
Asynchronous Implementation of a Distributed
Average Consensus Algorithm

Maximilian Kriegleder, Raymond Oung, and Raffaello D’Andrea

Abstract— This paper discusses distributed average consen-
sus in the context of a distributed embedded system with
multiple agents connected through a communication network.
Adversities such as switching of network topologies, agents join-
ing or leaving the network, and communication link creation or
failure may arise in these systems. To address these difficulties,
we propose an asynchronous implementation of a distributed
average consensus algorithm that has the following proper-
ties: (1) unbiased average, (2) homogeneous implementation,
(3) robustness to network adversities, (4) dynamic consensus,
and (5) well-defined tuning parameters. We demonstrate an
application of the implementation on a specific distributed
embedded system, the Distributed Flight Array, where we solve
two average consensus problems to estimate altitude and tilt of
the vehicle from multiple distance measurements.

I. INTRODUCTION

The coordination of distributed systems with multiple
agents connected through a communication network is cru-
cial to their success and is mainly enabled by a family of pro-
tocols known as consensus algorithms [1]. These protocols
allow a set of agents N = {1, . . . , N} to reach an agreement
on a quantity of interest by exchanging information over the
communication network. Specifically, this quantity can be
the average of values zi,

x̄ =
1

N

N∑
i=1

zi, (1)

where zi is stored at agent i. The problem can be solved in a
distributed fashion through a family of algorithms known as
distributed average consensus, where each agent exchanges
information only with a subset of its peers, see [2]–[10]
and references therein. This is useful in applications such
as sensor fusion [11] and clock synchronisation [12].

In a previous paper [13] we presented a generalized
method of estimating altitude and tilt of a rigid body using
a network of distance measurement sensors. The solution to
this problem in a centralized system (where all measurements
are available) is obtained by solving a linear least squares
problem. In a distributed system, however, it is usually
the case that only limited information is available to each
agent. To account for this, the least squares problem can be
reformulated as two distributed average consensus problems.

We continue and extend the work of [13] to demonstrate
the application of average consensus on a distributed em-

The authors are with the Institute for Dynamic Sys-
tems and Control, ETH Zurich, Sonneggstr. 3, 8092
Zurich, Switzerland {krmax, rdandrea}@ethz.ch,
raymond.oung@alumni.ethz.ch.

Fig. 1. The Distributed Flight Array is a modular robotics test bed,
consisting of multiple autonomous agents that are able to coordinate with
one another in order to drive and fly in a limitless number of configurations.

bedded system, the Distributed Flight Array (DFA) [14], see
Figure 1.

The main contribution of this paper is that we modify
a synchronous distributed average consensus algorithm and
provide an asynchronous implementation, which together
satisfy the following key properties:

1) Unbiased Average. The consensus value reached is the
precise average of the values zi.

2) Homogeneous Implementation. The agents exchange
information with one another employing a common set
of rules.

3) Robust to Network Adversities. The implementation
functions reliably in the case of asynchronous commu-
nication, loss of communication, and switching network
topologies.

4) Dynamic Consensus. The consensus value eventually
tracks the new average if the values zi change.

5) Well-Defined Tuning Parameters. The convergence
properties are well-defined and can be adjusted using
a single tuning parameter.

The outline of this paper is as follows: We begin Section II
by describing a synchronous distributed average consensus
algorithm, which we modify to handle switching network
topologies and dynamic consensus. In Section III we propose
an asynchronous implementation of this algorithm to deal
with network adversities. Section IV provides experimental
results of this method subject to network adversities such as
switching network topologies. We then demonstrate in Sec-
tion V an application of this method in solving the described
distributed estimation problem. Concluding remarks and an
outlook on future work are presented in Section VI.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6358-7/13/$31.00 ©2013 IEEE 1836
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 15,2024 at 21:22:20 UTC from IEEE Xplore. Restrictions apply.

II. SYNCHRONOUS DISTRIBUTED AVERAGE CONSENSUS

In the following we describe an iterative distributed aver-
age consensus algorithm, which has a single tuning param-
eter. The convergence properties of this algorithm and the
optimal tuning parameter, which minimizes the convergence
time, have been explored in [3]. We repeat some of the results
for completeness and provide a modification inspired by [5],
which will be the basis for the asynchronous implementation.

