state, u ∈ R

m is the input, y ∈ R
l is the output, τ is a reference,

and δ is a vector of so-called “stylistic” parameters (which will be enumerated in
subsequent sections).

The maximum principle states that the optimizer, u⊆, can be expressed as a func-
tion of x , ξ, τ, and δ, where ξ is the costate satisfying

ξ̇ = −αF

αx

T

− α f

αx

T

ξ

ξ(T ) = αβ

αx
(x(T ),τ(T ),δ). (9.3)

Plugging in the optimal u⊆ into the equations for x and ξ gives the expression for
the Hamiltonian dynamics:

ẋ = fx (x, u⊆(x, ξ,τ,δ)) (9.4)

ξ̇ = fξ(ξ, u⊆(x, ξ,τ,δ)), (9.5)

which we denote with
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ẋ = fx (x, ξ,τ,δ) (9.6)

ξ̇ = fξ(x, ξ,τ,δ). (9.7)

Now define a second cost function which we wish to minimize with respect to the
weighting parameters δ under the constraints imposed by the problem just outlined.
That is,

min
δ

Jδ =
∫ T

0
L(x, θ)dt + Δ(x(T ), θ(T )) (9.8)

s.t.

{
ẋ = fx (x, ξ,τ,δ) x(0) = x0

ξ̇ = fξ(x, ξ,τ,δ) ξ(T ) = αβ
αx (x(T ),τ(T ),δ)

(9.9)

where θ is the empirical data we wish to mimic and classify.
The analystical solutions to this problem, and a similar segmentation problem, are

presented in [22]1 and give the optimal value of δ needed to best recreate θ according
to an L2-norm. The next section (specifically Sect. 9.4.3) describes our formulation
for what the stylistic parameters in δ should be in order to capture a relevant aspect
of style.

9.4 Generating Stylized Motion

This section2 presents a quantitative definition of style—a choice for the style “knobs”
proposed in the previous section. The definition is comprised of three distinct mathe-
matical objects, or stylistic parameters, which drive a two part generation scheme. The
first, an automaton, lists basic, primary movements, which are represented abstractly
by the transitions of the automaton; the states in the automaton are preselected body
poses. These primary movements are then recombined and sequenced according to
knobs on a supervisory controller, the second stylistic parameter, which are scripted
either as sets or LTL specifications. The primary movements are, in parallel, mod-
ulated via an optimal control problem where weights in a cost function, the third
stylistic parameter, determine the quality of each movement; this scheme gener-
ates specific trajectories which are not explicitly part of the automaton. The overall
scheme is illustrated in Fig. 9.4.

The definition of “style” of movement presented in this section is precise such
that it can be implemented on robots, which is what Sect. 9.5 will describe—in the
setting of a contemporary dance performance.

1 The dissertation [22] also provides an implementation of these solutions to extract the quality
from real motion capture data.
2 Sections 9.4.1, 9.4.2, and 9.4.3 previously appeared in [20, 21].
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Fig. 9.4 The figure shows a conceptual overview of how the three stylistic parameters and the
two-part movement scheme fit together

9.4.1 A Quantitative Movement Model

We define basic movements by enumerating them in the first element of our model:
a discrete event description of primary motions. These pre-defined motions are ini-
tially abstracted as events in a transition system—defined only by their starting and
ending poses. Later, we will use these motions as reference signals for an optimal
control problem that can modulate exactly how each motion is executed. Thus, from
the simple system first enumerated, we can produce much more complex move-
ment phrases that are structured combinations (see Sect. 9.4.2) and modulations (see
Sect. 9.4.3) of these primary movements.

This stance is directly inspired by the method of training used in classical ballet,
the barre, in which dancers repeatedly perform small movements over and over. This
canonical combination is cerntral to the practice of ballet and serves as a warm-up
for dancers. These basic movement snippets are then recombined later in class and
during performances to create more complex, full-fledged movements and move-
ment phrases—thus, we think of them as primary. For example, the skill required to
execute a grand jeté, a majestic split-legged leap common in ballet choreography, is
honed through grand battements, straight-legged high kicks, at the barre. Perform-
ing repeated kicks forward, backward, and to the side with one leg, while the other,
standing leg provides stability allows the dancer to develop these muscles. Then,
away from the barre, the dancer kicks one leg forward and one leg backward simul-
taneously to perform the grand jeté, a combination of these primary motions that
invokes both practiced muscle groups at the same time (Fig. 9.5).

