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Abstract— This paper presents an approach for precisely
tracking periodic trajectories with a quadrocopter. In order
to improve temporal and spatial tracking performance, we
propose a feed-forward strategy that adapts the motion pa-
rameters sent to the vehicle controller. The motion parameters
are either adjusted on the fly or, in order to avoid initial
transients, identified prior to the flight performance. We outline
an identification scheme that tunes parameters for a large
class of periodic motions, and requires only a small number
of identification experiments prior to flight. This reduced
identification is based on analysis and experiments showing that
the quadrocopter’s closed-loop dynamics can be approximated
by three directionally decoupled linear systems. We show
the effectiveness of this approach by performing a sequence
of periodic motions on real quadrocopters using the tuned
parameters obtained by the reduced identification.

I. INTRODUCTION

The objective of the research presented in this paper is

to have a quadrocopter accurately track three-dimensional

periodic motions, without incurring large transients at the

beginning of the motion. This research is motivated by the

ultimate goal of performing quadrocopter choreographies

along to music. To achieve precise synchronization to a

given periodic (music) reference signal, and to achieve exact

reference trajectory tracking, we concentrate on adapting

the parameters of the feed-forward input signal sent to the

vehicle controller. An example of the 3D periodic motion

considered in this paper is pictured in Fig. 1.

Trajectory tracking with quadrocopters is typically

achieved using feedback control approaches. Methods range

from classical PID control, backstepping techniques and

nonlinear control [1]–[4], to LQ optimal solutions and model

predictive control, e.g. [5]. Such controllers, however, are not

usually able to achieve high-performance trajectory tracking

with zero phase lag for arbitrary periodic quadrocopter

motions of varying angular frequencies. Perfect temporal

accuracy can only be achieved by using different controllers

(or controller parameters) for different motions and motion

frequencies. Moreover, feedback control is inherently causal

because the control actions depend only on past measure-

ments. Causality, imperfect initial conditions and model

errors effect an initial transient phase, in which the tracking

errors are substantial.

For choreographies in which motions are changed in quick

succession, designing separate controllers for different mo-

tions is impractical, and the transient behavior as described
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Fig. 1. An example of a 3D periodic motion (with ωx,y

d
= 2ωz

d
= π rad/s,

Ax,y

d
= Az

d
/2 = 0.4m, θx

d
= π/2).

above is highly undesirable. Switching between different

controllers may even cause instability.

In this paper, we propose a control strategy that builds

upon the same basic trajectory-tracking controller for peri-

odic motions at all frequencies, but adapts the parameters

of the actual input to the controller in order to guarantee

precise tracking and synchronization. These parameters can

be identified prior to the flight performance to effectively

reduce transient time and tracking errors.

Other research on motion synchronization with external

inputs has focused largely on real-time interaction between

robots and the environment. This research mostly deals with

real-time signal processing and synchronization schemes, and

typically features humanoid robots that perform rhythmic

motions such as dancing, drumming and singing in tempo

with an exogenous signal [6]–[8]. In contrast, our work

features aerial robots and a priori known reference signals.

The contribution of this paper is a feed-forward strategy

that avoids the large transients, preserves the shape of the

periodic motion and maintains high temporal accuracy, even

in the first period of the motion. It is possible to adapt only

the amplitude and phase of the motion, which is done either

online, or offline prior to the actual flight performance. We

show that, for directionally decoupled linear systems, the

identification of offline parameters requires only a small

number of experiments that can be stored concisely in a

table. The general idea is based on first identifying the linear

closed-loop transfer function and then using it to compensate

for the steady-state errors in advance [9]. This ‘black box’

approach allows the strategy presented herein to be used

for any (approximately) linear system with independent

directions.
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Fig. 2. The inertial coordinate system O and the vehicle coordinate
system V defining the vehicle attitude.

This feed-forward adaptation scheme was applied to

quadrocopter music performances. Videos are available at

http://tiny.cc/MusicInMotion.

