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Abstract—This paper describes a generalized method for
computing the altitude and attitude of a rigid body with respect
to an inertial frame using a set of distance measurements ob-
tained from a sensor network. In the case where all sensors are
centrally measurable, a linear-optimal estimate is obtained. This
method is used as a way for estimating altitude and attitude of
the Distributed Flight Array, a modular multi-propeller flying
vehicle where each module in the array obtains its own distance
measurement and coordinates with its immediate neighbour(s)
actions for flight. To account for communication bandwidth
constraints, a scalable, distributed scheme is presented where
each module shares local information. In the limit of sharing
information, each module asymptotically computes the linear-
optimal altitude and attitude estimate.

I. INTRODUCTION

One of the key challenges in designing a vertical take-

off and landing vehicle is obtaining relatively good altitude

and attitude estimates for controlled flight [1], [2]. Various

methods currently exist [3]–[5] that address the challenge of

estimating the altitude and attitude of a vehicle on board.

With the advent of distributed sensor networks [6], [7] and

modular robotics [8], [9], a new degree of freedom in obtain-

ing state estimates is available to us – shared information.

This paper presents a generalized, straightforward ap-

proach not often seen in the context of flight for estimating

the altitude and attitude of a body coordinate frame with

respect to an inertial coordinate frame of reference. The idea

is to use an array of distance measuring sensors that are

attached to known positions on a rigid body [10]. Given the

distance to the ground measured by each sensor, it is possible

to compute the altitude and attitude of the body, the precision

of which increases as a function of the number of sensors.

This method is directly applied to a modular flying robot,

in this case the Distributed Flight Array (DFA) [11], see

Fig. 1. The homogeneous modules of the DFA are outfitted

with an assortment of sensors, including a distance measure-

ment sensor, and each is capable of communicating with

its immediate neighbours. Implementation of the proposed

method, which is nothing more than solving a least squares

problem on a centralized system, adds a new twist as the

method must be scalable and carried out in a distributed

manner. Borrowing results obtained from consensus litera-

ture [12], [13] the method is modified such that in the limit

of sharing information between neighbouring modules, the

altitude and attitude estimates approach those obtainable in

a centralized system.
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Fig. 1. The Distributed Flight Array is a modular multi-propeller vehicle
that can fly in ad-hoc configurations; it is an example of a distributed control
and estimation system.

This method of attitude estimation can then be fused

with other forms of attitude sensing and estimation such as

integrated angular rates from rate-gyros, which have good

short-term characteristics but suffer from long-term drift.

Sensor fusion can be accomplished using, for example, a

Kalman filter or a complimentary filter [3], [14].

This work begins in Sec. II by showing how distance

measurements from sensor to ground taken from anywhere

on a rigid body are related to the body’s altitude and attitude

with respect to an inertial frame. In Sec. III it is shown

that altitude and attitude of the rigid body can in general

be estimated from an arbitrary number of sensors placed in

arbitrary positions through a least squares approach. This

technique is applied to the DFA in Sec. IV, and modified to

a scalable, distributed scheme which results in estimates that

in the limit of sharing information approach those obtainable

in a centralized system. Experimental results are presented

and compared to results obtained from simulation in Sec. V.

II. KINEMATIC MODEL

A kinematic model that demonstrates the dependency of

distance measurements on altitude and attitude of a spatial

geometry with respect to an inertial coordinate frame will

be developed in this section. Although this model can be

generalized, the DFA is used here as an example to convey

better understanding, see Fig. 2.

The XI , YI -plane of the inertial coordinate frame (I) coin-

cides with the ground, which is assumed to be perpendicular

to the gravity field and flat.
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Fig. 2. The DFA’s body coordinate frame (B) is rotated by roll γ,
pitch β, yaw α about the XI , YI , and ZI -axis of the inertial frame (I),
respectively. The XI , YI -plane of the inertial frame coincides with the
ground. The position of sensor i is denoted by B(rX,i, rY,i, 0). The
distance vector B(0, 0,−mi) of sensor i is parallel to the ZB-axis and
coincides with the ground at point Bki = B(rX,i, rY,i,−mi).