Thus, a rational choice for the primary motions, and state transitions, in a model
describing free flowing motion in the style of classical ballet are the movements from
the barre exercises as described in [34]. Additionally, we distinguish two transitions
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Fig. 9.5 A transition system which models the working leg (right leg) of a dancer during a ballet
barre exercise. This figure illustrates the basic element of our movement model: a discrete event
description of primary motions

for each movement listed in the table using a subscript to indicate an in and out
variant. The variants stem from the fact that each primary movement should be
unique. Thus, a movement is either going towards or away from each of the two
states (body positions) it connects, and the next state depends on which of these is
the case.

In order to demonstrate how a sample path through the system works, consider,
for example, a développé; this movement is found both in barre exercises and more
complex ballet movement phrases. A développé is the action when the working leg’s
foot is moved from the knee and then extends from the body. At the barre this motion
is practiced by incremental flexion of the leg; beginning flat on the floor next to the
standing leg, it passes the ankle and knee and extends out into space to full extension.
Lifting the foot to the ankle or knee (without, for example, any extension to follow)
are allowable movements called coupé and passé, respectively. Thus, our uniquely
defined transitions (and trajectories) are three separate events for the working leg:
coupo, passo, deveo. Next, the dancer performs a closing movement where the foot
remains extended from the body and the leg is lowered till the foot is returned to the
starting stance. This is modeled as the event batti —the transition from pose 8 directly
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to pose 2 with a label that corresponds to the in-trajectory of a battement (a simpler
movement that looks like a high straight-legged kick). The events coupi , passi , and
devei are also defined, that is, the reverse pose transitions are allowed and used for
more complex movements. And, we will enumerate a special event to describe the
relative inaction of the standing leg.

Formally, we will model this system as a finite state machine

G = (X, E, O, f, ζ, o, x0, Xm, η,σ), (9.10)

where X is the finite state space, E is the event set, O is an output set, f : X ×E ⊂ X
is the state transition function, ζ : X ⊂ 2E is the set of feasible events (at a given
state), o : X ×E ⊂ O is the output map, x0 ∈ X is the initial condition, and Xm → X
is a set of marked states. In order to allow for both synchronous and asynchronous
transitions once we take the Cartesian composition of two such systems, we use
“empty” transitions, which are defined by the symbol η. The interpretation is that for
our finite state machine, we insist on η ∈ E , with the result that η ∈ ζ(x) as well
as f (x, η) = x, ≤ x ∈ X . Moreover, we associate σ ∈ O with the outputs from
“empty” events, i.e., o(x, η) = σ, ≤ x ∈ X .

We will use the output map as a means of preventing physically infeasible and
stylistically inappropriate motions from happening when composing two automata
in order to emulate more complex routines. For this, we consider the continuous
set X which spans the entire physical space of configurations—namely, the ones
describing the primary motions that are abstracted away by the state machine. We
may define this additional state space as

X = {
(ν1, ..., νn) | νi ∈ [νimin, νimax ]

}
. (9.11)

For example, this set may describe body shapes, defined in terms of the joint angles
which are limited by general kinematic constraints of humanoid geometry.

We can now think of transitions between the discrete states of the automaton as
tracing paths3 through X . And, as our formulation associates every event with a
unique state, we can associate the output map with the path that the corresponding
pose transition sweeps in X .

Sometimes a physically infeasible (i.e. trajectories which intersect) or aestheti-
cally undesirable trajectory pair will exist. These trajectories are kept track of in O
as follows: For e ∈ E, x ∈ X , we let

o(x, e) ∈ 2X = O. (9.12)

Thus, in the next section when we consider G × G, the set O will correspond to
trajectory pairs. These will be trimmed systematically according to our stylistic
parameters.