The 3D periodic motion primitives considered in this

paper are presented in Sec. II. The quadrocopter dynam-

ics and the trajectory-tracking controller are introduced in

Sec. III and IV, respectively. The quadrocopter response

to the motion primitives is investigated in Sec. V, where

an online parameter adaptation strategy is introduced and

relevant system properties are derived. The system properties

are then used in Sec. VI to develop an offline parameter

adaptation strategy. We show the effectiveness of the offline

strategy by performing a sequence of motion primitives with

a quadrocopter. Experiments are conducted in the Flying Ma-

chine Arena, an indoor test environment for quadrocopters.

For a detailed description of the experimental setup, refer

to [10].

II. PERIODIC MOTIONS

We present a framework for periodic motion primitives

in three dimensions, generalizing from the one-dimensional

side-to-side motion in our previous work [11]. We specify

motion primitives on the vehicle’s position in the inertial

coordinate system O, see Fig. 2. The heading of the quadro-

copter (that is, the yaw angle in Z-Y-X Euler attitude repre-

sentation) is held at zero. The remaining rotational degrees

of freedom are defined by the quadrocopter dynamics, cf.

[10] and Sec. III. The desired position of the quadrocopter

at time t, sd(t) = (xd(t), yd(t), zd(t)) is given by




xd(t)
yd(t)
zd(t)



 =





δxd
δyd
δzd



+





Ax
d cos(ω

x
d t+ θxd)

Ay
d cos(ω

y
dt+ θyd)

Az
d cos(ω

z
dt+ θzd)



 , (1)

where (δxd , δ
y
d , δ

z
d) is the desired center position of the motion

primitive. The shape of the primitive is adjustable by a set of

nine motion parameters: in each direction i ∈ {x, y, z}, we

specify the desired amplitude Ai
d, frequency ωi

d and phase

θid. By varying the nine parameters, a wide range of different

motions can be expressed, such as side-to-side motions,

bounces, ellipses, eights and spirals, see for example Fig. 1.

Not all parameter values result in periodic motion prim-

itives that can be followed by the quadrocopter. If the

amplitudes or frequencies are too high, the motion becomes

infeasible due to thrust limitations of the propellers and lim-

ited sensor range. This is investigated in [10]. The motions

considered in this paper are assumed to be feasible.

One of our goals is to synchronize the motion to an exter-

nal reference signal (for example, the beat of a music piece),
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Fig. 3. The control configuration shows the online and offline motion
parameter adaptation (bold boxes), and the underlying trajectory-following
controller.

which sets the motion frequencies ωi
d. Ultimately, motion

primitives can be arranged in a choreographic sequence and

be timed to music [12].

III. QUADROCOPTER DYNAMICS

The translational motion of a quadrocopter in the inertial

frame O is described by




ẍ(t)
ÿ(t)
z̈(t)



 = R(t)





0
0

c(t)



−





0
0
g



 ⇔
ẍ = c bx

ÿ = c by

z̈ = c bz − g
, (2)

where R(t) is the rotation matrix from the body frame V

to the inertial frame O, c(t) is the collective thrust of the

four propellers, and g is the acceleration due to gravity. The

values (bx, by, bz) correspond to the third column of the

rotation matrix, namely (R13, R23, R33), and represent the

direction of the collective thrust in the inertial frame O.

The rotation matrix R evolves according to

Ṙ(t) = R(t)





0 −r(t) q(t)
r(t) 0 −p(t)
−q(t) p(t) 0



 , (3)

where (p, q, r) represent the quadrocopter angular body

velocities around the body (Vx, Vy, Vz) axes, see Fig. 2

and [13]. The quadrocopter is controlled by four inputs: a

collective thrust command cc, and commanded angular body

velocities (pc, qc, rc), see Fig. 3 and Sec. IV-A.

The controller design introduced below is based on the

above dynamics model. For a more detailed quadrocopter

model that includes rotational dynamics refer to [10].

IV. QUADROCOPTER CONTROL

The overall control configuration of our approach is out-

lined in Fig. 3. Below we describe the trajectory-following

controller (TFC) that is the basis of our approach, and ana-

lyze its properties with particular regard to periodic motions

as described in Sec. II.