We model a multi-agent network as an undirected and
connected graph G = (N , E) consisting of a set of agents
N and a set of edges E , where each edge {i, j} ∈ E
represents a bidirectional communication link between two
distinct agents. The set of neighbours belonging to agent i
is denoted by Ni = {j|{i, j} ∈ E}. For simplification, we
may write i and j to respectively denote agent i and agent j.

Each agent i stores a state xi(k) ∈ R, which is de-
pendent on an iteration counter value k and is initialized
to xi(0) = zi. Essentially, each iteration of the distributed
average consensus algorithm can be described through the
following two-step sequence: 1) each agent i communicates
its state information to its immediate neighbours j ∈ Ni, and
2) all agents in the network update their state information
through a linear combination of their own state information
and the state information of their neighbours, which was
communicated in the first step. Consequently, the states of
all agents converge to the desired average x̄ of values zi.

The states xi(k) of all agents can be compactly repre-
sented by a vector x(k) ∈ RN , where x(0) contains the
values zi, such that the described iterative procedure can be
expressed mathematically as the following:

x(k + 1) = (I− αL)x(k), (2)

where I is the identity matrix, α is a scalar tuning parameter,
and L is the Laplacian matrix [14] of graph G. This matrix
captures the graph topology and its elements are defined as

Lij =

di i = j,

−1 {i, j} ∈ E ,
0 otherwise,

(3)

where di denotes the degree of i (the number of neighbours).
Convergence of the algorithm is guaranteed if the tuning
parameter α satisfies the following constraint:

0 < α <
1

dmax
, (4)

where
dmax = max

i
di, (5)

denotes the maximum degree of all agents in the network.
Therefore, this choice of weights requires some prior knowl-
edge about the graph. Assuming the possible number of
neighbours is constrained, however, an agent can compute
the upper bound on α from the maximum possible number
of neighbours. This leads to the possibility that a conservative
bound on α will compromise the convergence time, which is
defined as the (asymptotic) number of iterations needed for

the error ‖x(0)− x̄‖2 to decrease by a factor of 1/e, where
x̄ = (x̄, . . . , x̄) ∈ RN denotes the average vector.

The convergence time decreases in general with the al-
gebraic connectivity of a network, which is defined as
the second smallest eigenvalue λN−1(L) of the Laplacian
matrix [14]. In the case where the agents know the entire
graph represented by the Laplacian matrix, the agents can
compute the optimal tuning parameter α∗, which minimizes
the convergence time for a given network:

α∗ =
2

λ1(L) + λN−1(L)
, (6)

where λ1(L) represents the largest eigenvalue of L.
The iterative procedure (2) can be written element-wise as

xi(k + 1) = xi(k) + α
∑
j∈Ni

(xj(k)− xi(k)), (7)

which suggests that each agent i computes its new state
xi(k + 1) using its previous state xi(k) and the sum of
current disagreements xj(k) − xi(k) scaled by a factor α.
Note that the sum of the states

∑N
i=1 xi(k) at any iteration

k is always equal to the sum of the values
∑N

i=1 zi stored
at the agents. Intuitively, an agent i changes its state by the
amount α(xj(k)− xi(k)) on behalf of neighbour j and the
neighbour changes its state by α(xi(k)− xj(k)) in a single
iteration. In total, the sum of all states remains constant at
each iteration, which is one necessary condition for all states
to converge to the desired average x̄ [3].

The paper [5] proposes a modification for a continu-
ous time consensus algorithm to handle switching network
topologies. We modify the discrete time algorithm (7) ac-
cordingly by introducing an additional variable δij(k) for
each neighbour j of agent i, which stores the cumulative
disagreement between two agents. With this modification,
the algorithm (7) can be written as

xi(k + 1) = zi + α
∑
j∈Ni

δij(k + 1) (8)

δij(k + 1) = δij(k) + xj(k)− xi(k), (9)

where δij(0) is zero for all i and j.
Writing the algorithm in this manner has two benefits:

1) The algorithm is explicitly dependent on the values zi.
Therefore, regardless of any change made to zi, the
algorithm will converge to the appropriate average.
This is referred to as dynamic consensus [5] and is
useful in a sensor network where the target being
sensed changes with time, for example.

2) In the event that an agent leaves the network, all of
its neighbours simply set the appropriate δij to zero,
such that its contribution is neutralized and the states
converge to the appropriate average of values zi in the
new network. This assumes that an agent can detect
when another agent leaves the network. As a result,
the algorithm will converge to the appropriate average
quantity over the network even after the topology has
changed.