3 A relaxed version of this may take into account that the angles corresponding to the states in the
automaton are, in practice, approximate. In this case we may think of these paths as “tubes.”
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9.4.2 Movement Sequencing

In this section we will outline a general method for combining the elemental unit
of our movement model presented in the previous section such as to impart rules—
which may be style based—to sequences in the combined state space. In order to
capture the fact that these primary motions may be performed at the same time and
thus produce more complex movement sequences, we want to be able to compose two
state machines, of the form in Eq. 9.10, while transitions that are deemed impossible
or incorrect are removed from the composed system. For example, we may aspire to
go from a one-legged automaton describing the primary movements of that single
leg to a system involving two legs without violating the laws of physics or rules that
ensure we stay faithful to a given style of movement.

To accommodate this, we introduce some compositional operations.
Given two finite automata

Gi = (Xi , Ei , Oi , fi , ζi , oi , xi,0, Xi,m, ηi ,σi ), i = 1, 2,

we let the Cartesian composition of these two systems be given by

G = G1 × G2 = (X, E, O, f, ζ, o, x0, Xm, η,σ),

where

X = X1 × X2

E = E1 × E2

O = O1 × O2

f ((x1, x2), (e1, e2)) = ( f1(x1, e1), f2(x2, e2))

ζ((x1, x2)) = ζ1(x1) × ζ2(x2)

o((x1, x2), (e1, e2)) = (o1(x1, e1), o2(x2, e2))

x0 = (x1,0, x2,0)

Xm = X1,m × X2,m

η = (η1, η2)

σ = (σ1,σ2). (9.13)

Note that this is a synchronous composition in the sense that events have to happen
to both of the two systems in order for a transition to happen. However, through the
introduction of the empty word, we can produce effectively asynchronous transitions
directly through the use of the events (e1, η2) or (η1, e2) in a straightforward manner.

If we perform this operation on two automata that describe the primary movements
at the ballet barre, one for the right leg and one for the left, as G = Gbarre1 × Gbarre2 ,
we obtain a system that no longer is a one-legged warm-up routine, but rather a
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two-legged dance-like model. For example, pas de chat4 is a jump in which the
dancer draws both feet up quickly, flexing at the knee, in a quick canon sequence. It
is modeled for either leg in this automaton as the event sequence

coupo, passo, passi , plieo, pliei ∈ E∂
barre,

where ∂ denotes the Kleene closure. The corresponding event string for the composite
system would be

(η1, coupo), (coupo, passo), (passo, passi ), (passi , plieo), (plieo, pliei ), (pliei , η2).

Note that both of these joint event strings belong to the composite set (Ebarre×Ebarre)
∂

and that these strings correspond to sequences of our primary movements.
We now introduce two operations, trans(·) and pose(·), which will whittle away

undesirable sequences and narrow our style to something more specific than strings
in (Ebarre × Ebarre)

∂. Let

G = (X, E, O, f, ζ, o, x0, Xm, η,σ)

be a finite state machine as per Eq. 9.10 and let Oinfeas ⇔ O and Ounaesth ⇔ O be
subsets of the output set that do not contain σ. The trans(·) operation will take G and
Oinfeas ∈ Ounaesth as arguments and return a new finite state machine,

trans(G, Oinfeas ∈ Ounaesth) = (X, E, O, f, ζ̂, o, x0, Xm, η,σ),

where we only have changed the definition of ζ i.e., the set of events that are allowed
to happen at a given state. The new such set is given by

e ∈ ζ̂(x) ∼ e ∈ ζ(x) and o(x, e) 
∈ Oinfeas ∈ Ounaesth. (9.14)

Thus, trans(·) removes transitions from our state machine that represent joint motions
that are physically impossible or not of our defined aesthetic.

Secondly, certain poses when composed with one another may not be physically
feasible or aesthetically desired. Thus we limit the system from entering such poses
through the use of a supervisory controller and two sets of states X infeas and Xunaesth
which restrict each type of joint state, respectively. Formally speaking, given a finite
state machine together with the sets X infeas ⇔ X and Xunaesth ⇔ X , with x0 
∈
X infeas ∈ Xunaesth, we let the operation

pose(G, X infeas ∈ Xunaesth)

4 Literal translation from French: “step of the cat.”
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be the supervised system G\S, where S is the maximally permissive, non-blocking
supervisor that ensures that the set X infeas ∈ Xunaesth is never reached. Note that such
supervisors can be automatically generated, e.g., [4].

