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Abstract— Designing a controller that is scalable, robust,
and that can adapt to an arbitrary configuration is one of
the major challenges of modular robotics. This paper takes
one step forward in addressing this challenge by presenting a
methodology for controlling any flight-feasible configuration of
a modular flying vehicle, in this case the Distributed Flight
Array (DFA). In this work we present a well-structured,
parameterized controller and describe a method for optimizing
its parameters in order to achieve the best possible performance
subject to the system’s physical constraints. We then show how
the configuration space of the DFA can be parameterized by
only a few variables and propose a straightforward approach
for mapping this configuration space to its control parameter
space.

I. INTRODUCTION

One of the key challenges in modular robotics is con-
trol design. The majority of past research has focused on
hardware and software challenges [1] [2] [3]; a summary
of such work can be found in [4] [5]. Difficulties in
controlling such systems are rooted in the fact that they are
distributed by nature – each module has limited information,
yet all must coordinate their actions in order to achieve a
desired behaviour. Such a control system should be scalable,
robust to single point failures, and adaptable to arbitrary
configurations. Research that has taken a step in this direction
includes [6] [7], as well as the work that is presented here.

This paper presents a generalized tractable methodology
for controlling any flight-feasible configuration of a modular
flying vehicle, namely the Distributed Flight Array (DFA)
[8], see Fig. 1. We build upon previous work and describe
a parameterized, decentralized controller for an arbitrary
configuration of the DFA that enables it to hover. By de-
centralized, we mean that the controller relies only on its
local sensors for control feedback and that no information
is shared between modules during flight, which results in a
scalable and straightforward implementation.

The tuning parameters for this controller can then be
optimized for a given performance metric while taking into
account physical constraints of the system. This decentral-
ized controller is compared against two idealized cases: (1)
a centralized architecture, where each module has direct
sensor feedback from all modules in the vehicle, and (2)
the centralized H2 optimal controller, which is used as a
benchmark for performance. We then show that it is possible
to parameterize the configuration space of the DFA using
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only a few variables and demonstrate that a relatively simple
function can be used to map a vehicle’s configuration to an
appropriate set of control parameters, which enables the DFA
to hover.

Fig. 1. The Distributed Flight Array is a modular multi-propeller vehicle
that can fly in ad-hoc configurations. Configurations may range in size,
shape, and sparsity. Designing a controller by hand for every flight-feasible
configuration would be impractical.

Beginning with Section II, we describe the nominal flight
dynamics considered for the DFA. In Section III, details of
the control architecture and its design parameters are given.
We then briefly discuss the disturbances that our controller
is designed to handle in Section IV. In Section V an
automated procedure for computing the control parameters
that optimizes a particular performance metric is discussed.
Results regarding controller performance are presented in
Section VI, and in Section VII we propose a simple function
that maps the configuration space of the DFA to its control
parameter space.

II. NOMINAL FLIGHT DYNAMICS

The nominal operating conditions considered for the
DFA’s control design occur while hovering. Hover is de-
fined here as the process of maintaining a constant position
(x, y, z) in the air and a constant yaw angle α with respect to
an inertial coordinate frame I . Although this approach may
seem to limit the DFA’s maneuverability, flying vehicles with
controllers designed around the hovering equilibrium have
demonstrated to be quite agile [9]. The DFA is modeled
as a rigid-body and it is controlled by varying the thrusts
fi produced by each module i positioned at (xi, yi) with
respect to the body coordinate frame B. The body coordinate
frame B is positioned at the vehicle’s center of mass and is
oriented along the principal axes of rotation, see Fig. 2. The
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orientation of the body coordinate frame B with respect to
the inertial frame I is described by ZYX-Euler angles: yaw
α, pitch β, roll γ acting along the z-, y-, x-axis, respectively.

B

f1

f2

f3

fi
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(xi, yi)

(x1, y1)

(x2, y2)

(x3, y3)

Fig. 2. The DFA’s body coordinate frame B is located at its center of
mass and oriented along the principal axes of rotation. The orientation of
the vehicle with respect to the inertial frame I can be described by a set
of ZYX-Euler angles. The DFA can be controlled by varying the thrust fi
produced by module i.

An approximately equal number of clockwise (CW) and
counterclockwise (CCW) rotating propellers are required in
the vehicle in order to cancel out the torques in flight. In this
case, the nominal thrust required of each module counteracts
the acceleration due to gravity g. As such, the control effort
during nominal flight of each module i is given by ai =
fi −mg, where m is the mass of a module.