Assume the DFA to be a rigid body described by the body

coordinate frame (B), which is located at the center of mass

and is aligned with its principal axes of rotation. The body

frame’s altitude with respect to the inertial frame is denoted

by z and its orientation with respect to the inertial frame

can be described through a set of fixed rotations roll γ,

pitch β, and yaw α about the XI , YI , and ZI -axis of the

inertial frame, respectively [15]. In the following, position

with respect to the body frame and inertial frame is denoted

by B( · ) and I( · ).

Without loss of generality, each sensor i = {1, . . . , N}
is assumed to be located in the XB , YB-plane of the body

frame at the respective known position B(rX,i, rY,i, 0). The
distance of sensor i to the ground in the direction of the ZB-

axis is denoted as mi. The distance vector coincides with the

ground at point Bki = B(rX,i, rY,i,−mi), which results

from adding sensor i’s position and the respective distance.

Any point Bki that lies in the XI , YI -plane of the inertial

frame satisfies the Hesse Normal Form [16]

Bn
T
Bki − z = 0, (1)

where Bn is the unit normal of the plane with respect to

the body frame and may be obtained from the coordinate

transformation

Bn = I
BR

T
In, (2)

with I
BR being a rotation matrix that maps a vector from the

body frame to the inertial frame and In = (0, 0,−1) denotes
the unit normal of the plane with respect to the inertial frame.

According to the convention of the Hesse Normal Form, the

unit normal In points away from the body coordinate frame

to the plane of interest.

The rotation matrix I
BR results from a series of matrix

multiplications,

I
BR = Rz(α)Ry(β)Rx(γ), (3)

and in consequence, the unit normal Bn with respect to the

body frame is a function of roll γ and pitch β,

Bn =





sin(β)
− cos(β) sin(γ)
− cos(β) cos(γ)



 . (4)

Making the appropriate substitutions yields an equation

relating distance mi to altitude and attitude of the DFA,





sin(β)
− cos(β) sin(γ)
− cos(β) cos(γ)





T 



rX,i

rY,i
−mi



− z = 0. (5)

Rearranging this expression in terms of mi yields

mi =
z + rY,i cos(β) sin(γ)− rX,i sin(β)

cos(β) cos(γ)
, (6)

where distance mi of sensor i to the ground is nonlinearly

dependent on the states altitude z, roll γ, and pitch β of

the DFA and sensor i’s position B(rX,i, rY,i, 0). Thus, the
distance of sensor i to the ground is independent of yaw α.

In the context of this work, terminology is abused by using

the term attitude to refer to just roll and pitch of a body,

which is sometimes denoted as tilt.

The nominal flight conditions of the DFA are around hover

and therefore the deviation from hover will be relatively

small. Thus, when linearised about hover the relationship

between distance mi and states z, γ, and β reads as

mi = z + rY,iγ − rX,iβ. (7)

Intuitively, the distance of a sensor to the ground increases

with the altitude of the DFA. In addition, the further away

a sensor is located along the XB and YB-axis of the body

frame, the more its distance to the ground is affected by pitch

and roll, respectively.

The kinematic model relating distance to states denoted

by x = (z, γ, β) can be more compactly written as

mi = cix, (8)

where row vector ci = (1, rY,i,−rX,i) contains information

pertaining to the position of sensor i with respect to the body

frame and maps altitude, roll, and pitch to a distance.

III. ALTITUDE AND ATTITUDE ESTIMATION

At least three distance measurements coming from sensors

that are laterally unaligned in the XB , YB-plane of the body

frame are sufficient to compute altitude z, roll γ, and pitch β.