The final system is then given by

pose(trans(G1 × G2, Oinfeas ∈ Ounaesth), X infeas ∈ Xunaesth). (9.15)

Returning to our example, the set Oballet
infeas, defined for the ballet model, allows us to

whittle away excess transitions in order to produce system behaviors consistent with
the physical capabilities of a bipedal geometry. For example, lifting a flat-footed leg
off the ground, in a manner which indicates a jump (or, equivalently, raising the leg
when the other is already in the air), without a bend in the knees to provide spring for
the jump, is physically impossible. This corresponds to state 2 (foot flat on the ground
with a straightened knee), and the infeasible event is an extension of the leg from the
ground to state 8 (extended away from the body, parallel to the floor). Similar such
rules used to govern a leg providing critical support (a leg in state 1, 2, or 3 when the
other is in any of the others, states 44 and 4–8) such as “no coronal extension of the
supporting leg from states 1 and 2” can easily be translated into regions of 2X × 2X .

Thus, pairs of regions of continuous space define Oballet
infeas and correspond to disal-

lowed synchronous leg paths. Likewise, we may enumerate Oballet
infeas to describe any

undesired synchronous motions that, while possible to execute, are not in the desired
style of movement. Since we began this example from such a narrow set of primary
motions which are, by design, intended to be performed synchronously, we leave
this set empty.

Each joint state in the two-legged barre automaton is physically feasible; thus,
Xballet

infeas is an empty set. The definition of Xballet
unaesth in the ballet model is a straightfor-

ward list of two-legged states which are perhaps considered ugly as judged by the
metric of ballet; often, these are asymmetrical poses or poses which cannot be seen
from the audience’s distant perspective.

Finally, with both of these components in place, Eq. 9.15 reduces to

pose(trans(Gbarre1 × Gbarre2 , Oballet
infeas), Xballet

unaesth).

This describes an automaton that accepts strings of body poses that follow our ballet-
inspired rule set.

It is worth asking the question of how easy this method is to implement—for
example, is naming the sets Oinfeas, Ounaesth, X infeas, and Xunaesth in situations where
the desired motion style is less formalized a manageable task? A possible resolution
to this question is offered in the notable and exciting extension presented in [18] and
[19] where the discrete sequencing rules are assembled through statements scripted
in linear temporal logic (LTL), which resembles natural language as it uses Boolean
and temporal operators to operate on basic statements about the system.
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Fig. 9.6 The dynamosphere. Laban’s arrangement of eight basic Efforts according to the axes of
space, weight, and time. In bold font are the three Laban motion factors which deal with single
movements; in italics are the two qualities Laban associates with each factor; and in plain font are
the eight basic Efforts which result from the pairwise combination of each quality [30]

9.4.3 Movement Modulation

As outlined in Sect. 9.2, motions may be performed with different dynamic quality.
Thus, the basic primary motions—which are abstracted away in the discrete motion
sequencing framework from the previous section—tell a limiting story of stylized
motion. In this section, we use a linear quadratic optimal control framework to find
time-varying trajectories between static poses through a mapping between Rudolf
Laban’s Effort system and weights in a cost function that was first proposed in [20].

Laban names four categories of Effort or motion factors: space, weight, time, and
flow. Space, weight, and time deal with individual movements while flow describes
the quality of a succession of movements; each are described in detail in [24, 30].

The relationship of space, weight, and time can be seen in Laban’s dynamosphere
as in Fig. 9.6. The extremes of these three motion factors combine pairwise to form the
eight basic Efforts: dabbing, gliding, floating, flicking, thrusting, pressing, wringing,
and slashing. These movements embody the extreme notions of each motion factor,
and our framework will generalize this binary scale to one of continuously vari-
able weights. Each of the basic Efforts corresponds to a familiar pedestrian action,
highlighting, even to a lay audience, the nature of the dynamosphere arrangement:
changing the quality of one motion factor moves around the cube to a different
basic Effort. These three motion factors, and the fourth factor, flow, which describes
the quality of the connection between movements, are described—along with some
intuition behind our mathematical interpretation—in the next four paragraphs.

