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Abstract— We describe a simple and intuitive policy gradient
method for improving parametrized quadrocopter multi-flips
by combining iterative experiments with information from
a first-principles model. We start by formulating an N-flip
maneuver as a five-step primitive with five adjustable pa-
rameters. Optimization using a low-order first-principles 2D
vertical plane model of the quadrocopter yields an initial set
of parameters and a corrective matrix. The maneuver is then
repeatedly performed with the vehicle. At each iteration the
state error at the end of the primitive is used to update the
maneuver parameters via a gradient adjustment. The method is
demonstrated at the ETH Zurich Flying Machine Arena testbed
on quadrotor helicopters performing and improving on flips,
double flips and triple flips.

I. INTRODUCTION
Our objective is to use a low-order, first-principles model

of a quadrocopter in order to be able to perform and improve
upon single, double and triple flips. In particular we desire
a formulation of a flip primitive such that it is able to return
the quadrocopter exactly to its initial state, plus a 2πN
radians change in rotation about one of its principal axes.
In addition, we seek an approach that avoids complex online
computations and does not require or attempt to track an a
priori known feasible trajectory.

Miniature quadrotor helicopters in both indoor and outdoor
environments are a popular and challenging autonomous
aerial research platform. Several established quadrocopter
research groups exist, focusing both on indoor and outdoor
applications and utilizing home-built as well as off-the-
shelf vehicles, for example [1], [2], [3]. Most research has
so far been focused on near-hover mode operation using
simplified linear models, with a variety of extensions such as
autonomous long-term operation [1] and various controller
design methodologies such as in [3], [4]. More recently
several groups began exploring aggressive maneuvers such
as fast translation [5] and outdoor backflips [6].
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Fig. 1. Overview of the described approach
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Fig. 2. Side view of quadrocopter triple flips (5ms steps) with a maximum
rotation rate of 1600◦/s: a) simulated with a model-optimized parameter set
P 0, b) on the real system with P 0, and c) with a corrected parameter set
P 69 after 69 learning iterations on the real system. Note that b) and c) are
plots of actual experiments with pose from a motion capture system. Also
note that b) is cut short as the actual z final state error is about -2m. The
triple flip learning process is shown in the accompanying video.

In parallel, there is a rich history of successful autonomous
acrobatic helicopters such as [7] and [8]. In both projects
a reference aerobatic trajectory was followed by an au-
tonomous helicopter. In the latter project, an innovative
approach was taken where an algorithm extracted the ref-
erence trajectory from human-operated demonstrations and
attempted to improve on autonomous performances of the
said maneuvers.

However, designing reference aerobatic trajectories is not
a straightforward task. Various aerodynamic effects such as
vortex-ring-state, translational lift and blade flapping, among
others, become significant if not dominant at descent and
translation speeds comparable to the induced wind speed
[2], [9]. To compound this problem, most of these effects
have been studied only in steady state (i.e. descent at a



constant rate with constant angle of attack, etc), while for
fast aggressive aerodynamic maneuvers we are concerned
with transients. Furthermore, even after decades of dedicated
research on modeling helicopter aerodynamics, some of the
rotor phenomena encountered in aerobatic maneuvers only
have empirical models, most well-known of these being the
vortex ring/turbulent wake rotor operating mode [9]. It’s
also not practical for a human pilot to fly a demonstrative
acrobatic maneuver that depends on millisecond-accuracy
control input switches.

There is a strong argument for using simple models
with minimal parameters that need to be identified. For
example, while much research recently has been focused on
extremely precise modeling of propeller effects in quadro-
copters [10], the identification of all parameters requires
devoted, carefully-designed experiments with an extremely
cautious treatment of measurement errors, unwanted aerody-
namic effects, etc. On the other hand, it has been demon-
strated that a very straightforward approach where only the
most essential parameters are learned yields good hover
performance, for example by [11].

The outline of the method used to design and improve on
the flips is shown in Fig. 1. A result of running the method
on triple flips is shown in Fig. 2. In overview, the approach
described in this paper consists of the following: First, we
formulate the flip primitive as a five-step maneuver using
five free parameters. Then we use a numerical optimizer
combined with a 2D model and a rough initial guess to
find a parameter set that causes the model to reach the
desired final state. We approximate the effect of parameter
perturbations about this parameter set by numerically cal-
culating a Jacobian matrix. The inverse Jacobian is used
to adjust the parameters in an iterative fashion based on
the final state error produced by running the primitive on
the actual quadrocopters. A step size parameter is used to
provide robustness to model errors and noise as well as to
control convergence behavior.

The rest of this paper is organized as follows: we introduce
the 2D model of the quadrocopter and define the vehicle’s
control envelope in Section II. We formulate the flip ma-
neuver and specify the free parameters in Section III. The
method for correcting parameters from one experiment to
the next is described in Section IV. Finally, we describe the
experimental setup and the vehicle used in Section V, show
experimental results in Section VI, and conclude the paper
in Section VII.