During nominal flight the translational dynamics of the
DFA with respect to an inertial coordinate frame I is a
function of its total thrust and its orientation. To first-order
approximation at hover, the translational accelerations ẍ and
ÿ are respectively a consequence of the DFA’s pitch β and
roll γ angles:

ẍ = βg, (1)
ÿ = −γg. (2)

The total control effort that is produced by N modules is
the sum of all individual control efforts

∑N
i=1 ai. The rolling

and pitching torques of the DFA are a function of the control
efforts respectively acting along the appropriate moment
arm (y, x),

∑N
i=1 yiai and −

∑N
i=1 xiai. The yawing torque

around its vertical axis is the sum of all reaction torques,∑N
i=1 ciai, where ci is a constant that maps force to torque

and can be a negative or positive value depending on the
handedness of the propeller [8]. These equations of motion
can be more compactly expressed as

M


z̈
γ̈

β̈
α̈

 = PTa, (3)

where the vector a = (a1, . . . , aN ) contains the
control efforts of each module; the diagonal matrix
M = diag(Nm, Ix, Iy, Iz) contains the total mass Nm
and the principal mass moments of inertia (Ix, Iy, Iz); and
the matrix P ∈ RN×4 contains information pertaining to the
configuration of the vehicle:

P =

 1 y1 −x1 c1
...

...
...

...
1 yN −xN cN

 . (4)

Each DFA module uses an off-the-shelf brushless DC
motor, motor speed controller, and propeller, which together
function as an actuator with a particular bandwidth ωm. This
actuator has been modeled and shown to exhibit first-order
dynamics around hover:

ȧi = −ωm(ai − ad,i), (5)

where ad,i is the commanded (or desired) thrust.

III. CONTROL ARCHITECTURE

Previous work developed a control strategy of the form [8]:

ad = Qf , (6)

where the set of functions f = (fz, fγ , fβ , fα) are mapped
to the desired control effort ad ∈ RN×1 by the matrix
Q ∈ RN×4. We can decouple the DOF of the system by
designing Q such that PTQ = I4×4. Note that not just
any configuration of the vehicle is controllable, for example
a vehicle where all modules are aligned has insufficient
actuation along one of its DOF. To be more precise, our
methodology works for any configuration where the DOF of
the system can be decoupled.

Considering each DOF separately and assuming full state
feedback, we can choose the following second-order func-
tions, each containing two design parameters (a closed-loop
natural frequency ω and damping ratio ζ):

fz = −Nm(2ωzζz ˆ̇z + ω2
z(ẑ − zd)), (7)

fγ = −Ix(2ωγζγ ˆ̇γ + ω2
γ(γ̂ − γd)), (8)

fβ = −Iy(2ωβζβ
ˆ̇
β + ω2

β(β̂ − βd)), (9)

fα = −Iz(2ωαζα ˆ̇α+ ω2
α(α̂− αd)). (10)

where the hat notation denotes the estimated state and the
subscript d denotes the desired state.

As previously mentioned in Section II, the translational
DOF (x, y) are indirectly controlled through the roll γ and
pitch β angles (1) (2); they can also be designed to exhibit
a second-order response:

ẍ := −2ωxζx ˆ̇x− ω2
x(x̂− xd), (11)

ÿ := −2ωyζy ˆ̇y − ω2
y(ŷ − yd). (12)

The two desired angles γd and βd in (8) (9) are then

γd =
2ωyζy ˆ̇y + ω2

y(ŷ − yd)
g

, (13)

βd = −2ωxζx ˆ̇x+ ω2
x(x̂− xd)

g
. (14)
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Fig. 3. A module consists of a set of sensors (Si), a state estimator (E), and
an inner-loop controller (Ki). Each module is able to communicate with its
adjacent (1-hop) neighbour. The outer-loop sensor (Sout) measures states
that are unavailable to the modules, and the outer-loop controller (Kout)
forwards the desired states to each module.

A. Implementation

The DFA uses a cascaded control architecture, consisting
of an inner control loop and an outer control loop, see Fig. 3.

Our controller design is based on continuous-time system
dynamics because the sampling rate of the sensors, the rate of
the control loops, and the communication rate between outer-
loop and inner-loop is significantly faster than the system’s
dynamics. As such, performance losses are considered to be
minor.