The space axis describes how the dancer’s attitude toward space is perceived.
Flexible movements seem more carefree, meandering, and indirect; direct motions
appear more matter of fact and judicious with their use of space. We pair this concept
with a system’s notion of reference tracking; direct movements will track their path
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more aggressively than flexible ones. Thus, we will make use of nominal trajectories
away from which our solutions may deviate or adhere closely.

The axis of weight deals with the emanated sense of weight in the dancer’s body
during the movement. Light movements look as though they are less influenced
by gravity—as if they are effortless—whereas strong movements are muscular and
seem taxing on the body to perform. We interpret this as a specification for how much
control effort is used to perform the movement, or, in terms of a cost function, how
“cheap” it is to increase the magnitude of the control signal.

Thirdly, Laban prescribes a time axis on which the movement may either be
sudden or sustained. This describes a quality which, while it adheres closely to
the colloquial notion of these terms, is more subtle than just the duration of the
movement; that is, a movement which lasts five seconds may be executed with a
sudden or sustained quality. We interpret this as a metric over how much the state
of the system is allowed to change: during a sustained movement it should change
less while in a sudden movement it may deviate wildly to produce a trajectory that
appears to the audience as frantic.

Finally, Laban describes the quality of a series of movements with flow; these may
either be free or bound. In free flow, dancers seems to move through movements with
great ease and continuity; while in bound flow the dancer feels control and rigidity
in the muscles. We interpret this from a systems perspective as a lesser (or greater)
desire for the dancer to hit poses between movements exactly. In the sequencing
framework we will employ, this translates to varying the weights on a terminal pose.

To make these concepts mathematically rigorous, consider a linear system with
an input u ∈ R

m , a state x ∈ R
n , and an output y ∈ R

l which tracks a reference
signal r ∈ R

l . We establish a quadratic cost function

J = 1

2

∫ T f

0

[
(y − r)T Q(y − r) + uT Ru + ẋ T P ẋ

]
dt + 1

2
(y − r)T S(y − r)

∣∣∣∣
T f

(9.16)
in order to find an input u principled on the weight matrices Q ∈ R

l×l , R ∈ R
m×m ,

P ∈ R
n×n , and S ∈ R

l×l . By construction, each of these matrices are positive
definite and symmetric. Furthermore, their entries create a continuous, quantitative
version of Laban’s Effort system and will determine which movement qualities are
exhibited by the optimal trajectory, i.e. the trajectory may be bound, direct, sudden,
and strong.

Based on the previous discussion, we associate the weight Q to the Laban’s motion
factor space, R with the factor weight, P with time, and S with flow. These weights
correlate with the quality of each factor as follows:

Q ∃ direct (9.17)

R ∃ light (9.18)

P ∃ sustained (9.19)

S ∃ bound (9.20)
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where the opposite of the qualities listed, flexible, strong, sudden, and free, are
achieved when these weights are relatively small, respectively.

Using these weights as the style-based parameters for varying the resulting tra-
jectory, we solve the optimal control problem

min
u

J

s.t.

{
ẋ = Ax + Bu
y = Cx

(9.21)

where A ∈ R
n×n , B ∈ R

n×m , and C ∈ R
l×n .

Differentiating the Hamiltonian

H = 1

2
[(y − r)T Q(y − r) + uT Ru + ẋ T P ẋ] + φ f

with respect to u and x gives the first order necessary condition for optimality and
the dynamics of the costate φ = [φ1,φ2, ...φn]:

αH

αu
= uT (R + BT P B) + xT AT P B + φB = 0

from which it follows that

u = −(R + BT P B)−1(BT P Ax − BT φT ) (9.22)

and
αH

αx
= −φ̇ = xT (CT QC + AT P A) + uT BT P A + φA − r T QC

from which it follows that

ξ̇ =φ̇T = (AT P B(R + BT P B)−1 BT P A − CT QC − AT P A)x

+ (AT P B(R + BT P B)−1 BT − AT )ξ + CT Qr. (9.23)

Applying the transversality condition we obtain:

ξ(T f ) = CT SCx(T f ) − CT Sr(T f ). (9.24)

