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ABSTRACT

Quadrocopters offer an attractive platform for aerial robotic applications due to, amongst others, their
hovering capability and large dynamic potential. Their high-speed flight dynamics are complex, however,
and the modeling thereof has proven difficult. Control algorithms typically rely on simplified models,
with feedback corrections compensating for unmodeled effects. This can lead to significant tracking
errors during high-performance flight, and repeated execution typically leads to a large part of the track-
ing errors being repeated. This paper introduces an iterative learning scheme that non-causally compen-
sates repeatable trajectory tracking errors during the repeated execution of periodic flight maneuvers. An
underlying feedback control loop is leveraged by using its set point as a learning input, increasing repeat-
ability and simplifying the dynamics considered in the learning algorithm. The learning is carried out in
the frequency domain, and is based on a Fourier series decomposition of the input and output signals. The
resulting algorithm requires little computational power and memory, and its convergence properties
under process and measurement noise are shown. Furthermore, a time scaling method allows the trans-
fer of learnt maneuvers to different execution speeds through a prediction of the disturbance change. This
allows the initial learning to occur at reduced speeds, and thereby extends the applicability of the
algorithm for high-performance maneuvers. The presented methods are validated in experiments, with
a quadrocopter flying a figure-eight maneuver at high speed. The experimental results highlight the
effectiveness of the approach, with the tracking errors after learning being similar in magnitude to the
repeatability of the system.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

photogrammetry, motion picture production, and journalism [3],
environmental monitoring and inspection tasks of hard-to-reach

Aerial robots serve as platforms for robotic applications that
provide numerous benefits, including the ability to move freely
in three-dimensional space, and the significantly increased ability
to overcome obstacles due to not being limited to motion on the
ground. For relatively small platforms that require hovering capa-
bilities, multi-rotor vehicles such as quadrocopters are often the
vehicle of choice [1]. Compared to other such platforms, quadro-
copters profit from high mechanical robustness due to a minimal
number of moving parts [2], safety due to comparatively small
rotor size, and high thrust-to-weight ratios allowing high-perfor-
mance maneuvers as well as the transport of large payloads.

While the use of quadrocopters as robotic platforms was lar-
gely confined to research institutions in the past, a growing num-
ber of industrial applications are now in the process of being
developed and deployed. Examples include aerial imaging for
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objects such as pipelines, dams, and power lines [4], the creation
of ad hoc antenna networks or arrays [5], as well as disaster coor-
dination [6].

The capability of quadrocopters to perform highly dynamic,
complex, and precise motions has been demonstrated repeatedly
in recent years (see, for example, Mellinger et al. [7], Michael
et al. [8], Muller et al. [9], Ritz et al. [10]). In order to execute such
high-performance motions, the commonly used approach consists
of using a first-principles model of the quadrotor dynamics to
design the nominal maneuver, and a model-based feedback control
law to ensure tracking of the nominal trajectory.

Such traditional feedback controllers however have important
limitations in high-performance quadrotor applications. While
the first-principles models used to design the controllers capture
the near-hover behavior of quadrocopters well, secondary effects
become increasingly important when maneuvering speed
increases. Examples of such effects are the complex drag and lift
behavior of rotary wings under unsteady inflow conditions [11],
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the aerodynamic effects of a vehicle moving through the turbulent
wake of its propellers [12], and external influences such as wind or
ground and wall effects when operating in proximity to the envi-
ronment [13]. Such effects are not typically accounted for in the
maneuver and controller synthesis stage in order to make the
design process tractable. The execution then heavily relies on the
feedback controller to compensate for potentially significant
effects not captured by the nominal dynamics.

In order to improve the tracking performance of quadrocopters
under feedback control, a number of researchers have proposed
learning schemes. Examples of such schemes include those based
on reinforcement learning techniques [14,15] and neural networks
[16,17], which are designed to automatically find well-performing
control policies, and adaptive control methods [18-20] that adapt
parameters that are based on modeled disturbances such as pay-
loads, center of mass shifts and external disturbances.

When a motion is to be executed repeatedly, a further opportu-
nity to improve tracking performance may arise: Many of the dis-
turbances that degrade tracking performance will be similar each
time the vehicle performs the motion. These disturbances can then
be compensated for non-causally using data from past executions.
Control strategies that exploit available data from past executions
in order to improve tracking performance were first proposed in
the late 1970s and early 1980s [21,22] for applications in motion
control and power supply control. Since then, active research in
this field, covering numerous applications and problem formula-
tions (see e.g. Wang et al. [23], Bristow et al. [24], Cuiyan et al.
[25], and references therein), has shown it to be a powerful
approach for high-performance reference tracking. In extensions
to these learning methods, several authors have shown the appli-
cation of learning control methods to systems with underlying
feedback control loops (e.g. [26,27]). In such scenarios, the power-
ful capability of learning control to non-causally compensate
repeatable disturbances is combined with real-time feedback con-
trol to correct for non-repetitive noise.

While the application of learning algorithms, and specifically
non-causal strategies, to stationary systems (such as rotating
machinery and robotic arms [23]) is well-established, its use for
the compensation of complex aerodynamic effects in flying vehi-
cles is less mature and has been actively researched during recent
years. Several high-performance maneuvers for multi-rotor vehi-
cles have been demonstrated with the use of learning algorithms.
Broadly speaking, the learning approaches used can be categorized
in two groups:

The first group is characterized by its ability to learn motions
that are parameterized. The motion is thus described by a (finite)
set of design parameters, chosen by the user. After the execution
of the motion, these parameters are adapted to compensate for dis-
turbances. The direction and magnitude of the correction may be
model-based, or based on the user’s intuition. A discussion on
the importance of choosing ‘good’ design parameters may be found
in Lupashin and D’Andrea [28], where a learning algorithm for this
kind of parameterized motions is demonstrated for multiple flips
and fast translations with quadrocopters. A further demonstration
of this class of learning algorithms is provided in Mellinger et al.
[29]. The ability to shape the tracking performance strongly
depends on the number of parameters that are optimized; in the
above examples, the objective is to minimize the error at specific
time instants (‘key frames’), and a relatively small number of
parameters is sufficient to do so. This makes the methods compu-
tationally lightweight.

The second group of learning approaches considers more gen-
eric motions that need not be specified by parameters. The system
dynamics are considered in discrete time, and the correction con-
sists of correction values (typically control inputs or set points)
for each discrete time step. After execution of the motion, a

numerical optimization over the correction values is performed
in order to minimize a metric related to the tracking error. In this
optimization, a model of the system dynamics provides the
mapping from corrections to the tracking error. This approach is
commonly known as a form of iterative learning control [24],
and its application to high-performance quadrocopter flight has
been demonstrated [30-33].

The delimitation between the two groups is not strict. Indeed,
the second group of learning approaches could be seen as using a
very large number of values to parameterize the correction.