1) Inner Control Loop: The inner-loop resides on each
module i and is responsible for controlling states that it
can directly measure, which consists of the altitude and
attitude (with the exception of yaw) DOF. The module’s
sensor set includes the following: a 3-axis rate-gyroscope,
which measures angular body-rates1; and an infrared range
finder used to (1) measure altitude ẑ, and (2) estimate
roll γ̂ and pitch β̂ angles when flying over a flat surface
by sharing distance measurements between modules over
a communication network [11]. The DOF in z, γ, β are
designed to exhibit second-order responses (7) – (9). At
this stage, only yaw-rate is controlled:

fα = −Iz
τ1

( ˆ̇α− α̇d), (15)

where τ1 = 1/2ωαζα is the closed-loop time constant of the
first-order yaw-rate controller.

2) Outer Control Loop: The outer-loop resides off board
and is responsible for controlling the vehicle’s position (x, y)
with respect to an inertial frame by communicating the
desired states (γd, βd) given by (13) (14) to the inner control
loop. To do this, the outer-loop relies on an offboard camera-
based motion capture system for state measurements [12].
Architecting the controller in this way facilitates, for exam-
ple, the integration of an onboard position sensor such as
a GPS in the future. Since yaw angle is also measurable, a
proportional controller that acts on the measured yaw angle
and outputs a desired yaw-rate can be used:

1Body-rates can be mapped back to Euler rates and/or vice-versa via the
appropriate attitude kinematics relations [10].

α̇d = − 1

τ2
(α̂− αd), (16)

where τ2 = 2ζα/ωα is the closed-loop time constant.
Cascaded with the inner-loop yaw-rate controller (15),

the closed-loop dynamics in yaw becomes second-order, as
in (10).

IV. EXPECTED DISTURBANCES

A. Process Noise

The main source of disturbance is due to the turbulent
flow of air generated by each propeller when spinning. These
disturbances are internal to the system and are spatially
uncorrelated. In an outdoor environment, one could also take
into account wind gusts using a Dryden wind turbulence
model [13].

Each DFA module uses an off-the-shelf brushless DC
motor and connected directly to a propeller. The variation in
thrust produced by the propeller and motor enclosed in the
module’s chassis was measured at nominal thrust using a 6-
axis force-torque sensor with a sampling frequency of 7 kHz.
The power spectral density (PSD) function Sνν(Ω)k indi-
cates a significant amount of power contained at Ωp = 0.16
radians per sample (or 1144 rad/s), which as expected is
twice the angular velocity of the module’s 2-bladed propeller,
see Fig. 4.

Since the PSD is not flat, it may not be appropriate
to assume that the process noise due to the propeller is
white. However, most of this power lies in a frequency band
substantially higher than the closed-loop dynamics of the
system. It is therefore reasonable to assume a zero-mean
white noise spectrum in the frequency range of interest. In
general, however, one could approximate an LTI system (or
colouring filter) with the same frequency response as the
noise, and absorb this system into the plant.

Fig. 4. The PSD function of the noise generated by a propeller at nominal
thrust shows that the main portion of power in the frequency domain is
contained at Ωp = 0.16 radians per sample (or 1144 rad/s).

B. Measurement Noise

Experiments have shown that all sensors have a relatively
flat PSD over the entire frequency range of interest. We can
therefore model our sensors with zero-mean white noise.
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V. PARAMETER OPTIMIZATION

As described in Section III, our controller has two tuning
parameters per DOF – a closed-loop natural frequency ωs
and damping ratio ζs, where s ∈ {x, y, z, γ, β, α}. These
parameters dictate the performance and stability of the DFA.
The objective now is, given any configuration, to find pa-
rameters that render the system stable and produce the best
performance at hover without saturating the actuators (or
propeller thrust). The following section describes how the
optimization is formulated in terms of the DFA, although this
can be generalized to any similar system. For implementation
details see extended footnote at the end of this section.

A. Performance Objective

Hover performance of the DFA is defined as a measure of
its position (x, y, z) and yaw angle α response as a result of
the expected input disturbances. As our metric, we propose to
use the H2 norm || · ||2, which quantifies the system’s output
(or error) power due to an exogenous disturbance with a
fixed or bounded power spectrum [14]; roughly speaking, it
is the RMS value of the measured response due to white
noise input [15]. High performance in this context means
minimizing the H2 norm.