1837
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 15,2024 at 21:22:20 UTC from IEEE Xplore. Restrictions apply.

The major drawback concerning the approach (7), and
consequently the modification (8) – (9), is that it assumes the
state information from each agent in the network to be suc-
cessfully transmitted to its corresponding neighbour(s) before
the agents update their state information. As such, agents are
prevented from stepping through to the next iteration until
all agents in the network have received all state information
from their neighbours. This approach therefore imposes a
form of synchronization of information among all agents,
which requires a non-trivial implementation of communica-
tion acknowledgements between agents. Consequently, this
method is impeded by the slowest communication link.

III. ASYNCHRONOUS DISTRIBUTED AVERAGE
CONSENSUS

In this section, we propose an implementation of the
distributed average consensus algorithm (8) – (9) that does
not rely on synchronization of information. As mentioned
previously one necessary condition for all states to converge
to the desired average is that their sum remains constant. We
propose an implementation that guarantees the preservation
of this sum despite asynchronous exchange of information.
In the following the iteration counter k is dropped to simplify
notation.

The key idea of the asynchronous implementation is the
following: if any change ∆ij := xj − xi made to δij is
compensated by the opposite change ∆ji = −∆ij to δji,
the sum of the states xi and xj will remain constant, which
can be verified by employing (8) – (9). We denote ∆ij as
the disagreement between i and j. Let an agent i initiate an
interaction by sending its state to one of its neighbours j.
The neighbour uses this information along with its own state
to first compute its disagreement with i (which it adds to
the cumulative disagreement with i), and then to update
its state. Then j responds with the disagreement, which i
subtracts from its cumulative disagreement with j and then
also updates its state.

To guarantee that neighbouring agents do not initiate
an interaction simultaneously (which could cause undesired
effects) we impose a directed communication network based
on unique numerical identifiers (ID) of the agents. In the
following, i and j will be used to represent an agent’s ID,
where in this case i is not equal j. Between two neighbouring
agents, only the agent with the lower ID can initiate an
interaction and only the one with the higher ID can respond.
To avoid situations where an agent uses a given neighbour’s
information multiple times, we append a unique sequence
number SEQij to each message sent. Each time an agent
updates its state on behalf of a neighbour, it increments
the corresponding sequence number to indicate that the next
message to this neighbour will contain new information. The
neighbour compares the incoming sequence number to a
corresponding sequence number, which it stores in memory,
to judge whether it received the same information before.

There are two components to the proposed implementa-
tion: a message sending routine (Algorithm 1), and a message
handling routine (Algorithm 2). To see which parts of the

Fig. 2. This time-chart illustrates the message sending and handling of
a three-agent network, where the agents {1, 2, 3} are connected in a line
(1-2-3). The symbols À, Á, Â, and Ã indicate the appropriate parts of the
routines described in Algorithm 1 and Algorithm 2. An agent i with a lower
ID than its neighbour j initiates an interaction with a state message xi and
the neighbour responds with the disagreement ∆ji. If any agent i sends
a message it also appends the sequence number SEQij (not shown here),
which it increments each time it updates its state on behalf of neighbour j.

routines (denoted À, Á, Â, and Ã) are employed during
sending and handling of data, refer to Figure 2.

Algorithm 1 Message Sending Routine for agent i; executed
at a periodic interval.

1: j: Neighbour ID
2: xi: State of i
3: ∆ij : Current disagreement between i and j
4: SEQij : Sequence number stored at i for j
5:
6: function MSGSEND(j, xi,∆ij ,SEQij)
7: if j > i then
8: DATA← xi . À
9: else

10: DATA← ∆ij . Â
11: end if
12: Send DATA
13: Send SEQij

14: end function

Message Sending Routine: Messages contain the most
recent data (i.e. state or disagreement) and are sent by agent i
to its neighbour(s) j at a periodic interval to prevent deadlock
behaviour (due to communication loss, for example). We can
use this knowledge to implicitly determine whether or not
an agent is disconnected from the network. To do this, we
employ a watchdog timer for each neighbour, which is reset
each time a new message is received from that neighbour. In
the event that a watchdog is set, we classify that neighbour
as being disconnected from the network and reset δij to zero.