The noisy distance measurement m̂i of sensor i is modelled

as

m̂i = mi + vi, (9)

wheremi is the sensor’s distance to the ground and vi models

zero mean noise with variance σ2. The noises vi are assumed

to be independent and identically distributed.
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Under the assumption of small angles, the unknown states

x = (z, γ, β) can be computed from a linear set of equations.

This is accomplished by combining sensor positions with

sensor measurements, obtained simultaneously,

ŷ = Cx+ v, (10)

where ŷ = (m̂1, . . . , m̂N ) denotes the combined mea-

surement, C contains information about the position of all

sensors with respect to the body frame,

C =







1, rY,1, −rX,1

...
...

...

1, rY,N , −rX,N






, (11)

and v = (v1, . . . , vN ) is the combined sensor noise. The

covariance matrix Σ of v is written as σ2IN×N .

When there are three distance measurements from laterally

unaligned sensors the linear set of equations is determined

and the solution is trivial.

For more than three sensors the set is overdetermined and

the maximum-likelihood state estimate x̂ can be obtained by

solving a least squares problem on a centralized system [17].

This is the linear-optimal estimate and reads as

x̂ = (CTC)−1CT ŷ, (12)

where C is assumed to have full column rank such that CTC

is invertible, which is the case if the sensors are laterally

unaligned.

The expected value of the state estimate is unbiased and

therefore given by

E[x̂] = x. (13)

In general and under the assumption of identically dis-

tributed noise, the covariance matrix Q of the estimation

error (x̂− x) can be written as

Q = E[(x̂− x)(x̂− x)T]

= (CTC)−1σ2. (14)

Therefore, the covariance matrix is simply a scaled variance

of the distance measurements. Intuitively, the covariance

decreases with the number of sensors and the further they are

spatially distributed. This can be readily seen by considering

the case where the sensors are symmetrically distributed with

respect to the body frame. Then, the covariance matrix can

be written as

Q =













N 0 0

0
N
∑

i=1

r2Y,i 0

0 0
N
∑

i=1

r2X,i













−1

σ2. (15)

Thus, the variance of the estimation error in altitude scales

with the number of sensors, whereas the variance of the

estimation error in attitude scales with the further they are

away from the center of mass.

IV. ALTITUDE AND ATTITUDE ESTIMATION ON THE

DISTRIBUTED FLIGHT ARRAY

The DFA is modelled as a sensor network which is

described by a fixed, undirected, and connected graph

G = (E ,V), see Fig. 3. Each node i of the node set

V = {1, . . . , N} represents a module which is equipped

with a sensor to obtain distance measurements. The edge

set E ⊂ {{i, j}|i, j ∈ V} represents communication links

where each edge {i, j} is an unordered pair of distinct

nodes. The neighbour set of module i is denoted by

Ni = {j|{i, j} ∈ E} and di = |Ni| denotes the degree of

a module. Due to geometric constraints of a module, the

degree can take values di ∈ {1, . . . , 6}. Each module can

only communicate with its immediate neighbours j ∈ Ni.

1

2

3

4

(a) Module-2 and module-4 are fully connected to
all other modules in the array, whereas module-1
and module-3 are only connected to module-2 and
module-4.

1 2
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67
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9

10

11
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(b) Module-12 has only one neighbour. Its degree
d12 therefore equals one and it cannot obtain a state
estimate.

Fig. 3. Two configurations of the Distributed Flight Array: (a) 4-module
array, and (b) 16-module array. The nodes of the network, which represent
DFA modules, are denoted by the respective module identifier ({1, 2, 3, 4}
for the 4-module array and {1, . . . , 16} for the 16-module array). The dotted
lines denote the possible inter-module communication links.

A. Decentralized State Estimation

One way to use the altitude and attitude estimation method

described in Sec. III is for each module to flood the network

with its distance measurement. Each module in this case will
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(a) The estimation error covariance matrix Qi of each
module is equivalent to Q.
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(b) The two-norm of Q12 for module 12 is not defined
as it has only one neighbour. The estimation error
covariance matrix Qi of module-2 and module-7 is
closest to the estimation error covariance matrix Q,
yet still three times as large.