The exogenous disturbance w ∈ R(N+5+7N) consists of
process noise wp and measurement noise wm, both of which
is modeled as white noise as was described in Section IV.
Measurement noise can be divided into outer- and inner-
loop sensor noise, respectively denoted wmout and wmin,i

for each module i. In the case of the DFA, this looks like
the following:

w = [wp,wmout ,wmin,1 , . . . ,wmin,N ]T , (17)

where

wp = [wp1 , . . . , wpN ], (18)
wmout = [wx, wy, wα, wẋ, wẏ], (19)
wmin,i = [wzi , wγi , wβi , wαi , wżi , wγ̇i , wβ̇i ]. (20)

Let Zo denote the controlled (or regulated) weighted
output response that is to be minimized, and let the input
u = (ad,1, . . . , ad,N ) denote the desired (or commanded)
control effort of each module. The continuous-time LTI state
space description of our objective system Go is given by:

Ẋ = AX + B1w + B2u (21)
Yi = C2X + Diw, (22)
Zo = C1,oX (23)

where Yi is the measured output of module i combined
with the measured output of the offboard sensors, and X

is the state vector of the DFA consisting of its six DOF
(x, y, z, γ, β, α), their time-derivatives, and the state of each
actuator i denoted by ai,

X = [x, y, z, γ, β, α, ẋ, ẏ, ż, γ̇, β̇, α̇, a1, . . . , aN ]T . (24)

The controlled output error signal Zo is a weighted re-
sponse of the position (x, y, z) and yaw angle α. It is sensible
to set the position weights to the same value; this value is
normalized to 1. We are then left with a single free design
parameter: the weight of the yaw angle in units of meters per
radian. Experiments have shown 1

35 m/rad to demonstrate
reasonable performance, with the deviation in yaw angle α
small enough in comparison to the other DOF.

The measured output Yi is fed into the controller Ki in
order to obtain the desired control effort ad,i of module i,

ad,i = −KiYi, (25)

where

Ki = QiMKo, (26)

and Ko is the static gain matrix of our full state feedback
controller, which is a function of ωs and ζs. As previously
mentioned, Q maps the desired closed-loop response of
the vehicle to the individual desired control efforts (6); the
subscript i in (26) denotes the row of this matrix. Again, the
elements of the matrix M are the vehicle’s total mass and
principal mass moments of inertia.

If this was a centralized architecture, where each module i
used the same measured output Yi to drive its controller Ki,
we would obtain the same expression as (6).

B. Constraints

The optimization must be constrained to ensure that the
actuators do not saturate their available control effort. This
can be formulated as N number of inequality constraints,
where the variance of the output control effort σ2

a,i for each
module i must fall below a predefined threshold σ2

a,max.
While this does not guarantee that all control signals will
not saturate, it does quantify the probability of saturation,
which we want to minimize.

The standard deviation σa,i of the output control effort ai,
can be obtained by computing the H2 norm of the closed-
loop constraint system Gc consisting of (21), (22), and the
weighted output response Zc,i = C1,ciX of module i, due
to an exogenous disturbance w. It can be shown that the H2

norm for this single output system is in fact the standard
deviation of the control effort due to white noise input.
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The state transition matrix A for nominal flight dynamics including motor dynamics,
as described in Section II, is given here as

A =


06×6 I6×6 06×N
A 02×6 02×N

04×6 04×6 M−1PT

0N×6 0N×6 −ωmIN×N

 , (27)

where

A =

[
02×3

0 g 0
−g 0 0

]
. (28)

Part of the exogenous white noise disturbance w is scaled in the matrix B1 by the
standard deviation of noise caused by the propellers σm. This is also scaled by its
mass and configuration matrix M−1PT :

B1 =

 08×N
σmM−1PT

0N×N

0(12+N)×(5+7N)

 . (29)

The desired control effort u is fed into the matrix B2, which scales these values
according to the motor dynamics,

B2 =

[
012×N
ωmIN×N

]
. (30)

The output response Zo, which is to be minimized, is a function of our output
states (x, y, z, α) weighted by the matrix C1,o. The position (x, y, z) weights are
normalized to 1, leaving the weight on yaw angle qα as the only free parameter:

C1,o =

[
I3×3 03×3

01×3 c
04×(6+N)

]
, (31)

where c = [0, 0, qa]. The control effort Zc,i of module i is simply the unscaled
value of the control effort ai:

C1,ci
=
[

01×12 C1×N
]
, (32)

where the elements cj of C are:

cj =

{
1 if j = i

0 otherwise.
(33)

The output Y is a measure of all the states, not including actuator states:

C2 =
[
I12×12 012×N

]
. (34)

The exogenous white noise disturbance w due to measurement noise is scaled
appropriately in the matrix Di of module i,

Di =
[

012×N Dout Din,1 . . . Din,N
]
. (35)

where Dout contains the standard deviations σx,y,α,ẋ,ẏ of the states measured by
the outer-loop sensors,

Dout =


diag(σx, σy) 02×3

03×2 03×3

03×2 diag(σα, σẋ, σẏ)

0(4+N)×5

 , (36)

and the elements Din,j of Di contain the standard deviations σz,γ,β,ż,γ̇,β̇,α̇ of
the states measured by the inner-loop sensors of module j

Din,j =

{
012×7 if j = i

Din otherwise,

where

Din =


02×3 02×4

diag(σz, σγ , σβ) 03×4

03×3 03×4

04×3 diag(σż, σγ̇ , σβ̇ , σα̇)

 . (37)

The static gain matrix Ko of the full state feedback controller is given by

Ko =


0 0 ω2

z 0 0 0 0 0 2ωzζz 0 0 0
0 −ω2

γω
2
y 0 ω2

γ 0 0 0 −ω2
γ2ωyζy 0 2ωγζγ 0 0

ω2
βω

2
x 0 0 0 ω2

β 0 ω2
β2ωxζx 0 0 0 2ωβζβ 0

0 0 0 0 0 ω2
α 0 0 0 0 0 2ωαζα

 . (38)

VI. RESULTS

A. Performance

The performance of the controller described in the last
two sections, which will be referred to from now on as
the Decentralized Full State Feedback (FSF) controller, was
compared to two other controllers:

1) Centralized FSF: This is the FSF controller used in a
centralized architecture; a controller aggregates sensor
measurements from all the modules in the vehicle,
computes an average that is used as state estimate, and
commands each module with the appropriate control
effort. This is considered to be the best case scenario
when using the FSF controller.

2) H2 Optimal: Using the system Go in a centralized
architecture and extending it to include control effort
weights, we compute the H2 optimal controller [16]
and adjust the weights on the control effort subject to
not saturating the actuators. This is considered to be
the benchmark of all control methods considered here.

Using the procedure described in Section V, the optimal
control tuning parameters were computed in Matlab for
DFA configurations ranging from 4 to 20 modules in size.
To provide some statistics, the procedure was implemented
on 50 unique and randomly chosen configurations for each
configuration size.

The results in Fig. 5(a) show that as the vehicle gets larger,
the performance gets better (i.e. ||Go||2 decreases). This is
due to the fact that the effect that process noise has on the
states decreases proportionally by at least a factor of

√
N .

This can be made mathematically precise, but the intuition is
that process noise is spatially uncorrelated, smoothing out the
effect it has on the measured states as the vehicle gets larger.
In Fig. 5(b) one can also see that the optimal parameters vary
with N . This is expected, as the effective decrease of process
noise acting on the states changes the optimal performance
of the system.

As expected, the H2 optimal controller outperforms the
FSF controllers, see Fig. 5(a). In the absolute sense, the
difference in performance between the H2 optimal controller
and the FSF controllers is relatively constant for all sizes
of the vehicle N . However, note that the comparison made
here is not equivalent. The H2 optimal controller contains
dynamics and grows with N , whereas the FSF controller is
simply a static gain matrix containing 12 free variables for
any configuration size. In spite of this, the decentralized FSF
controller provides sufficiently good performance; its time
response for a configuration consisting of 4-modules in a
quadrotor configuration can be seen in Fig. 6. In comparison
to an H2 optimal controller, which is essentially a black
box to the designer, the tuning parameters of the structured
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(a) The performance of the DFA improves (decreasing ||Go||2) with
increasing size of the vehicle N .

(b) Since the effect that process noise has on the states decreases
with the size of the vehicle N , optimal parameters of the system are
expected to vary.

Fig. 5. This data set was obtained from 50 unique and randomly chosen
configurations for each vehicle size N . Error bars indicate the standard
deviation in performance (a) and of the parameters (b) due to different
configurations.

FSF controller are physically meaningful and thus provides
some intuition about the closed-loop system. Note that the
performance of the centralized FSF controller is not much
better than the decentralized FSF controller, despite the
incurred communication costs.