The algorithm presented in this paper can be characterized to
be a form of repetitive control [23] in that it is a technique for
non-causally compensating repeated tracking errors in the execu-
tion of periodic motions. Algorithms of this form have previously
shown good performance when applied to related problems where
aerodynamic disturbances are considered, in particular the rejec-
tion of periodic wind disturbances on wind turbines [34,35].

Similar methods can also be found in the field of time waveform
replication, as commonly applied to vibration testing systems (e.g.,
[36] and references therein). In such applications, the first-princi-
ples models guiding the iterative learning process are often
replaced by experimentally identified frequency response
functions.

Similar to the second group of learning algorithms, we do not
assume a parameterized motion. However, we reduce the dimen-
sionality of the corrections that we intend to learn by assuming
that they are periodic. This allows us to parameterize the correc-
tions as the coefficients of truncated Fourier series. The order of
the Fourier series provides a means to trade off computational
complexity and the ability to compensate for temporally local or
high-frequency disturbances. Furthermore, the approach can be
considered to be conceptually similar to the one presented by
Lupashin and D’Andrea [28], which presents an adaptation strategy
to correct for state errors at discrete points in time of parameter-
ized motion primitives. However, we consider periodic errors
(instead of errors at specific points in time), and do not require
parameterization of the maneuver.

The contribution of this paper to the field of quadrocopter con-
trol lies in the application of methods from the fields of repetitive
control and iterative learning control to quadrocopters. A general
framework for arbitrary periodic motions is presented. We demon-
strate how a feedback controller can be leveraged to shape the
closed-loop dynamics of the quadrotor system, and show that a
linear time-invariant approximation of the closed-loop dynamics
suffices to guide the learning process. Using statistical properties
of the disturbance, measurement noise, and the influence of non-
linearities, we derive the optimal inter-execution learning update
step size. The validity of the approach and its performance is inves-
tigated through experiments in the ETH Flying Machine Arena with
a quadrocopter under position control.

Furthermore, this paper introduces a novel method that extends
the applicability of the repetitive control approach when the refer-
ence trajectory is too fast to be learnt directly, for example because
the initial execution fails entirely. The core idea here lies in provid-
ing an improved initial guess of the disturbances degrading track-
ing performance. This typically enables learning of the trajectory
because the errors are sufficiently small for the first-principles
model to provide reliable information on how to compensate. To
find the improved initial guess, we introduce a time scaling
method that allows initial learning to occur at reduced maneuver-
ing speeds and the transfer of learnt corrections from the reduced-
speed execution to full speed. This method may also be applied to
other complex dynamic systems where it is necessary to limit ini-
tial tracking errors in order to avoid the system failing. The time-
scaling method provides an interesting alternative to methods that
rely on aborting trials when the errors grow too large [31] in that
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the tracking error is always learnt over the entirety of the maneu-
ver, and over more general methods to extend the motion [30] due
to its computational simplicity.

Preliminary results of this method were presented at interna-
tional conferences [37,38], and this paper extends these results
through the computation of the optimal learning rate for given sta-
tistical properties of the process, a novel way to predict distur-
bances when transferring knowledge between different execution
speeds, as well as providing an in-depth experimental analysis of
the method.

The remainder of this paper is structured as follows: We intro-
duce the model of the quadrocopter and the used feedback law in
Section 2. The learning algorithm is then presented and analyzed in
Section 3. Section 4 presents experimental results highlighting the
performance of the algorithm. Section 5 discusses advantages and
restrictions of the learning algorithm, and Section 6 provides a
conclusion.

2. Quadrocopter dynamics and closed-loop control

This section first introduces the first-principles model of a qua-
drocopter, along with a discussion of the accuracy of the model.
Furthermore, we introduce the input-output linearizing feedback
controller used to control the vehicle. The combination of vehicle
and feedback controller form the closed-loop dynamics that the
iterative learning algorithm is then applied to. For ease of notation,
vectors are expressed as n-tuples (x;,X»,...) where convenient,
with dimension and stacking clear from context.

2.1. Quadrocopter dynamics

The quadrocopter is modeled as a rigid body with six degrees of
freedom: its position (p;, p,, p3) in the inertial coordinate system O;
and its attitude, represented by the rotation matrix IR between the
inertial coordinate system O and the body-fixed coordinate system
V, as shown in Fig. 1.

The quadrotor vehicle incorporates four actuators, consisting of
motors with fixed-pitch propellers. Each motor produces a thrust
force and a drag torque, and the resulting rotational dynamics in
the body-fixed coordinate frame V are

L(F; — F4)
L(F3 — Fy)
({(Fi —Fy +F3—F,)
where w = (wx, wy,, ;) is the rotational rate of the vehicle, I is its
rotational inertia, L the arm length of the vehicle, { the drag-to-
thrust ratio of the propeller, and F; to F4 are the individual thrust

forces of each propeller. The total mass-normalized thrust produced
by the four propellers is

I = —wxlw (1)

1
0= —(Fi+F>+Fs +FJ) 2)

pP3
P2
0
P1

Fig. 1. The inertial coordinate system O and the vehicle coordinate system V, used
to describe the dynamics of the quadrocopter.

where m denotes the mass of the vehicle. The rotational kinematics
are given by the first-order differential equation of the rotation
matrix
0 -w o
SR=9R| ®w, 0 —ax 3)
-y Oy 0
The translational dynamics of the vehicle, expressed in the iner-
tial coordinate system O, are

b 0 0
D2 | = 9R|0|+| O (4)
P3 a &

where g denotes gravitational acceleration.

This first-principles model of the quadrocopter rotational and
translational dynamics is commonly used to design and analyze
algorithms such as feedback control laws and path planners (see,
for example, Mahony et al. [39] and references therein), and cap-
tures near-hover dynamics well. When higher maneuvering speeds
are reached, however, a multitude of additional - mainly aerody-
namic - effects become more significant. A number of these effects
have been identified and incorporated into more refined models;
for example, they include induced translational and rotational
rotor drag [11], blade flapping [40], and dominant propellers tip
vortices during vertical descent flight [ 12]. Furthermore, the model
neglects potential interactions of the vehicle with the environ-
ment. For example, it is well known that flight dynamics are influ-
enced significantly by ground and wall effects [13], fast maneuvers
can cause the vehicle to fly through its own wake, and external dis-
turbances such as wind effects [41] can cause large disturbances.

While the modeling of such effects has provided valuable
insight, their incorporation into control strategies has generally
been slow due to the highly complex nonlinear models making
controller design significantly more difficult, and the added diffi-
culty of identifying the parameters of such models. Instead, most
control laws treat such effects as disturbances, relying on feedback
control to account for them implicitly. In this paper, we will follow
a similar approach in that we do not model the effects, but we will
compensate for them non-causally during the repeated execution
of periodic motions.