Fig. 4. The colour spectrum illustrates the ratio
‖Q‖2
‖Qi‖2

between the

estimation error covariance matrix Qi of module i and estimation error
covariance matrix Q which is obtained using all distance measurements
from the array in a centralized system. A lighter grey indicates a closer
relation between both covariance matrices in the terms of the two-norm.

eventually receive all measurements in the array and can thus

implement the previously described procedure directly. Al-

though this may be feasible for small networks, this approach

is not scalable for larger networks due to communication

bandwidth and on-board memory storage constraints, both

of which scale with the size N of the network.

A straightforward and scalable approach is for module i to

estimate the states in a decentralized manner by combining

only distance measurements of its immediate neighbours.

For this, module i must have at least two neighbours such

that together they are laterally unaligned. Modules which do

not fulfil these criteria cannot estimate altitude and attitude

with the described procedure. In this case, state estimates of

modules which fulfil the criteria are propagated to them.

The combined measurement ŷi ∈ R
(di+1)×1 of module i

and its neighbours j ∈ Ni may be written as

ŷi = Cix+ vi, (16)

where Ci ∈ R
(di+1)×3 is composed of position information

ci and cj corresponding to module i and its neighbours j;

similarly for the combined noise vi ∈ R
(di+1)×1. The state

estimate x̂i of module i can then be obtained from (12)

where Ci replaces C. Recall that this expression is only

well-conditioned if module i and its neighbours are laterally

unaligned.

The estimation error covariance matrix of module i is

given by

Qi = (CT
i Ci)

−1σ2 (17)

=











di + 1
∑

k

rY,k −
∑

k

rX,k

∑

k

rY,k
∑

k

r2Y,k −
∑

k

rY,krX,k

−
∑

k

rX,k −
∑

k

rY,krX,k

∑

k

r2X,k











−1

σ2,

(18)

where k ∈ {i ∪ j|j ∈ Ni} is the set of module i and its

immediate neighbours j. It is readily seen that Qi depends

on degree di of module i as well as the position of module i

and its neighbours j. Thus, the estimation error covariance

matrix varies across the array and is in general greater in

terms of the two-norm than the estimation error covariance

matrix Q, which is obtained using all distance measurements

from the array centrally, see Fig. 4.

The state estimates obtained by the modules in the array

with at least two neighbours, at any given instance of time,

vary spatially across the array since each module combines

different distance measurements. For the DFA, a decoupled

control strategy was developed where each module generates

a control input depending on its position with respect to the

body frame and its state estimate. Thus, spatially varying

state estimates induce varying and uncoordinated control in-

puts of the decentralized controller which causes undesirable

shear forces [11].

One might attempt to reduce spatial variance by having

the modules share their state estimates x̂i between their

immediate neighbours and perform average consensus until

their estimates asymptotically converge to the average x̄,

x̄ =
1

N

N
∑

i=1

x̂i =
1

N

N
∑

i=1

(CT
i Ci)

−1CT
i ŷi. (19)

It can be shown that generally the covariance matrix of

estimation error (x̄−x) in this approach is greater compared

to the covariance matrix of estimation error (x̂ − x) where

the linear-optimal state estimate x̂ is obtained by (12) using

all distance measurements from the array directly in a

centralized system.

B. Distributed State Estimation

In order to yield the linear-optimal state estimate x̂ on each

module in the array, a scalable, distributed method following

the results of [12] is presented which in the limit of sharing

information between neighbouring modules approaches the

linear-optimal state estimate. This approach is applicable to

all modules in the array, regardless of their degree.
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The linear least squares estimation in (12) can be rewritten

as a summation of the square of the position information

vectors ci ∈ R
1×3 and a summation of measurements m̂i

scaled by the position information vectors,

x̂ =

(

N
∑

i=1

cTi ci

)−1
N
∑

i=1

cTi m̂i. (20)