A. Approach

The TFC accepts position, velocity, and acceleration com-

mands, denoted by sc(t), ṡc(t) and s̈c(t) respectively, and

attempts to maintain the quadrocopter on this specified

trajectory. Control is based on the estimated quadrocopter

position s = (x, y, z), velocity ṡ and attitude R, see Fig. 3.

The TFC outputs the commands cc and (pc, qc, rc) to the

vehicle. The TFC consists of three separate loops for altitude,

horizontal position, and attitude, see Fig. 4. While the TFC
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Fig. 4. Cascaded control loops of the trajectory-following controller (TFC).

operates in discrete time, the controller design is based on

the continuous-time system dynamics representation.

The altitude control is designed such that it responds to

altitude errors (z− zc) like a second-order system with time

constant τz and damping ratio ζz ,

z̈ = −
2ζz
τz

(ż − żc)−
1

τ2z
(z − zc) + z̈c. (4)

It uses the collective thrust to achieve this. With (2) and (4),

we obtain
cc = (z̈ + g)/bz. (5)

Similarly, the two horizontal position control loops are

shaped based on (2) with cc from (5), resulting in the

commanded rotation matrix entries bxc and byc . The attitude

control is shaped such that the two rotation matrix entries

bx, by react in the manner of a first-order system with time

constant τrp; that is, for x: ḃxc = (bx − bxc )/τrp. The values

ḃxc , ḃ
y
c are directly mapped to the commanded angular body

velocities (pc, qc) using (3) and the estimated attitude R,

[

pc
qc

]

=
1

R33

[

R21 −R11

R22 −R12

] [

ḃxc
ḃyc

]

. (6)

Vehicle yaw control can be considered separately, since

rotations around the body Vz axis do not affect the above

dynamics. The yaw controller is a proportional controller

and the resulting yaw angle rate is mapped to rc using the

kinematic relations of Euler angles. The innermost loop, on

board the quadrocopter, controls the angle rates (p, q, r) to

the calculated set points (pc, qc, rc).

The feedback loop closed by the TFC is responsible

for maintaining the quadrocopter on a trajectory, which is

provided by the periodic trajectory generation (PTG). The

PTG is based on the motion primitives in Sec. II and

implements (1) with motion parameters δic, A
i
c, ω

i
c, θ

i
c, where

the subscript ‘c’ stands for ‘commanded’. The commanded

parameters are one of the following: simply the desired

parameters (no adaptation); adapted online (see Sec. V);

or adapted both online and offline (see Sec. VI). Fig. 3

illustrates the three options.

B. Analysis

To highlight the key characteristics of the above control

architecture, we analyze the closed-loop dynamics under

the following simplifying assumptions: (i) the commanded

collective thrust can be changed instantaneously, that is,

c(t) = cc(t); (ii) the estimated rotation matrix entry bz

corresponds to the actual one; and (iii) we have direct

control over the other two rotation matrix entries, namely

bx(t) = bxc (t) and by(t) = byc (t). Then, (2) can be written as

ẍ = ux, with ux = fx(t, b
x
c ) = c(t)bxc (t)

ÿ = uy, with uy = fy(t, b
y
c ) = c(t)byc (t)

z̈ = uz, with uz = fz(t, cc) = ccb
z(t)− g,

(7)

where ui, i ∈ {x, y, z}, represent the flat inputs resulting

from a feedback linearization [14]. Such a transformation

between the virtual inputs ui and bxc , b
y
c , cc was applied in the

previous controller equations, cf. (5), allowing us to use tech-

niques from liner feedback control design. Eq. (7) decouples

the three directions and shows linear system behavior in each

direction. In the ideal case where the quadrocopter dynamics

correspond to the model (2), the combination of feedback

linearization with velocity and acceleration feed-forward (see

żc, z̈c in (5)) results in perfect trajectory tracking.