1838
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 15,2024 at 21:22:20 UTC from IEEE Xplore. Restrictions apply.

The implementation of the watchdog timer, however, is not
shown in the Algorithms.

Depending on the ID of neighbour j, agent i will send
one of two messages to this neighbour:

1) j > i: Agent i sends its current state xi (denoted À in
Algorithm 1).

2) j < i: Agent i sends its disagreement ∆ij (denoted Â
in Algorithm 1).

In both cases, agent i appends the corresponding sequence
number SEQij . The sequence number SEQij of i is initial-
ized to 1 for each neighbour j > i and to 0 otherwise, such
that the first interaction can be initiated.

Algorithm 2 Message Handling Routine for agent i; exe-
cuted upon reception of a message.

1: // Stored information
2: zi: Initial value of i
3: xi: State of i
4: δij : Cumulative disagreement between i and j
5: SEQij : Sequence number stored at i for j
6:
7: // Received information
8: j: Neighbour ID
9: DATA: Received data of j

10: SEQji: Received sequence number of j for i
11:
12: function MSGHANDLER(j, DATA, SEQji)
13: if j < i then // DATA is the state xj
14: if SEQij + 1 = SEQji then . Á
15: ∆ij ← DATA− xi
16: δij ← δij + ∆ij

17: xi ← zi + α
∑

j∈Ni
δij

18: SEQij ← SEQij + 1
19: else
20: // Do nothing
21: end if
22: else // DATA is the disagreement ∆ji

23: if SEQij = SEQji then . Ã
24: ∆ij ← −DATA
25: δij ← δij + ∆ij

26: xi ← zi + α
∑

j∈Ni
δij

27: SEQij ← SEQij + 1
28: else
29: // Do nothing
30: end if
31: end if
32: end function

Message Handling Routine: Upon reception from neigh-
bour(s) j, agent i will take one of two actions:

1) j < i: This suggests that the message comes from
an initiator. Therefore, if the message contains new
information then the sequence number SEQji should
be one unit higher than the one that is stored in
memory, SEQij . In this case, agent i computes the
disagreement ∆ij , and updates the cumulative dis-

agreement variable δij and state xi (denoted Á in
Algorithm 2).

2) j > i: This suggests that the message comes from
a responder. Therefore, if the message contains new
information then the sequence number SEQji should
be equivalent to the one that is stored in memory,
SEQij . In this case, agent i updates the cumulative
disagreement variable δij with the received disagree-
ment ∆ji, and then updates the state xi (denoted Ã in
Algorithm 2).

In both cases, i increments the sequence number SEQij to
indicate that it updated its state on behalf of a message
from j.

IV. EXPERIMENTAL RESULTS

The distributed average consensus algorithm was imple-
mented on the DFA in a manner described in the previous
section. Each agent of this testbed is capable of full-duplex
communication at 115.2 kbps with up to six connected
agents and carries out the proposed algorithm together with
a variety of other processes [15] on a single 32-bit 72 MHz
microcontroller. All inter-agent communication is performed
in an unreliable, but frequent manner using the user datagram
protocol (UDP) [16].

Fig. 3. This experiment illustrates the ability of the proposed algorithm to
recover from switching topologies. Each of the six agents stores a distinct
value zi ∈ {1, . . . , 6} and the six agents start off connected in a line with
an average of 3.5. The configuration is then divided first into two (a), and
later into three (b) separate clusters. Finally, the three clusters are assembled
into a single triangle-like topology (d). The states of the agents converge
in each case to the appropriate average, which can be determined from the
clusters on top of the graph, where the numbers indicate the values zi.
Simulation results are shown to correspond well with the experiment.

In this experiment, six agents are connected and discon-
nected as shown in Figure 3. The tuning parameter α is set
to 0.165, which satisfies the condition (4) for all possible

1839
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 15,2024 at 21:22:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Upon converging to its average of 3.5, where the state of six agents
were initialized as {1, . . . , 6}, one agent changes its value zi from 1 to 4;
without having to reset the algorithm, all states converge to the new average
of 4.

network topologies in this experiment. The value of this
parameter is far from the optimal (6). Nevertheless, the
experiment demonstrates the algorithm’s ability to recover
from switching topologies (or loss of communication).