2.2. Feedback control

Within this paper, we assume that an existing feedback control
law is used to stabilize the quadrocopter and track set points. The
feedback control law was described and analyzed in more detail in
Schoellig et al. [42], and is taken as a given in this paper. It consists
of cascaded feedback linearizing control loops for position, atti-
tude, and rotational rates as follows:

2.2.1. Position control

For all three degrees of freedom, a feedback control law deter-
mines the desired acceleration p; from the position and velocity
errors such that the loop is shaped to the dynamics of a second-
order system with time constant 7; and damping ratio {;:

Bi= (b —p)—25p fori={1.2,3) 5)
T Ti
where p; is the commanded position.
With R,, denoting the xth element of the yth column of {R, the
thrust is computed to enforce the desired vertical acceleration
according to (4):

a= g (bs+e) 6)
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2.2.2. Reduced attitude control R R
The desired rotation matrix entries Ry3 and R,; for the given
desired accelerations are computed from (4)-(6) to be

R.=Pt R, =P2
R13 = and R23 = (7)

The attitude control loop is shaped such that the rotation matrix
entries R;3 and Rp3; (which govern the translational dynamics (4))
react in the manner of a first-order system with time constant
T, by computing the desired derivative of the rotation matrix
elements:

2 1 /-~ .
Ri3 :'Trp (R,g —R,‘3> fori={1,2} (8)

Inverting the rotational kinematics (3), this is converted to the
commanded rotational rates about the first two body axes of the
vehicle:

|:d)x:| _ 1 |:R21 *Rn} Ris ©)
@y Rss[Ra —Ri2|R,

The commanded rotational rate about the third body axis, @,,
can be determined separately as it does not influence the transla-

tional dynamics of the vehicle. We employ a proportional control-
ler on the Euler angle describing the vehicle heading.

2.2.3. Body rate control

Using the desired body rates @y, ®,, @, as commands, the
body rate controller is designed to follow the commands in the
fashion of three decoupled first-order systems. In order to achieve
this, the rotational dynamics (1) are inverted:

L(F; — F4)

L(F3 — Fy)
{(Fi —F, +F3 - Fy)

((ox — %)/ Tpq
=T (0 — y)/Tpq
(0, — ;) /7T

+owxlw (10)

with the time constants 7, for the first two axes, and 7, for the third
axis. The above equation, in combination with the total thrust con-
straint resulting from combining equations (2) and (6), define the
four individual propeller forces F; to F4, and thereby complete the
feedback control design.

2.2.4. Trajectory feed-forward

The presented controller can readily be augmented to apply
feed-forward velocities, accelerations, rotation rates, and rotational
accelerations for known input trajectories by extending Egs. (5),
(8), (9), and (10) with the corresponding feed-forward terms
derived from the derivatives of the nominal position trajectory
p(t). A discussion of the effects and performance benefits thereof
can be found in Mueller et al. [32], where it is shown that feed-for-
ward commands can improve tracking performance, though large
systematic errors remain. This can be explained by the fact that
these feed-forward terms are model-based, and the unmodeled
effects discussed in Section 2.1 cause significant model mismatch
that is not accounted for.

While many applications profit from additional feed-forward
terms, we found them unnecessary in conjunction with the learn-
ing method presented herein. This is because they do not improve
the repeatability of the flight performance, and the learning algo-
rithm compensates for systematic tracking errors almost entirely.
Indeed, the learning algorithm can be considered to be providing
the necessary feed-forward signal to make the system track the
reference trajectory accurately, and thereby also captures
conventional feed-forward terms.

2.3. Approximate closed-loop system dynamics

The learning algorithm that will be introduced in Section 3
relies on an approximation of the system dynamics in the form
of a linear time-invariant (LTI) system.

The feedback control design is based on cascaded control loops
that are designed using a loop shaping approach. We assume time
scale separation between the control loops (i.e., T, < 712 and
Tpq < Trp) and approximate the closed-loop dynamics to depend
only on the position control loops. The nominal dynamics of the
closed-loop system from a position set point p to the vehicle posi-
tion p can then be approximated by three decoupled LTI second-
order systems:

1,

i~ z(pifpi)fZ%p,v fori={1,2,3} (11)
i 1

A

with time constant 7; and damping ratio ¢;. We will use these nom-
inal closed-loop dynamics in the iteration-domain learning
algorithm.

More accurate characterizations of the closed-loop dynamics
could be used in the learning algorithm, e.g. by including the
underlying control loops such as the attitude control (7)-(9). How-
ever, our experiments showed that the low-order model was
sufficient to guide the iterative learning process as long as very
high frequencies are not considered.

3. Learning algorithm

This section introduces the learning algorithm that is applied to
the quadrocopter system in order to compensate for systematic
disturbances that deteriorate flight performance during the execu-
tion of periodic motions. The fundamental idea is to use data from
past executions in order to characterize the tracking errors, and to
then compensate for them in a non-causal manner during follow-
ing executions. For this compensation, we leverage the prior
knowledge of the dominant dynamics of the quadrocopter under
feedback control, and combine this knowledge with measurement
data from experiments in order to determine appropriate compen-
sations to apply during the next execution. Compared to the use of
pure feedback control, this scheme can improve the tracking per-
formance because repeated disturbances are compensated for
non-causally, whereas pure feedback control is limited to causal
corrections.

The basic system structure used in the learning algorithm is
depicted in Fig. 2. The closed-loop dynamics of the quadrocopter
under feedback control remain unmodified by the learning
algorithm. We use the approach of adapting the set point of the
controller, also called a serial architecture [24] or indirect

Vehicle + A-

Feedback

ut) P

Closed-loop dynamics

Iterative learning f~g@————

Fig. 2. The learning architecture. The iteration-domain feedback law uses the
tracking error as input, and its output is a set point shift to the real-time feedback
law.
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learning-type control [23,43]. The controller set point is aug-
mented by adding a correction input u(t) to it. We assume that
we can derive a linear time-invariant (LTI) approximative model
of the closed-loop dynamics between the position tracking error
and the correction input (as done in Section 2.3 for the presented
feedback control law). In comparison to modifying the control
inputs of the quadrocopter directly, the serial architecture offers
the advantage that the dynamics from a change in the set point
to a change in the tracking error output are those of the closed loop
system, which are designed to be approximately LTI. Due to the
periodic nature of the motions addressed in this paper, we use Fou-
rier series [44] to characterize correction input and tracking error
output signals of the system.

The learning algorithm builds upon this LTI model when inter-
preting the measurement data of an execution in order to deter-
mine the appropriate correction input signal for the next
execution, as detailed in Section 3.2. Using the statistical properties
of the relevant disturbance signals, it is possible to derive the opti-
mal correction input signal in a least-squares sense (Section 3.3).
Safer learning of high-performance maneuvers can be achieved
by reducing the execution speed during the initial learning phase,
and using the disturbance characteristics identified at lower
speeds to provide an improved disturbance prediction at high
speeds (Section 3.4).

3.1. System model

This section introduces the quantities used by the learning
algorithm. Because the maneuvers considered herein are of peri-
odic nature, time signals are parameterized as Fourier series
with fundamental frequency Q, = 27t/T, with T being the period
of the maneuver. Furthermore, the notation (-)' is used to
denote quantities of iteration i of the learning algorithm. Unless
stated otherwise, we assume that time signals are periodic with
period T.