This can be broken down into two separate average consen-

sus problems. The idea behind this procedure is that each

module computes in the limit the average of cTi ci denoted

by P̄ ∈ R
3×3 and cTi m̂i denoted by q̄ ∈ R

3×1 of all modules

N . From this, the linear-optimal state estimate x̂ reads as

x̂ = P̄−1q̄, (21)

where

P̄ =
1

N

N
∑

i=1

cTi ci (22)

q̄ =
1

N

N
∑

i=1

cTi m̂i. (23)

In order to formulate (22) and (23) in an iterative scheme,

each module i maintains local information (Pi(k), qi(k))
and exchanges this with its immediate neighbours j ∈ Ni.

The iterative procedure is a weighted average of module i’s

information with the information of its neighbours,

Pi(k + 1) = wiiPi(k) +
∑

j∈Ni

wijPj(k) (24)

qi(k + 1) = wiiqi(k) +
∑

j∈Ni

wijqj(k). (25)

In the first iteration k = 0 each module initializes its local

information as

Pi(0) = cTi ci and qi(0) = cTi m̂i. (26)

The weights w chosen in this work are called Metropolis

weights [12] and are defined as

wij =















1
1+max{di,dj}

if j ∈ Ni,

1−
∑

k∈Ni

wik if i = j,

0 otherwise.

(27)

The weight wij which corresponds to the edge between

module i and its neighbour j is inversely proportional to the

maximum degree of both modules. The self-weights wii are

then chosen such that convergence and unbiased intermediate

results x̂i(k) = Pi(k)
−1qi(k) are guaranteed [18]. The

intermediate results can be obtained if matrix Pi(k) is

invertible. It can be shown for the DFA that Pi(k) is singular
at least during the initial step Pi(0). As the number of

iterations k → ∞, Pi(k) and qi(k) converge to

lim
k→∞

Pi(k) = P̄ (28)

lim
k→∞

qi(k) = q̄, (29)
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Fig. 5. The maximum error ǫ = max(‖x̂i− x̂‖2) depends on the connec-
tivity λ of the array and consensus iterations k. Ten random configurations
of an 8-module array are used as an example. The error decreases with the
number of iterations and is smaller for densely packed array configurations.
For certain configurations where some modules have only one neighbour the
first and second iteration yield estimates with errors of magnitude 106 %
as matrix Pi is singular during these iterations.

such that each module asymptotically converges to an esti-

mate x̂i which is in the limit equivalent to x̂,

lim
k→∞

x̂i(k) = lim
k→∞

Pi(k)
−1qi(k) = x̂. (30)

Intuitively, the variance of the local state estimates across

the array decreases with the number of iterations, see Fig. 5.

The number of iterations needed to guarantee a certain

convergence of the modules’ estimates ǫ = max(‖x̂i − x̂‖2)
depends on the algebraic connectivity of the network. The

connectivity metric is defined as the second smallest Eigen-

value λ of the normalized network Laplacian matrix L ∈
R

N×N which represents the graph of a network [13].

V. EXPERIMENTS

To show feasibility of altitude and attitude estimation from

a set of distance measurements, the proposed estimation

scheme of Section III was implemented on a 4-module array

and tested in an experiment. To extend the algorithm to larger

arrays, a MATLAB simulation was developed.

A. Hardware Description

A DFA module resembles a hexagon, see Fig. 6, and

incorporates custom-designed electronics which were made

to meet all the on-board sensing, communication, and com-

putation requirements. Each module comes equipped with

an infrared (IR) distance sensor (Sharp GP2Y0AXX series).

These commonly used low-cost sensors produce a non-

linear output voltage that is a function of the distance being

measured. For experiments, a particular model of the sensor

was used that is capable of measuring a distance between

20cm and 80cm.