VII. CONFIGURATION TO CONTROL PARAMETER MAP

Designing anH2 optimal controller for every possible con-
figuration is intractable. The parameterized FSF controller
offers a straightforward solution for creating a function that
maps DFA configurations to their control parameters. These
mapped control parameters are not necessarily optimal, but
they should perform sufficiently.

A. Configuration Parameterization

The configuration of the DFA can be parameterized by its
size N , and the parameters

εx =
Ix
Id

, εy =
Iy
Id
, (39)

which capture the mass distribution of the vehicle, where Id
is the mass moment of inertia for a solid disk of equivalent

Fig. 6. The simulated time response for each DOF using the decentralized
FSF controller on a 4-module vehicle in a quadrotor configuration shows
good performance during nominal operating conditions while meeting the
actuator constraints (± 1 N ) shown in the lower plot. The dotted lines in
the lower plot denotes one standard deviation of the allowed control effort
σa,max.

volume. As such, the values (εx, εy) are expected to be close
to 1 for a disk-like configuration.

As expected, for a fixed sized vehicle, the optimal param-
eters (ωs, ζs) change with its configuration, see Fig. 7. The
change is most pronounced in the roll γ and pitch β DOF.
Consider an example where the vehicle is elongated along its
x-axis and short along its y-axis (i.e. large εx and small εy).
The controller acting along the short axis will need to react
more quickly than that around the long axis due to faster
natural dynamics of the system.

B. Map

By fixing the size N of the DFA, we can obtain a set of
functions (two for each DOF) that maps the configuration
parameters (εx, εy) to each of the control design parameters
(ωs, ζs). One way to obtain such a map is by surface-fitting a
polynomial function via least-squares to a data set of optimal
control parameters.

The set of surface-fitted functions can then be tested
against an independent data set. We can assess the fit by
comparing the H2 norm of the system that uses the fitted
parameters to one that uses the optimal parameters. This error
can be minimized by independently adjusting the degree of
each polynomial function in order to find those that fit best.

Results have shown that for a data set containing 100
unique configurations of a 10-module vehicle, the best per-
formance was obtained by using a single degree polynomial
function of the form

ωs = aωsεx + bωsεy + cωs , (40)
ζs = aζsεx + bζsεy + cζs , (41)
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Fig. 7. The closed-loop optimal parameters for 200 unique DFA con-
figurations of size 10, which spans the entire spectrum of configurations.
Most parameters maintain a relatively constant value except in the DOF of
roll γ and pitch β (not shown for clarity), which decreases and increases,
respectively, for large values of εx.

where (aωs , bωs , cωs ) and (aζs , bζs , cζs ) are all constant pa-
rameters, see Fig. 8.

Fig. 8. The upper subplot shows the performance ratio A/B, where A
is the performance of a 10-module vehicle using fitted parameters and B
is the performance of the same vehicle using optimal FSF parameters. For
some configurations, the performance ratio exceeds 1, indicating that the
fitted parameters perform better than the optimal parameters. This is because
these fitted parameters violate the actuator constraints, as seen in the lower
subplot where points lie above ||Gc||2 > 0.5.

To obtain reasonable control parameters for flying an
arbitrary configuration, all that is needed is the size N and
configuration parameters (εx, εy), the latter being a function
of each module’s position and mass. This information can
be communicated across the vehicle before taking flight.

VIII. CONCLUSIONS

We have described an approach for controlling a modular
flying vehicle of arbitrary configuration, namely the Dis-
tributed Flight Array. Our methodology consists of comput-
ing the control parameters of a decentralized parameterized
controller that minimizes the H2 norm of the system subject
to its physical constraints. This controller was compared to

traditional methods, and although it demonstrates slightly
lower performance, it provides much more intuition into the
behaviour of the system. More importantly, its simplicity
enables one to map the configuration space of the vehicle
to its control parameter space using a polynomial function.
Finding reasonable control tuning parameters for any flight-
feasible configuration is now nothing more than solving a
few first-order equations.

This methodology could easily be extended to include dif-
ferent noise models than those already considered. It would
also be straightforward to consider different performance
metrics, for example the H∞ norm, which would capture the
worse case disturbances of a system subject to an exogenous
input.

Future work will include verifying the performance of the
real system with our simulated model, and to do this for
various configurations.
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