The error output measurement y(t) is the signal capturing the
tracking errors which should be eliminated by the learning algo-
rithm. The dimension of y(t) is not defined by the problem, and
may be chosen by the user as the set of error outputs that should
be minimized. For the specific implementation considered in this
paper, it consists of the three-dimensional deviation of the vehicle
position from its reference trajectory p*(t), as seen in Fig. 2. We
assume that the measured output of an experiment can be decom-
posed as follows, where the components will be explained in the
following:

yi(t) =d'(6) + h'(t) + ni(t) (12)

The first component di(t) represents the systematic tracking
error that should be compensated. It is not known a priori, but
we will later assume that a statistical description of d°(t) is avail-
able for the derivation of the optimal learning step size in Section
3.3.3. Specifically, we will then assume that its mean is zero, and
that it is stationary with a known autocorrelation function. The
evolution of the tracking error over several iterations is modeled as

d* () = d'(0) +y'(t) (13)

where yi(t) models slight changes to the disturbance from iteration
to iteration as a trial-uncorrelated sequence of zero-mean station-
ary noise, where we will again assume a known autocorrelation
function in Section 3.3.3.

The second component, h'(t), is the response of the closed-loop
dynamic system to the correction input ui(t), characterized in the
frequency domain by

H'(w) = G(w)U'(w) (14)

with G(w) being the transfer function [45] of the LTI approximation
of the closed-loop system, and H'(w) and U'(w) being the frequency
domain representations of h'(t) and ui(t), respectively. The final
component of the tracking error measurement, n'(t), represents
trial-uncorrelated, non-periodic noise. It is assumed to vary for each
execution of the maneuver, and captures effects such as non-
repeatable disturbances to the vehicle (for example wind gusts),
but also measurement noise. The non-repeatable disturbances are
assumed to be zero mean; a non-zero mean would represent a
repeatable disturbance and would therefore be accounted for by
d'(t). Furthermore, we assume stationarity, and for the derivation
of the optimal learning step size a known autocorrelation function.

The goal of the learning algorithm is to choose the correction
input v/ (t) such that the output y'(t) is minimized. The desired out-
put is assumed to be periodic with period T, and the algorithm will
use measurements of previous executions y*'(t),y"%(t),... in
order to determine u'(t). Intuitively, this task implies finding the
correction input u/(t) such that h'(t) + d'(t) is minimized, meaning
that the unwanted repeated disturbance is canceled out in the out-
put (12) as well as possible.

Note that the dimensions of u(t) and y(t) are not necessarily
given by the system model, but can be chosen by the user to indi-
cate which signals are relevant to the tracking task at hand, and
which quantities can be modified. We will, however, assume that
the dimension of u(t) is no less than that of y(t), implying that
we have at least as many compensation inputs available as we
have error quantities. If this is not the case, full tracking can typi-
cally not be achieved, although it can be shown that the tracking
error can still be reduced [37]. In the specific implementation of
the algorithm considered in this paper, u(t) is a three-dimensional
additive correction to the position control reference point and y(t)
is the three-dimensional deviation of the vehicle from the refer-
ence trajectory, as seen in Fig. 2.

3.2. Learning update law

Due to the periodic nature of the maneuvers considered herein,
we will leverage Fourier series decompositions of correction input
and error output signals. We parameterize the correction input by
a truncated Fourier series of order N and fundamental frequency
Qo

N N
u'(t) =rh+ Y _ricos(kQot) + > s sin(kQot) (15)
k=1 k=1

The frequency domain representation of u(t) is then

u'(0) =r (16)

U'(kQo) =1} —js;, fork=1,2,...,N (17)

The system response h'(t) to this Fourier series ui(t) is also a
Fourier series of order N [44], which is defined in the frequency
domain through the relationship

H(kQyo) = G(kQo)U(kQq) for k=0,1,....N (18)

We will now invert this relationship in order to use it as a learn-
ing feedback law that compensates a given disturbance. Assuming
that G(kQp) is full rank, let G"(k€y) denote the Moore-Penrose
pseudoinverse [46] of G(kQp) (in the special case that G is square,
G (kQo) = G (kQy) holds).

Assume that we have executed the trajectory for iteration i, and
measured the tracking error yi(t). Let Y'(kQy) denote the Fourier
series that coincides with yi(t) for t € [0 T]. The iteration feedback
law is then given by the correction Fourier series

U™ (kQo) = U'(kQyo) — .G (kQ)Y' (kQp) (19)
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for k=0,...,N, with the step size u} controlling the adaptation
rate. The time signal u™'(t) is then constructed from U™ (kQq)
and applied to the system in the next iteration.

This learning update law corresponds closely to plant inversion
methods in iterative learning control methods with an additional
step size parameter, the properties of which are discussed in Bri-
stow et al. [24]. The limitation of the learning process to the Fourier
series order N can be considered as the inclusion of an ideal low
pass filter, similar to the ones used in plant inversion methods to
manage high-frequency uncertainty.

3.3. Learning step size

The remaining degree of freedom in the learning update law
(19) is the step size ui. Depending on the application scenario
and, more specifically, the availability of the statistical properties
of the disturbance signals d°(t), ni(t) and yi(t), the step size
may be considered to be a tuning parameter that is directly set
by the user, or its optimal value may be computed from the avail-
able statistical properties.

3.3.1. Noise influence on Fourier coefficients

In practice, the Fourier series coefficients of yi(t) are estimated
from a set of discrete-time observations of the continuous-time
signal, which are used to compute a discrete Fourier Transform
[47]. The influence of noise such as ni(t) on the coefficients of a dis-
crete Fourier Transform has been studied in the past [48]: It was
shown that, for a sufficiently large number of samples of yi(t),
the noise on the Fourier coefficients will be additive, approxi-
mately Gaussian regardless of the distribution of the noise, and
zero mean. A more rigorous description of the statistical properties
of the coefficients can be found in Schoukens and Renneboog [48],
and the variance of the individual coefficients can be computed
from the correlation function of ni(t). The specific equations are
not repeated here, but it is sufficient for our purposes to state that
the variance of the coefficients is known, and that they are approx-
imately uncorrelated for a sufficiently large number of discrete-
time observations.

Using N'(kQ) to denote the additive zero-mean coefficient
noise caused by ni(t), the tracking error Fourier series coefficients
at iteration i + 1 can be written as

Y (kQp) = D (kQp) + H (kQo) + N (kQy) (20)

Dropping the argument kQq for notational convenience (all quanti-
ties in the following are parameterized by kQ,), we expand the
above using Eqgs. (13), (18), and (19):

Yi+1 _ Di+1 + GUH] +Ni+1 (21)
=D 4T+ G(U" - u;;cwf) + N (22)

where I', analogously to N**!, is zero-mean coefficient noise caused
by the disturbance change 7/(t) as defined in Eq. (13).