These results are also compared to those obtained from
a simulation environment, which is implemented in MAT-
LAB1. The results match well and thus validate the simulator,
which accepts as input a Laplacian matrix and simulates
the behaviour of each agent’s state over a given number
of iterations. It enables the simulation of a variety of
network adversities, including: temporary loss of commu-
nication, switching topologies, time-varying average, and
asynchronous updates. It enables us to quickly evaluate and
illustrate the behaviour of the proposed algorithm under a
variety of conditions. One such condition is the case of
dynamic consensus, where we simulate a change in the
values zi during the iteration. The results of this experiment
are shown in Fig. 4.

V. DISTRIBUTED ALTITUDE AND TILT ESTIMATION

We now build upon the results in [13] and apply the
proposed average consensus algorithm to solve a distributed
linear least squares problem on the DFA. As a result we are
able to estimate altitude and tilt of the vehicle from multiple
distance measurements obtained by the agents.

Each agent i carries a distance measurement sensor, which
is positioned at (rX,i, rY,i), with respect to the body-fixed
coordinate frame B of the vehicle and measures the distance
m̂i from the agent to the ground, see Figure 5. We showed in
the previous paper that during nominal operating conditions,
namely when the vehicle is near hover, the distance measure-
ment m̂i of sensor i can be modeled as a linear function of
the sensor’s position (rX,i, rY,i), the vehicle’s altitude z, its
tilt (γ, β), and zero-mean sensor noise vi, which is assumed
to be independent and identically distributed with a variance
of σ2

m,

m̂i = z + rY,iγ − rX,iβ + vi. (10)

1The simulator can be downloaded from the project’s website
http://www.idsc.ethz.ch/Research DAndrea/DFA.

Fig. 5. The DFA’s body-fixed coordinate frame B is located at its centre
of mass and aligned with the principal axes of rotation. The orientation of
the vehicle with respect to the inertial coordinate frame I can be described
by a set of ZYX-Euler angles. Over a flat surface, it is possible to estimate
altitude and tilt of the vehicle with respect to this surface using the distance
measurements m̂i of sensors i located at (rX,i, rY,i) with respect to the
vehicle’s body coordinate frame.

Given at least three sensors that are not collinearly aligned
the maximum-likelihood state estimate ŝ = (ẑ, γ̂, β̂) can be
obtained via least squares,

ŝ = (CTC)−1CTm, (11)

where the elements of vector m = (m̂1, . . . , m̂N) are the
distance measurements from each sensor and the matrix C
contains information pertaining to the positions of all the
sensors,

C =

 1, rY,1, −rX,1

...
...

...
1, rY,N , −rX,N

 . (12)

This information can be obtained prior to flying; agents
share information in order to agree upon a unique coordinate
frame and compute for themselves the position of their
distance measurement sensor with respect to this coordinate
frame [15].

To solve the set of equations (11) in a distributed way,
where each agent only communicates with its immediate
neighbour(s), we borrow results from [17] and re-write the
least squares solution (11) as

ŝ = P−1q, (13)

where

P =
1

N

N∑
i=1

cTi ci, q =
1

N

N∑
i=1

cTi m̂i, (14)

and ci denotes row i of the matrix C. What we now have
are two averaging problems (14).

The procedure for using the distributed least squares
solution (13) – (14) for estimating altitude and tilt of the
vehicle is outlined as follows. Each agent updates its mea-
surement m̂i periodically and independently of other agents
(i.e. updates do not necessarily need to be synchronized). In
between each measurement, the distributed average consen-
sus method (summarized by Algorithm 1 and Algorithm 2)

1840
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 15,2024 at 21:22:20 UTC from IEEE Xplore. Restrictions apply.

is used to compute P and q, see (14). Here, the matrix cTi ci
and the vector cTi m̂i is initialized appropriately using the
current position of each agent i and its most current distance
measurement. The update rate of this altitude and tilt estimate
is a function of the algebraic connectivity of the network, the
network communication rate, and the number of iterations
needed to achieve a desired precision of the estimate.

The proposed distributed altitude and tilt estimate was
tested and verified to function as intended on the DFA. A
6-agent vehicle configuration similar to Figure 3 (d), with
an algebraic connectivity of λN−1 = 1.70, was used in the
experiment described here. For the algorithm, we used the
optimal tuning parameter α∗ = 0.286 and 4 iterations for
each set of new measurements, which amounts to a state
update rate of 5 Hz. The IR distance measurement sensors
of each agent were calibrated, and the vehicle was positioned
and tilted by hand in the workspace of a 3D motion capture
system (Vicon MX) – the measurements of which we use as
ground truth.