Assumptions (i) and (ii) are good approximations due to

the fast motor dynamics (with motor time constants more

than six times faster than the controller time constants, cf.

[15]) and due to precise attitude estimates that are based

on high-accuracy camera measurements and that include a

prediction step to compensate for system latencies. Assump-

tion (iii) is true only if the system has zero rotational inertia

(cf. [10]), which is not the case. In reality, exceptionally high

angular accelerations (cf. [15]) can be achieved and rotational

inertia terms are small. Thus, the overall closed-loop dynam-

ics may still be expected to be approximately linear. The

approximate directional independence and linear dynamics

behavior is exploited in Sec. V and further investigated using

experimental data, since additional effects of latencies, time

discretization, on-board dynamics, and modeling errors are

difficult to predict.

C. Results

In a first attempt, the desired periodic trajectory is directly

fed to the vehicle controller (TFC); that is, sc(t) := sd(t).
The quadrocopter response is a sinusoidal motion with a

(after the transient phase) constant change in amplitude,

phase and center position. Phase shift and amplitude error

are observed in each translational direction and are not

necessarily equal in size. The frequency of the quadrocopter

motion corresponds to the commanded one. This suggests

that the quadrocopter controlled by the TFC can be regarded

as a linear system, which explains the phase offset and

amplitude amplification.

Fig. 5 (top figure) shows the result for a planar side-to-side

motion. The amplitude error of the quadrocopter response

(black solid line) is obvious, whereas the phase error between

the reference trajectory and the actual quadrocopter response

is hardly noticeable. In actual experiments, however, small

phase errors are visible and audible when, for example,

quadrocopter choreography is timed to music, as a phase

shift causes a misalignment between the flight trajectory and

the music beat. For the side-to-side motion, music beats

may occur at the outermost points of the trajectory. In this

case, humans are particularly sensitive to non-zero vehicle

velocity at beat times. Correspondingly, the bottom plot of
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Fig. 5. Side-to-side motion (with ωx
d

= 3.25 rad/s, Ax
d

= 0.6m):
no motion parameter adaptation. Top: quadrocopter response (solid) for
a desired oscillation in the x direction (dashed). Bottom: corresponding
peak velocities, i.e. absolute value of vehicle velocity at the peaks of the
desired trajectory. High peak velocities imply a large phase error.

Fig. 5 illustrates the velocity of the quadrocopter at beat

times, i.e. when the reference trajectory reaches its maximum

or minimum value. Note that if different directions exhibit

different a phase shift or amplitude error, the shape of the

motion primitive can even be changed, see Fig. 6.

In the following section, we correct for the amplitude error

and phase shift, and investigate the closed-loop behavior in

more detail by analyzing the steady-state correction terms.

Because the commanded amplitude is often amplified by the

closed-loop system (rendering feasible commanded trajecto-

ries into infeasible quadrocopter motions), the correction is

done first.

V. ONLINE CORRECTION

A. Approach

The goal is to accurately track the desired trajectory sd(t)
by minimizing the deviation from the estimated trajectory

s(t). To this end, the motion parameters in the commanded

trajectory sc(t) are adjusted by directionally decoupled in-

tegral controllers, see Fig. 3. The approach is based on our

previous work, see [11].

For notational convenience, we drop the superscripts i ∈
{x, y, z} indicating the direction throughout this section. The

motion parameters of the commanded trajectory are set to

θc(t) = θd + θon(t), Ac(t) = Ad +Aon(t),

δc(t) = δd + δon(t),

where the subscript ‘on’ indicates the online correction

terms. They are updated in real time, during the flight.