To solve this system for an optimal x(t) we need to find ξ0. Thus, we assemble a
new state z = [x, ξ]T . Now

ż = Mz + Nr (9.25)

where the entries of M and N are determined from Eqs. 9.21 to 9.23 and are given
below:
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M11 = A − B(R + BT P B)−1 BT P A (9.26)

M12 = −B(R + BT P B)−1 BT (9.27)

M21 = AT P B(R + BT P B)−1 BT P A − CT QC − AT P A (9.28)

M22 = AT P B(R + BT P B)−1 BT − AT (9.29)

N1 = [0]n×l (9.30)

N2 = CT Q. (9.31)

We know that in general

z(T f ) = eMT f z0 +
T f∫

0

eM(T f −t)Nr(t)dt, (9.32)

which we denote by
z(T f ) = τz0 + q, (9.33)

where

τ =
[

τ11 τ12
τ21 τ22

]
and q =

[
q1
q2

]
. (9.34)

Combining Eq. 9.24 with Eqs. 9.33–9.35 we get

ξ0 = (CT SCτ12 − τ22)
−1[(τ21 − CT SCτ11)x0

+ CT SCq1 + q2 + CT Sr(T f )]. (9.35)

Thus, we have found our initial condition z0 = [x0, ξ0]T . When combined with
Eq. 9.25, this gives the optimal x(t)—and thus our output y(t)—as nominated by the
weights in Eq. 9.16.

9.5 Rule-Based Movement Generation

Choreographers are constantly seeking sources of inspiration and techniques to gen-
erate new movement. Often this involves using measures external to their bodies to
generate new constraints for their creative problems—à la Merce Cunningham and
his dice. Cunningham [5] famously used dice to introduce chance and randomness
into his work; a roll of the dice would determine the next movement in a sequence or
the order of a show on a given night. These techniques produced new and exciting
movements. Later in his career, he also developed technology, the software suite
LifeForms, which allowed for movement generation on a computer, to facilitate his
choreographic process. The tools in this chapter afford a similar opportunity: style
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Fig. 9.7 The underlying poses for the five styles of movement performed during Automaton. Photos
by Jessica Portugal

of motion may be programmed through the automata-theoretic description of style
presented in this chapter.

Developing movement “styles” using automata inherits the same advantage that
automata afford to the technological objects which they are traditionally used to
describe. Namely, they allow for discrete changes in state. In the case of a remote
control, this means that when the highest channel is reached, the TV interprets the
“up” signal from the remote as a command to go down to the first or lowest channel.
This is to some degree inconsistent and would be extremely inconvenient to capture
this desired behavior using continuous mathematics. In the case of dancing, the
programmatic advantage is that moving between body poses does not have to be
governed by the natural movement patterns of the choreographer, but instead offers
an opportunity to produce unusual sequences as drawing arrows between states is a
completely disembodied task—just as Cunningham’s technique of rolling the dice.

Figures 9.7, 9.8, 9.9, 9.10 and 9.11 show the rule sets for each dancer. Just as the
movement patterns look different to watch, these automata have different structures.5

For example, one automaton is quite linear and represents the same sequence of
movement repeated over and over; whereas others present more options and allow
for repeated movement. Moreover, these descriptions are amenable to robotics, and
the styles of movement may be automated. Thus, the rule-set pictured in Fig. 9.8, is
also animated on the NAO humanoid robot. By employing different rule sets on each

5 Audience members were given an experiential tutorial in automata via a printed automaton that
instructed them on how to fold their programs
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Fig. 9.8 The rule set for the dancer Helen and the humanoid robot

Fig. 9.9 The rule set for the dancer Camille

Fig. 9.10 The rule set for the dancer Alex

dancer and the robot, the audience is able to see different automata animated, live.
A snapshot from this section of the piece is shown in Fig. 9.12.

9.6 What did the Audience See?: A Human Study

This section will provide an initial step toward validating the goal of endowing a
robot with a consistent style of movement. The sequencing framework described in
this chapter was used in Automaton as described in the previous section. Audience
members were polled after the performances (held on April 6 and 13, 2013) for their
impressions of the robot’s movement.