Fig. 6. Shown here is a plot of the tilt estimate along one of the rotational
degrees of freedom; the inset image shows a magnification of a particular
area in the plot, illustrating the deviations between estimates. The distributed
tilt estimate of each agent compares well with ground truth measurements.

Figure 6 compares the distributed tilt estimate of each
agent with measurements obtained from the 3D motion
capture system (ground truth). The results verify the func-
tionality of the proposed distributed method and demonstrate
that the estimate is relatively precise.

VI. CONCLUSIONS

This paper proposes an asynchronous implementation of
a distributed average consensus algorithm, which we modify
to handle switching topologies and dynamic consensus. The
implementation is homogeneous, employing a common set of
rules for all agents in the network. In addition, the implemen-
tation handles network adversities such as communication
link and/or agent failure and creation. Future work will
formally analyse the influence of asynchronous exchange of
information on the convergence properties of the proposed
implementation.

We demonstrate through experiments that the algorithm
is indeed robust, in particular to communication loss and
switching network topologies. As one possible application of

this method, we demonstrate its use in solving a distributed
linear least squares problem, which in this case enables a
multi-agent testbed to estimate its altitude and tilt from a
network of distance measurement sensors. This distributed
estimate is, however, delayed and has a relatively slow
update rate that scales with the algebraic connectivity of
the network. The tilt estimate could be combined with local
angular rate measurements in order to obtain a real-time
unbiased distributed tilt estimate of the vehicle in flight.

VII. ACKNOWLEDGEMENTS

This work is supported by the Swiss National Science
Foundation (SNSF).

REFERENCES

[1] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

[2] F. Garin and L. Schenato, “A survey on distributed estimation and
control applications using linear consensus algorithms,” in Networked
Control Systems. Springer London, 2010, vol. 406, pp. 75–107.

[3] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms:
Design, analysis and applications,” in 24th Annual Joint Conference of
the IEEE Computer and Communications Societies, 2005, pp. 1653–
1664.

[5] D. Spanos, R. Olfati-Saber, and R. Murray, “Dynamic consensus on
mobile networks,” in IFAC World Congress, 2005.

[6] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, and R. Murray,
“Asynchronous distributed averaging on communication networks,”
IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 512 –520,
2007.

[7] S. Patterson, B. Bamieh, and A. El Abbadi, “Distributed average con-
sensus with stochastic communication failures,” in IEEE Conference
on Decision and Control, 2007, pp. 4215–4220.

[8] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[9] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli,
“Weighted gossip: Distributed averaging using non-doubly stochastic
matrices,” in IEEE International Symposium on Information Theory
Proceedings, 2010, pp. 1753–1757.

[10] M. Franceschelli, A. Giua, and C. Seatzu, “Distributed averaging
in sensor networks based on broadcast gossip algorithms,” Sensors
Journal, IEEE, vol. 11, no. 3, pp. 808–817, 2011.

[11] R. Olfati-Saber and J. Shamma, “Consensus filters for sensor networks
and distributed sensor fusion,” in IEEE Conference on Decision and
Control, 2005, pp. 6698–6703.

[12] Q. Li and D. Rus, “Global clock synchronization in sensor networks,”
IEEE Transactions on Computers, vol. 55, no. 2, pp. 214–226, 2006.

[13] M. Kriegleder, R. Oung, and R. D’Andrea, “Distributed altitude
and attitude estimation from multiple distance measurements,” in
IEEE/RSJ International Conference of Intelligent Robots and Systems,
2012, pp. 3626–3632.

[14] R. Merris, “Laplacian matrices of graphs: a survey,” Linear Algebra
and its Applications, vol. 197198, no. 0, pp. 143 – 176, 1994.

[15] R. Oung and R. D’Andrea, “The Distributed Flight Array: Design,
implementation, and analysis of a modular vertical take-off and
landing vehicle,” International Journal of Robotics Research, Accepted
for publication, 2013.

[16] J. Postel, “User datagram protocol,” Isi, 1980.
[17] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed

sensor fusion based on average consensus,” in Fourth International
Symposium on Information Processing in Sensor Networks, 2005, pp.
63 – 70.

1841
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 15,2024 at 21:22:20 UTC from IEEE Xplore. Restrictions apply.