We first determine the additive error in amplitude At,

phase θt and position δt of the quadrocopter response
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Fig. 6. Vertical bounce motion (with ωx,y

d
= ωz

d
/2 = 1.56 rad/s, Ax,y

d
=

Az
d
/2 = 0.6m): no motion parameter adaptation. The vehicle’s response

(solid) can differ in shape from the desired trajectory (dashed).
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Fig. 7. Side-to-side motion. Top: online motion parameter adaptation only,

quadrocopter response (solid) for a desired oscillation in the x direction
(dashed). Bottom: offline motion parameter adaptation, with online motion
parameter adaptation turned on after 2 periods.

at time t. We multiply the position estimate s(t) and

with the two reference signals, rcos(t) = cos(ωdt+ θd) and

rsin(t) = sin(ωdt+ θd), and integrate the result over N
periods, that is T = 2πN

ωd

. We assume that the errors stay

constant over the interval [t− T, t]. This yields

η1(t) =
1

T

∫ t

t−T

s(t)rcos(t)dt =
At +Ad

2
cos(θt)

η2(t) =
1

T

∫ t

t−T

s(t)rsin(t)dt =
At +Ad

2
sin(θt),

(8)

and finally

At = 2
√

η1(t)2 + η2(t)2 −Ad

θt = − arctan (η2(t)/η1(t)) .
(9)

The position error of the sinusoidal response is δt =
∫ t

t−T
(δd − s(t))dt. Since an insufficient number of mea-

surements is available at the beginning of a motion, the

integrals deliver reliable values only after several periods

of the motion primitive. The online correction terms are

calculated by integrating the errors according to

Aon(t) = kA
t

∫
0

Aτdτ, θon(t) = kθ
t

∫
0

θτdτ, (10)

and similarly for δon(t). The gains kθ, kA, kδ are chosen to

ensure converge of the online correction terms to the steady-

state values θon,∞, Aon,∞ and δon,∞, respectively. Note

again that the above online parameter adaptation strategy is

implemented for each direction separately.

B. Results

Using the proposed online parameter adaptation strategy,

the errors in amplitude, phase and center position are effec-

tively regulated to zero, see Fig. 7. We observe a substantial

transient phase before the online correction terms attain

steady state, see Fig. 8. This is mainly due to the fact that

the error identification scheme (8)-(9) only provides reliable

values after several periods.

To draw further conclusions, we consider the steady-

state values in the following form: the amplitude-normalized

amplification factor,

αi
on,∞ = (Ai

d +Ai
on,∞)/Ai

d , i ∈ {x, y, z} , (11)
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and the steady-state phase and offset, θion,∞ and δion,∞, as

before.

We found that, when executing the same motion primitive

multiple times, the standard deviations of the correspond-

ing steady-state values are small. We call this the intra-

class variability, which is a measure of the repeatability

of the experiments. We then investigated the inter-class

variability: the standard deviation of the steady-state values

αi
on,∞, θion,∞, and δion,∞ is evaluated for different motion

primitives. We found that the inter-class variability of the

obtained steady-state values for a given translational direc-

tion at a given directional frequency is of the same order

of magnitude as the intra-class variability. Supported by the

considerations in Sec. IV-B and by experiments shown below,

this leads to the following conclusions:

• Decoupled directions. The steady-state values

αi
on,∞, θion,∞ in each direction are independent of the

motion’s components in the other directions. Moreover,

as expected from the quadrocopter’s symmetry, the x
and y directions exhibit the same behavior.

• Linear behavior. Considering the motion component in

one direction i, the steady-state values depend only on

the motion’s frequency in this direction ωi
d.

Fig. 9 depicts the amplification factor αl
on,∞ and steady-

state phase θion,∞ against the motion’s directional frequency

ωi
d for the two directions i ∈ {x, y}. Plots are shown for ten

different periodic motion primitives in 1D, 2D and 3D of

various amplitudes up to 0.6m and different relative phase

shifts. The standard deviation of the steady-state terms is

indicated by the vertical labels. In particular, the variability of

the amplification factors translates, for the largest amplitude,

to a residual deviation of ±1.5 cm, which lies within the

TFC hover accuracy of ±2 cm. The variability of the phase

translates to a residual time shift of ±25ms (at maximum),

which is within the human audiovisual synchrony perception

limits [16], and therefore likewise negligible. These results

affirm the linearity and directional independence property.