3.3.2. Stability

We first consider g, a tuning parameter, and derive stability
conditions for constant values pui = f,. Assuming an accurate
model of the closed-loop dynamics, G* (constructed according to
Section 3.2 and used in the learning update law) is the right inverse
of the closed-loop dynamics G. We rewrite Eq. (22) using Equations
(18), (20), and this property:

Yi+1 _ Di +rl + GU‘ _ ‘ukyi +Ni+1 (23)
=T+ (1—[)Y — N +N*! (24)

The expected value of the Fourier coefficients is then

E[Y'™] = (1 - ) E[Y (25)

since the noise terms are zero mean as discussed in Section 3.3.1.
Note that

EY =0 (26)

since it is assumed that D° is zero mean and the expected value of
the Fourier coefficients Y' is therefore zero for all i. If the algorithm
is incorrectly initialized or D° is not zero mean, the tracking error
still converges to zero in expectation for step sizes 0 < J; < 1. Fur-
thermore, the variance of the Fourier coefficients can be computed
by rewriting Eq. (23) using (18) and (20):

Y* = (1 - @)(D'+ H) + T — @i, N' + N (27)

Taking the variance and using the fact that (D' + H'), I, N' and N'*!
are independent, it follows that

Var[Y''] = (1 - ju,)*Var[D' + H'| + Var[["] + 2 Var|N'] + Var[N'"""] (28)
=1 )’ (Var [D“ +H"] 4 Var M )
+Var [r"] +(2f —1)Var [N"] +Var [N"“] (29)

-(1- pk)ZVar[Y"] +Var[r’} +(2f —1)Var [N’} +Var[N"“} (30)

from which it follows that the variance does not diverge for step
sizes 0 < [i; < 1, assuming bounded variance of N and T.

Because the Fourier series coefficients are approximately
Gaussian, their mean and variance fully describe their approximate
distribution. Assuming that the approximation as a Gaussian distri-
bution is sufficiently accurate, the learning update law results in
the Fourier series coefficients of the tracking error being zero mean
with bounded variance for constant step sizes 0 < [y < 1.

This result only holds for the Fourier series coefficients
k=0,1,...,N of Y(kQp). No adaptation occurs for higher-fre-
quency components, and the coefficient dynamics for k > N are
therefore simply those of Eq. (22) without the input:

yi+1 — Di + Fi +Ni+1 (31)

3.3.3. Minimum mean square error step size

We now consider time-varying step sizes u, and derive the step
size sequence that minimizes the trace of the tracking output var-
iance, also called the minimum mean square estimate [49]. Com-
puting the trace of the variance analogously to Eq. (30) from Eq.
(27), and setting the derivative with respect to y to zero, it follows
that the optimal step size /g is

Tr [Var {Yf(kgo)} ] ~Tr [Var {Nf(kgo)] ]
Tr [Var [Yi(lcﬁo)} ]

i, = (32)

where Tr[-] denotes the trace operator, and the argument (kQy) is
stated explicitly in order to highlight that the optimal step size
may differ for each multiple of the fundamental frequency. The out-

put variance Var[Y'] can be computed recursively from Eq. (27),
starting with the statistical properties of d°(t) and n°(t) to deter-
mine Var[Y?]. Note that the step size sequence ,u}< only depends on

the statistical properties of the random signals d°(t), yi(t) and ni(t)
and not on their actual realizations, and can therefore be entirely
precomputed before starting experiments if desired.

3.4. Time scaling for high performance maneuvers
When initializing the learning of a maneuver, an initial guess of

the compensation input u°(t) is used to execute the first iteration.
When no other information is available, a typical ‘naive’ choice
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would be to simply choose u°(t) = 0. However, for high perfor-
mance motions that approach the feasibility limits of the system
(e.g., due to actuator saturation), the naive initial guess may be
so poor that it becomes impossible to apply the learning algorithm
successfully. This may be caused, for example, by the tracking
errors growing large enough to cause the vehicle to collide with
its environment, invalidating the error measurement. Furthermore,
tracking errors may be so large that the approximate dynamics
(18) used to compute the correction input no longer accurately
predict the behavior of the closed-loop control system, leading to
instabilities in the learning algorithm.

To allow the algorithm to be applied to such maneuvers, we
extend it with a new time scaling method: The execution speed
of the maneuver is controlled by introducing a speed scaling factor
/. The core idea is that many motions become ‘easier’ to execute
when the motion duration is increased (some examples of this
were given in Schoellig et al. [50] and include constant-altitude
side-to-side and circular motions), where easier loosely refers to
the amplitude of the required control inputs." The speed scaling
factor allows the motion to be initially executed and improved at rel-
atively low speeds, where there is no danger of collisions and the
learning algorithm works reliably, and to then use the learnt com-
pensation inputs to generate an improved initial guess of the com-
pensation input u(t) for higher execution speeds. Since the initial
tracking errors should be lower due to the better initial guess, it is
more likely for the learning algorithm to successfully compensate
for errors as the initial execution is more likely to be successful,
and the approximate dynamics (18) are then only used to compen-
sate for relatively small errors.

We define the scaled maneuver duration
T, T

- (33)

and assume that we have successfully learnt the motion for the exe-
cution speed /;, i.e. the tracking error output y, (t) associated with
the execution speed 4, is sufficiently small for all t; € [0 Tq]. The
objective is then to use the learnt compensation input at speed /1,
which we denote u;(t), to initialize the compensation input for
the (typically higher) execution speed /,, which we analogously
denote u,(t).

Ideally, the values for u,(t) should result in a tracking error at
the new execution speed y, (t) that is as small as y, (t). This would
require knowing how the disturbance d(t) changes with the time
scaling, such that u(t) can be chosen accordingly as seen in Eq.
(12). However, due to d(t) capturing unmodeled disturbances, a
model of its dependence on execution speed is not readily
available.

An obvious choice for the transfer between two maneuver
speeds is to keep the learnt input corrections coefficients and sim-
ply re-map them to the corresponding frequencies (i.e.,
U, (ki2Q0) = Uq(k21Qp)). However, the varying sensitivity of the
closed-loop transfer function at the two different frequencies, as
well as the changing disturbances, could potentially lead to large
errors.

In order to account for this, we use a linear extrapolation
method to predict the correct value of the compensation term
H(/kQp) in Eq. (20) from past time scaling changes. The first-order
prediction of H(A3kQp) for the execution speed /; from the past
execution speeds /; and /, is then

H(3kQo) = H(/2kQp) + % (H(72kQo) — H(71kDy)) (34)

1

! While this property holds for many motions, it is straightforward to find
counterexamples, such as motions with very large negative vertical accelerations.

which we can expand using Eq. (14) to find the initial guess for the
correction Fourier series coefficients:

U(i3kQo) = G* (73ky) (G(},zlcQo)U(AZkQO) <1 + f - jz>
2 — M

—G(2kQo)U(11 k) 2= P) (35)
12— M

The prediction requires the storage of the learnt correction ser-
ies coefficients of the past two execution speeds (U(41k€p) and
U(42kQyp)), as well as the respective execution speeds (1; and 4).
For the first prediction, only one past set of learnt series coeffi-
cients is available, and we therefore resort to a zeroth-order pre-
diction by eliminating the second summand in Eq. (34).