9 Style-Based Robotic Motion in Contemporary Dance Performance 225

Fig. 9.11 The rule set for the dancer Erik

Fig. 9.12 Five styles of movement are performed during Automaton. Photo by Rob Felt

Between the two showings, about 100 people saw Automaton, and 28 audience
members volunteered to fill out a survey collecting their impressions of the robot’s
movement. Figures 9.13 and 9.14 show the results of the responses and the averaged
values for each question. (The complete responses can be found in [22].) The ques-
tions aimed to capture the viewer’s impression of a colloquial notion of “style” as
applied to the overall movement of the robot in the show. The study subjects were
asked if their impressions of the movement were that it was “specific,” “stylized,”
“virtuosic,” “enjoyable,” and whether they “felt” anything at all about the movement.
These questions were phrased broadly and were not meant to define a subjective or
psychological notion of “style.” Instead, the questions simply probed whether the
audience believed that something consistent was underlying the robot’s movement.

The responses indicate that the viewers polled did experience the robot’s move-
ment as something other than random motions set to music. In particular, the
responses to the first two questions support this claim. Question 1 polled the viewer’s
sense that the robot’s movement was very “specific.” The average of almost 8 on a
scale of 1 to 10, with 1 corresponding to random motion and 10 corresponding to
very specific motion, indicates the audience did feel the robot’s movement was “spe-
cific.” Question 2 was similar except phrased using the term “style”; the average
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Fig. 9.13 A histogram of survey responses collected between both showings of Automaton com-
pleted by volunteers from the audience. The question shown here was stated as follows: Please rate
your impression of the overall consistency of the robots movement. A rating of 1 indicates that it
seemed to be moving completely randomly. A rating of 10 indicates that it was moving in a very
specific way. Each column counts how many subjects selected 1, 2, 3, ..., 10, respectively, for this
question

Fig. 9.14 A histogram of survey responses collected between both showings of Automaton com-
pleted by volunteers from the audience. The question shown here was stated as follows: Please
rate your impression of the style of the robots movement. A rating of 1 indicates that it seemed to
be moving without style. A rating of 10 indicates that it was moving in a very stylized way. Each
column counts how many subjects selected 1, 2, 3, ..., 10, respectively, for this question

rating of about 7 out of 10 indicates that the viewers polled found the robot’s motion
to be more “stylized” than not. The responses to the other questions also indicated
the audience sensed some high-level design of the robot’s movement. Thus, this ini-
tial study indicates we have achieved robotic movement that is perceived to be of a
certain style.
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9.7 Conclusions

Functional tasks have a straightforward interpretation for metrics of success, effi-
ciency, and completion and are, thus, implementable on robots in a variety of shapes.
However, robots that are shaped like humans have a greater vocabulary of move-
ment to aspire to as their movements are compared to the highly capable and varied
natural movements of human beings. To cite two popular examples of how a fully
autonomous humanoid robot might first appear in complex roles: in-home hospice
robots should move as though they are gentle and caring and museum tour guide
robots should have a brisk air of authority about their movements. Thus, a quan-
titative parameterization of high-level aspects of human movement is a necessary
component for human-shaped robots that interact with humans.

Futher, technology of any shape relies more and more on an interpretation of
human movement. Human-centered technology has moved from vending machine
style interfaces where users need to figure out the function of various buttons to
operate a machine to iPhones where much of the interaction takes place based on the
machine’s interpretation of the motion of the human fingers. Following this trend,
Microsoft’s Kinect extracts a human skeleton using computer vision techniques and
aims to incorporate full-body motions into the Xbox entertainment system. Being
able to interpret the style and other high-level aspects of a user’s movement can
enhance these efforts.

Finally, the work presented in this chapter can interface with art. The analysis
and creation of art can benefit from quantitative tools. The focus of this chapter has
been on the creation of art, but on the part of analysis, being able to generate—
and even measure—stylized movement from three parameters allows for movement
from different dancers, choreographers, genres, and sections of the same piece to
be compared quantitatively. Such analysis can bolster the body of academic work
that qualitatively discusses the evolution of and connection between various genres
of dance and the differences between the work of two choreographers and provide
insight into the magical effect stylized movement can have on an audience.
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