Note that when performing the identification run with the

same motion primitives several times, the variability is of

the same order of magnitude. Consequently, we do not lose

accuracy when identifying θion,∞, Ai
on,∞ for one motion

primitive and later using it for another one as described in

the next section.

The steady-state correction terms for the center position

δion,∞ lie within the hover accuracy with a variability of

the same magnitude. Thus, the value δion,∞ cannot be called

repeatable and may either be neglected because of its small

average size or identified each time when flying.
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labels provide the standard deviation for the samples. Top: steady-state
amplification factor αx,y
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VI. OFFLINE IDENTIFICATION

A. Approach

The previous section showed that the steady-state values

obtained from the online correction are repeatable. Conse-

quently, relevant steady-state values can be extracted once,

and later applied to improve the transient performance. We

employ offline identified parameters in addition to the online

adaptation. Again, we drop the superscripts indicating the

direction. The parameters of the commanded trajectory are

set to

Ac(t) = αoffAd +Aon(t), δc(t) = δd + δon(t),

θc(t) = θd + θoff + θon(t),

where the subscript ‘off’ indicates the offline motion pa-

rameters identified prior to the experiment. Note that there

is no offline parameter for the center point δc, because the

errors are small in size and less repeatable and, thus, more

efficiently handled by the online adaptation strategy. The

offline parameters are selected at the start of a motion on

the basis of the desired motion primitive and stay constant

for the duration of the executed motion. For a given motion,

the offline correction terms are set to the steady-state values

obtained from the online correction, see Sec. V-B:

αoff = αon,∞, θoff = θon,∞.

We make use of the directional independence and linearity

property derived above to efficiently identify the offline cor-
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rection terms for all periodic motions that can be expressed

in our framework (1). We perform a single identification run

with fixed amplitudes Ai
d, phases θid and center point δid and

vary only the frequency ωi
d = ω. Moreover, since the x and

y direction exhibit the same dynamics, an identification run

with a 2D motion primitive in x or y, and z is sufficient to

completely identify all necessary feed-forward parameters.

Conceptually, the offline identification strategy results in

a pair of maps

Γxy : ωx,y
d 7→ (αx,y

off
, θx,y

off
), Γz : ωz

d 7→ (αz
off
, θz

off
),

where the superscript x, y indicates that this map is used

for both, the x and y direction. The values are stored in a

table with rows
[

ωx,y
d ωz

d θx,y
off

θz
off

αx,y
off

αz
off

]

. We

use linear interpolation between the offline parameters, which

are only obtained at a discrete set of frequencies.

B. Results

As compared to using only online parameter adaptation,

the proposed offline identification substantially decreases the

transient phase, see Fig. 7. The offline parameters are effec-

tive from the start of the motion primitive. When combining

online and offline correction, the former is used only after

several periods.

In order to show the effectiveness of the reduced identifica-

tion scheme, we perform a sequence of periodic 3D motions

with offline parameters obtained from an oscillatory motion

in 2D (Ax
d = Az

d = 0.4m, ωx
d = ωz

d = ω). Fig. 10 shows that

the quadrocopter’s deviation from the desired trajectory is

clearly reduced when using the offline parameter adaptation

strategy. As a consequence, the corresponding peak velocities

(cf. Fig. 5) are also small indicating that the phase error is

reduced. Note that the transient performance can be further

improved by starting the vehicle with the appropriate velocity

and acceleration.

The videos at http://tiny.cc/MusicInMotion

show examples of quadrocopter choreographies timed to

music.

VII. CONCLUSION

In this paper we studied a feed-forward parameter tuning

strategy that improves the tracking performance of periodic

motion primitives, as compared to pure feedback control,

especially during transients. With pre-identified correction

terms, the tracking converges to a level virtually imper-

ceptible to a human observer within a single period. The

parameter correction terms depend only on the motion’s

3D directional frequencies. The translational directions are

independent, allowing for an efficient offline identification of

correction values. Due to the directional independence, the

approach presented in this paper can be applied even to non-

periodic 3D motions that are composed of periodic motions

in each translational direction.
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