3.5. Design parameters

The learning algorithm presented in this section comprises a
number of parameters that are user-defined, and can be modified
to influence the learning performance:

1. The order of the compensation Fourier series N fundamentally
determines the frequencies of the error output y(t) that are
compensated for since the compensation input u(t) is charac-
terized by a truncated Fourier series of order N, and no adapta-
tion occurs at higher frequencies. While an upper bound for N is
in principle only given by the discrete-time measurements used
to estimate the coefficients of y(t), the high-frequency compo-
nents of the tracking error are often inherently small and can
therefore be neglected by choosing a lower order. If the approx-
imate model (18) only captures the underlying closed-loop
dynamics well for low frequencies, it may also be beneficial to
avoid learning at higher frequencies by limiting the series order.

2. The iteration- and order-dependent learning step size (i can be
treated as a tuning parameter chosen by the user, or its optimal
value may be derived from the statistical properties of
n(t), d°(t), and 7(t). While the explicit statistical properties of
these signals may be difficult to identify for an experimental
platform, they can also be considered design parameters. In this
context, the properties of y(t) capture the likely change of the
disturbance from iteration to iteration due to unmodeled
dynamics (for example, nonlinearities of the underlying model),
and can therefore be used to encode model uncertainty. A typ-
ical choice would be to assume the disturbance changes to be
large initially to account for significant changes in the correc-
tion input that could highlight nonlinear behavior, and smaller
changes as the algorithm converges. The properties of the non-
repetitive noise term n(t) encode measurement noise and the
level of repeatability of the experiment, and large values thereof
enforce smaller step sizes (as seen in Eq. (32)), reducing the
level of ‘trust’ in the measurements. The statistical properties
of d°(t) capture the confidence in the initial guess of what the
systematic disturbances are, and thereby influences the step
size during the initial phase of the learning. Assuming little
prior knowledge implies the coefficients of D°(kQ,) having very
large variance, which in turn implies that the first step size [10
will approach 1 according to Eq. (32).

3. Finally, when time scaling is applied, the time scale sequence
Ao, 1, ... remains to be chosen. This is typically done based on
past experiments, where the performance with no initial com-
pensation input determines Zo, and the following time scales
are determined based on the performance of the predictor
(34). Note that, if the optimal step sequence size ,u;< is used,
y(t) should be chosen to have significant influence after a
change in execution speed in order to account for modeling
mismatches caused by the change of execution speed.
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4. Experiments

Experiments demonstrating the use of the learning algorithm
presented herein for quadrocopter flight are described in this sec-
tion. After introducing the experimental setup, we present the
flight task to which the algorithm was applied, discuss its perfor-
mance, and demonstrate the influence of a selection of the tuning
parameters introduced in Section 3.5.

4.1. Experimental setup

The flight experiments were carried out in the Flying Machine
Arena, an aerial vehicle research platform at ETH Zurich [51]. The
vehicles used for the experiments are custom-built quadrocopters
that are based on Ascending Technologies ‘Hummingbird’ vehicles
[52]. The custom electronics [28] mounted on-board each vehicle
provide inertial measurements and implement the body rate con-
trol law (10) based on the filtered measurements. The desired rota-
tional rates a,, @y, @, and the collective thrust command a (as
defined in Eq. (2)) are communicated to the vehicle from a desktop
computer through a low-latency wireless communication channel
at a rate of 50 Hz.

A commercial motion capture system [53] provides position
and attitude information, which is filtered by a Luenberger obser-
ver. The filtered full state information is used on the desktop com-
puter to implement the feedback controller (5)-(9), and the filtered
position information is used in the learning algorithm.

The feedback control system used in these experiments intro-
duces additional, albeit small, disturbances to the system in addi-
tion to the dynamic effects described in Section 2.1. For example,
the wireless radio link between the quadrocopter and the desktop
computer as well as the image processing required by the motion
capture system introduce variable delays into the feedback loop,
approximately 1-5% of the feedback control commands are lost
in transmission over the wireless channel, and additional dynamics
are introduced by the state observer.

4.2. Learning implementation

The learning algorithm was implemented on the desktop com-
puter that also executes the feedback control law, and uses the
position data provided by the Luenberger observer to compute
the Fourier coefficients of the tracking error. In all experiments,
the tracking error output y(t) was the three-dimensional deviation
of the position from the reference trajectory and the control input
u(t) was a set point correction to the feedback controller, as seen in
Fig. 2. Each iteration of the learning algorithm execution then con-
sisted of the following steps:

1. Measure the tracking error for at least one period T. Note that,
by measuring for more than one iteration, the variance of
N(kQo) can be reduced [48], therefore allowing the use of larger
step sizes ui.

2. Apply the learning update law (19), using appropriate step sizes
chosen as discussed in Section 3.5.

3. Wait for the system to converge under the new control inputs.
Note that the instantaneous change of the correction input in
Step 2 represents a non-periodic excitation of the system, mak-
ing this step necessary.

4.3. Figure-eight maneuver

The motion we consider is a periodic figure-eight maneuver
flown at high speed in the horizontal plane around two obstacle
points, as shown in Fig. 3. This motion is used to demonstrate
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Fig. 3. The reference trajectory of the figure-eight maneuver, highlighting the
composition from two half-circles (dashed red) and two connecting splines (solid
blue). The period of the maneuver is T = 3.3 s, and the maximum speed reached is
6ms~'. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the basic working of the learning algorithm, as well as the influ-
ence of a number of learning parameters.

To execute the maneuver under closed-loop control, the feed-
back linearizing control law presented in Section 2.2 is used, and
the transfer function G(w) required for the iteration-domain feed-
back law (19) was derived from the approximate dynamics (11).
The three degrees of freedom are decoupled in the approximate
dynamics, and the transfer function matrix G(w) therefore only
has non-zero entries on its diagonal.

4.3.1. Maneuver design

The nominal maneuver is designed based on the quadrocopter
dynamics (1)-(4). Assume, without loss of generality, that the first
obstacle point lies at the origin of the inertial coordinate system O,
and the second obstacle point is located at a distance L in the p,-
direction. The maneuver is composed of two half-circles about
the obstacle points, and two splines connecting the half-circles.
The maneuver is executed as fast as possible, with the speed being
limited by the limitation of the collective thrust

Omin <a< Omax (36)
and the limitation of the allowable body rate commands

|| < Omax for i = {x,y,z} (37)

The first constraint, limiting the collective thrust, is given by the
minimum and maximum rotational speed of the propellers. The
second constraint, limiting the rotational rate of the quadrocopter,
is given by the limited range of the gyroscopic inertial sensors.
Because the quadrocopter has low rotational inertia and high
achievable torques due to the outwards mounting of the propellers,
the body rate control loop (10) has very high bandwidth. We there-
fore do not explicitly limit rotational accelerations, and assume that
the rate constraint (37), with wy.x suitably chosen, along with (36)
suffices to ensure feasibility.