The bandwidth of these sensors is limited to approximately

20Hz. In terms of communication, each module is capable of
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Fig. 6. The inset image in the lower-left corner shows an infrared
distance sensor that is mounted in the DFA module’s geometric center
below the motor and propeller. The encircled part in the figure shows the
communication unit on one side of the module that enables inter-module
communication.

bi-directional, half-duplex communication with its immediate

neighbours. This is accomplished using IrDA transceivers

attached to each of the six sides of a modules, and they

are interfaced via a UART peripheral capable of operating at

115.2 kbps. A single ARM7 core microcontroller handles all

of the required peripheral interfaces and computation needed

for estimation and control.

B. Sensor Calibration

Due to the nonlinear output behaviour and surface de-

pendent response, the sensors were calibrated before the

experiment. The function that relates the sampled output

voltage Vi of sensor i to a distance mi is modelled as

mi = ai +
bi

Vi

+
ci

V 2
i

, (31)

where the coefficients ai, bi, ci are determined by sampling

the output voltage at known distances and solving a linear

least squares problem, see Fig. 7.

C. Results

For the experiment, a 4-module array was mounted in a

test bed that enabled fixing the array to a known altitude

and attitude. Since two of the modules in the chosen con-

figuration, see Fig. 3 (a) are fully connected to all other

modules, they are able to combine all distance measurements

and compute the linear-optimal estimate directly. The pro-

posed algorithm was implemented on one of these modules

which computed the state estimate online and sent it to a

groundstation computer where the estimates were stored for

analysis.

The experiment yields quantitatively good results, see

Fig. 8. The error between reference angles γ, β and estimated

attitude is in the range of ± 3◦ which may be due to poor

calibration of the IR distance sensors and inaccuracies of

the test bed. The error between reference altitude z and its

estimate is in the range of ± 1 cm.
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Fig. 7. For calibration, the sensors are placed at 10 different distances to
the ground. The output voltage of each sensor at the respective distance is
sampled and averaged. A polynomial curve fit (CF) is then fitted through
the reference points. Experiments have shown that the sensors work well,
even below the specified distance as low as 7cm.

The result of the experiment was used to validate a

simulation model of the DFA, which assists in determining

the performance of the proposed state estimation technique

for larger arrays. For this, the standard deviation of the state

estimates obtained from the experiment was compared to

the standard deviation of the simulated state estimates. After

validation of the simulation model, random configurations

with varying array sizes were simulated to demonstrate the

benefits of larger arrays. As expected, the results show that

the standard deviation of the state estimates decreases with

the size of the array, see Fig. 9.

VI. CONCLUSIONS

In this work, a generalized method was presented which

yields a linear-optimal altitude and attitude estimate of a

rigid body with respect to an inertial frame by combining

distance measurements obtained from a sensor network. In

the case of the DFA, where each module may only exchange

information with its immediate neighbours, this approach

is not scalable due to limited communication bandwidth.

A scalable approach was suggested in which modules only

combine distance measurements of their immediate neigh-

bours. However, the resulting state estimates vary spatially

across the array, which is undesirable in the case of the

DFA’s decentralized controller. Instead, the approach was

formulated as a distributed averaging problem, where a

module in the limit of sharing information obtains the linear-

optimal estimate.

Currently, work is being done towards the implementation

of the consensus algorithm on the DFA with emphasis on

robustness to communication link failure and asynchronous

communication. An adequate filter will be integrated such

that the proposed estimation method may be fused with other

forms of attitude sensing for feedback control of the DFA.

Future work will focus on an investigation of the IR

distance sensors’ hardware limitations and on an automated

calibration routine to improve estimation.
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(a) Experiment set for an altitude of 10cm.
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(b) Experiment set for an altitude of 20cm.

Fig. 8. The array is rotated by roll γ and pitch β separately at two different
altitudes z. The reference angles are −10◦,−5◦, 5◦, 10◦ and the reference
altitude is 10cm, 20cm respectively. The states are estimated by combining
all distance measurements of the array on one of the modules which is
fully connected to the other modules. The mean of the estimated states is
displayed in the respective figure together with the respective reference for
each experiment.
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