Based on the constraints (36) and (37), we will now design the
two components of the figure-eight maneuver, i.e. the half-circles
about the obstacle points and the splines connecting them:

Semi Circles: A circular trajectory, covering an angle of 180°, sur-
rounds each obstacle point at a user-defined radius R;. The thrust a
and rotational rates wy, @, along this circular trajectory are then
computed [50], and the time required for each semi circle is chosen
to be the fastest time for which the control input constraints (36)
and (37) are satisfied.

Connecting Splines: The two semi circle trajectories are con-
nected through polynomial trajectories. The trajectory is continu-
ous in position, velocity, attitude, and rotational rate of the
quadrocopter if the polynomial trajectories match the position,
velocity, acceleration, and jerk of the circular trajectories at either
end [54]. In order to satisfy the four boundary constraints on both
ends of the spline, we construct a seventh-order polynomial. The
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remaining degree of freedom in the spline design is the duration of
maneuver. In order to achieve high speed, we iterate over the dura-
tion until the fastest maneuver that satisfies the control input
bounds (36) and (37) is found, using the algorithm from Schoellig
et al. [50] to compute the inputs and verify feasibility.

The figure-eight maneuver is then fully defined through the
concatenation of the first semi circle, the first spline, the second
semi circle, and the second spline. Due to the continuity and feasi-
bility conditions imposed on each component of the trajectory, the
resulting trajectory is feasible with respect to the constraints (36),
(37), and it is periodic.

An example of the figure-eight motion can be seen in Fig. 3. In
this specific example, the parameters were chosen to be
L=4m, Rg=0.75m, apnx =1.82=17.65ms 2, and nyx=
500° s~1. The resulting maneuver durationis T = 3.3 s, with an aver-
age speed of 4 m s~ ! and a maximum speed of 6 m s~ . The duration
of each half circle is 0.71 s, and the duration of each connecting
spline is 0.93 s. This example was used as the reference trajectory
to be learnt in the following results.

4.3.2. Learning at fixed maneuver speed

As a first test case, we show the learning performance when the
maneuver is executed at the fixed speed of 1 = 0.7, i.e. 70% of the
maneuver speed the motion was nominally designed for. The order
of the correction input series was chosen to be N =10, which
showed to be a good compromise between the ability to compen-
sate for temporally localized tracking errors and robustness to
high-frequency uncertainty. We chose the learning step size series
to be

W = min (l,%) for all k (38)

which provides fast initial convergence with the first three steps
being of size 1, and good robustness to non-repetitive noise since
the steps reduce in size as the iteration number increases.

At this speed, the maneuver could be safely executed with no
initial correction input (i.e. u°(t) = 0), and the learning algorithm
converged. Fig. 4 shows the trajectories of the vehicle and the set
points in the horizontal plane, both at the start of the learning pro-
cess and after convergence. It can be seen that the deviations from
the nominal trajectory after the learning process are minimal, and
that the learning algorithm significantly improved the tracking
performance.

Fig. 5 shows the evolution of the error coefficients over 22 iter-
ations of the learning algorithm. It can be seen that the error coef-
ficient magnitude quickly reduced from values in excess of 100 cm
to values below 2 cm. The peak tracking error was reduced from
approximately 200 cm to 5 cm. A significant outlier can be seen

Position p, (m)
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Fig. 4. Top-down view of the flown trajectory before (thick solid red) and after (thin
solid blue) learning. The dotted black line denotes the nominal trajectory, and the
dashed blue line shows the set point p(t) provided to the feedback control law (as
seen in Fig. 2) after the learning is applied. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Evolution of the Fourier series coefficients during learning at a fixed
maneuver speed of 1 =0.7. The lines at iteration zero are from top to bottom:
k=1{1,2,4,5,0,6,3,7,10,8,9}. Note the significant outlier for iteration i = 18, the
influence of which on subsequent iterations was relatively small because
148 = 3/19 for all k is relatively small.

at the 18th iteration, likely caused by a non-repeatable disturbance
to the vehicle such as a temporary wireless communication failure.
Because the step size u}® = 3/19 is relatively small, the large track-
ing error in this iteration was not strongly propagated to following
iterations.

It should be noted that the non-learning controller design used
in these experiments was not tuned to provide the best possible
tracking performance without the adaptation; as discussed in Sec-
tion 2.2.4, a straightforward improvement would be the inclusion
of feedforward terms in the control law. What can, however, be
seen from these results is that such improvements to the control
strategy do not appear necessary because the adaptation law can
largely eliminate repeatable tracking errors.

4.3.3. Influence of Fourier series order

In a further experiment, we demonstrate the effect of varying
the order of the compensation input Fourier series N, as given in
Eq. (15). The learning experiment was repeated at a constant speed
of 4 = 0.8 (approximately 14% faster than the previously presented
experiment), and the learning process was executed with Fourier
series of the orders N = {0,1,2,5,8,9,10}. The resulting progres-
sion of the root mean square (RMS) position tracking error (com-
puted over one motion period) over 25 iterations is shown in
Fig. 6. Note that the Fourier series of order N =0 provided no
significant improvement as it consists only of a constant set point
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Fig. 6. Learning performance (as measured by the RMS position tracking error) for
the high-performance figure-eight maneuver executed at a speed of 4 = 0.8, with
varying order N of the correction Fourier series. The dashed black horizontal line
represents the estimated repeatability limit of 1.4 cm. Note that the relatively large
uncertainty at higher frequencies causes the learning performance to decrease for
N =9, and the vehicle collided with the floor during the sixth iteration for N = 10.



M. Hehn, R. D’Andrea/Mechatronics 24 (2014) 954-965 963

shift. Increases in the Fourier series order consistently improved
the learning performance initially. The orders N = 5 and N = 8 pro-
vided nearly identical performance, showing that the predominant
tracking error components were sufficiently covered. The error
then increased for N =9, and the vehicle collided with the floor
after five iterations for N = 10. This was caused by the insufficient
accuracy of the approximate system dynamics (11) in the high-fre-
quency range, and a possible remedy would be to reduce the step
size for higher frequencies. Note that the order N = 10 could suc-
cessfully be used for the experiments in Section 4.3.2 because
the speed scaling factor Z was chosen lower, thereby mapping each
component of the series to a lower frequency.

Fig. 6 also shows the repeatability limit of our experimental sys-
tem during the tests presented herein. In order to determine this
limit, the maneuver was executed multiple times with an identical
correction input, and the RMS deviation from the average flight
trajectory was computed for each execution. With identical execu-
tion parameters as used for the other data in Fig. 6, the average
RMS repeatability error over fifteen executions was 13.6 mm, with
a standard deviation of 2.2 mm. This can be taken to be a measure
of the level of non-repeatable noise, as captured by n(t), in the sys-
tem. For the flight trajectory learnt using a Fourier correction series
of order N = 8, the average RMS tracking error over the last five
iterations (i.e., i =21, 22, 23, 24, 25) was 24.2 mm (with a stan-
dard deviation of 4.5 mm), indicating that the compensations by
the learning algorithm corrected for almost all systematic errors.
In other words, if an input signal u(t) exists that would entirely
eliminate all systematic tracking errors given the true dynamics
of the quadrocopter, then it would allow the tracking error to be
reduced by a further approximately 11 mm compared to the learn-
ing algorithm presented here.

4.3.4. Transfer to increasing speeds

When initializing the learning algorithm with no correction sig-
nal for the full maneuver speed (4 = 1), the maneuver could not be
learnt successfully. This is likely due to the maneuver being
designed to use the full dynamic envelope of the quadrocopter,
and the LTI system approximation not being sufficiently accurate
when considering large initial deviations. Fig. 7 demonstrates the
use of the time scaling method (introduced in Section 3.4) to learn
the maneuver at full speed. We initialized the speed factor to
Jo = 0.8, and then applied the update law

Aoyt = A +0.05 (39)
after every five learning iterations of the maneuver. We used the
same learning step size sequence (38) as before, but at iterations

where time scaling occurs, we reset the iteration counter to i = 0
in order to compensate for the significant model uncertainty after
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Fig. 7. Logarithmic plot of the root mean square position tracking error during
execution of the figure-eight maneuver with time scaling. The maneuver execution
speed (shown at the top of the graph) is increased every five iterations. Note that
/= 1.0 denotes the nominal maneuver speed, and values /1 > 1.0 are not nominally
feasible.

a change of the time scale. The order of the correction Fourier series
was chosen to be N = 5.

In Fig. 7, the results of the experiment show that the RMS track-
ing error was initially reduced from 1.7 m to 0.18 m over the first
four iterations, which were executed at 1= 0.8. The RMS error
increased by values of 0.005 m to 0.09 m during the first four speed
changes. Beginning with the 25th iteration, the execution speed
was / > 1, i.e. the maneuver is faster than was computed to be fea-
sible according to Section 4.3.1. It can be seen that the tracking
error increased as one would expect, and the learning algorithm
ultimately failed to reduce the error at an execution speed of
4 =1.1 due to significant input saturations. These experimental
results correspond well to the predicted feasibility.

5. Advantages and limitations

The experimental results in the previous section demonstrated
the ability of the learning algorithm to significantly improve the
tracking performance for periodic maneuvers. A key enabler for
this is that the learning is performed on the closed-loop system
of the quadrocopter under feedback control, which makes repeated
maneuver executions highly repeatable, and therefore well-suited
for the non-causal correction of tracking errors.

The parametrization of the correction input u(t) as a truncated
Fourier series allows the use of the order of the series to define a
trade-off between (1) the ability to compensate for highly localized
tracking errors, and (2) computational complexity and memory
requirements. Relatively low Fourier series orders often suffice to
significantly improve the tracking performance, as seen in our
experiments. The limitation to relatively low Fourier series orders
also provides a convenient way to suppress high-frequency jitter in
the learnt compensation, an effect that can be frequently observed
in iterative learning control approaches [31]. Furthermore, inaccu-
racies of the dynamic model at high frequencies can be circum-
vented by limiting the learning to lower frequencies, or can be
modeled through the characteristics of the noise models used to
capture changing dynamics and non-repeatable effects. Through
the appropriate choice of these noise characteristics, the learning
algorithm can be tuned to quickly compensate for disturbances
at frequencies where an accurate model of the system is available,
and to perform more cautious adaptation at frequencies where sig-
nificant model uncertainty exists.

It can also be seen from our experiments that highly simplified
models of the closed-loop dynamics, though only capturing a rela-
tively rough approximation of the true behavior, suffices to guide
the learning process. Similar results have been demonstrated for
other learning algorithms, e.g. reinforcement learning [55]. The
simplified model, and therewith the uncomplicated derivation of
such a model, make the application of the algorithm to changing
conditions (such as specific tasks, differing controllers, or different
vehicles) a straightforward undertaking. An example of applying
this method to a more complex controller that stabilizes an
inverted pendulum on a quadrocopter [37] highlights this.

The algorithm presented particularly lends itself to applications
where computational power and memory are limited. During the
execution of the maneuver, the algorithm only requires the estima-
tion of the coefficients of the tracking error Fourier series up to
order N, and the control input update can be reduced to a matrix
multiplication according to Eq. (19) by pre-computing the step size
sequence yi and the inverse transfer function G* (kQo) for the con-
sidered frequencies k =0,1,...,N.

A limitation of our method is that it is not trivial to incorporate
additional constraints due to the simplified dynamic model, the
serial architecture, and the frequency domain approach in the
learning algorithm, Examples of potentially useful constraints are
the explicit consideration of input saturations, or the penalization
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of control effort. Their inclusion can improve the learning perfor-
mance because they help capture the underlying dynamics more
accurately, or can help to shape the outcome of the learning pro-
cess. Such constraints are easier to include in time-domain-based
learning methods, in particular when the learning process is posed
as an optimization problem (e.g. [31]).

Furthermore, maneuvers exhibiting very large initial tracking
errors highlight the limitations of using a simplified model in the
learning process. The system dynamics may not be captured with
sufficient accuracy for large errors, causing the learning algorithm
to fail. The time-scaling method presented herein can offer a viable
solution to this problem when it is possible to initially reduce the
execution speed of the maneuver: The frequency domain approach
to iterative learning provides a convenient way to transfer learnt
correction inputs between different execution speeds of the same
maneuver. This allows initial learning to occur at reduced speeds,
thus providing a safe way to learn high-speed maneuvers where
a poor initial guess of the correction input can lead to a crash or
to non-convergence.

6. Conclusion

This paper presents the use of a frequency-domain iterative
learning scheme for periodic quadrocopter flight. The iteration-
domain feedback law leverages an underlying feedback control
law that stabilizes the vehicle and makes its motion highly repeat-
able. The nominally linear time-invariant closed-loop dynamics of
the quadrocopter feedback system are used to determine correc-
tion values from observed errors in a straightforward manner. By
parameterizing the non-causal tracking error compensation as
Fourier series, the algorithm is computationally lightweight and
easy to adapt. Uncertainties, such as measurement noise, inaccura-
cies of the approximate transfer function, or model uncertainty can
be accounted for in the learning step size, and the optimal step size
for each frequency component can be computed from the statisti-
cal properties thereof. The approach also allows the learning of
high-performance maneuvers by executing them at a reduced
speed initially and then transferring learnt corrections to higher
speeds, where a disturbance prediction scheme is used to initialize
the learning at higher speeds.

The approach was experimentally verified for a quadrocopter
executing a high-performance motion. The experimental results
highlighted the advantages of learning at reduced speeds, with a
fast motion only being learnt successfully at full speed when using
learnt parameters from lower speeds to initialize the learning
process.
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