II. 2D QUADROCOPTER MODEL

We consider a first-principles 2D model of a quadrocopter
moving in a vertical plane (Fig. 3). Out-of-plane dynamics,
including vehicle yaw, are stabilized separately and are
ignored. The model is:

Mz̈ = (Fa + Fb + Fc + Fd) cos θ −Mg (1)
Mẍ = (Fa + Fb + Fc + Fd) sin θ (2)
Iyy θ̈ = L(Fa − Fb) , (3)

Fig. 3. Coordinate system and forces of the 2D quadrocopter model used
this paper.

where M is the mass of the vehicle, L is the distance from
the center of mass of the vehicle to a propeller, Iyy is the
moment of inertia about the out-of-plane principal axis, and
Fa and Fb are the thrust forces produced by the two in-plane
rotors. Fc and Fd are the thrust forces produced by each of
the other two rotors, which are used to stabilize out-of-plane
motion and are nominally set to the average of Fa and Fb,

Fc = Fd =
Fa + Fb

2
. (4)

The combination of the propeller thrusts produces a col-
lective acceleration U ,

U = (Fa + Fb + Fc + Fd)/M = 2(Fa + Fb)/M . (5)

Each propeller behaves approximately as a first-order
system with different up- and down- gains, i.e. we observe
that the rotor slows down slower than speeding up. For each
of the thrusts produced by rotors, Fi, i ∈ {a, b, c, d},

Ḟi =

{
Gup(Fdes − Fi) for Fdes ≥ Fi
Gdown(Fdes − Fi) otherwise

, (6)

where Gdown is typically less than (slower) than Gup.
Each of the quadrocopters accepts a collective acceleration

command Udes and three desired body angle rates. In the
2D case, we consider just θ̇des and set the others to 0. The
desired thrusts relevant to the flip are then specified by

Fdes,a =MUdes/4 + IyyfPI(θ̇des − θ̇)/2L (7)

Fdes,b =MUdes/4− IyyfPI(θ̇des − θ̇)/2L , (8)

where fPI is a proportional-integral controller given by

fPI(θ̇des − θ̇) = Pθ̇(θ̇des − θ̇) + Iθ̇

∫ t

0

(θ̇des − θ̇)dt . (9)

In total, the model is fully specified by 10 parameters,
summarized in Table I. All parameters are either measured
directly or taken from the on-board controller (designed and
tuned separately), with the exception of θ̇max, which is a de-
sign parameter and lets the user specify how quickly the flip
should be performed. Apart from M and L (easily measured
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Fig. 4. Control envelope for a quadrocopter moving in a vertical plane.

directly), all measured parameters were rough, data-based
approximations that required no further adjustments for the
algorithm to converge.

III. PARAMETERIZED MULTI-FLIP PRIMITIVE

The quadrocopter should perform a flip such that in the
end the vehicle’s rotation is offset by a multiple of 2π with
all the other states unchanged. We ignore the out-of-plane
dynamics. The initial and final state conditions for the multi-
flip maneuver can then be stated as:

x0 = xf = 0 (10)
z0 = zf = 0 (11)

ẋ0 = ẋf = ż0 = żf = 0 (12)
θf = θ0 + 2πN = 0 (13)

where N is 1 for a single flip, 2 for a double flip, etc.
We do not seek a time-optimal flip, but we do use basic

concepts from optimal control to guide how we construct
the trajectory. If the system were linear, a time optimal
control strategy for the quadrocopter would consist of control
actions that lie on the edge of the control envelope [12].
In addition, experience shows that for many systems bang-
bang control strategies provide results that are very close
to the optimal, with greatly reduced complexity [13], [14].
We restrict our attention to such control actions. We use a
reduced control envelope, denoted as a range of accelerations
[β, β], to account for modeling uncertainties and to reserve
some control authority for the on-board feedback controllers.
The desired propeller forces must then be consistent with a

TABLE I
2D MODEL PARAMETERS

Source Value
M measured 0.468 kg
L measured 0.17 m
Iyy measured 0.0023 kg m2

Gup measured 50 s−1

Gdown measured 25 s−1

θ̇max design parameter 1000-1800 ◦/s
Fmin measured 0.08 N per prop
Fmax measured 2.8 N per prop
Pθ̇ onboard controller 240 rad/s
Iθ̇ onboard controller 3600 rad/s2

slightly reduced range of accelerations. A convenient way to
parametrize this for each in-plane rotor thrust Fi, i ∈ a, b is

Fmin ≤
Mβ

4
≤ Fi ≤

Mβ

4
≤ Fmax , (14)

so that if no control margin is reserved, β corresponds to the
vehicle’s acceleration at full thrust in the absence of gravity.
The feasible 2D control envelope of the vehicle can then be
depicted as Fig. 4.

Since the quadrocopter accepts a collective thrust com-
mand and desired rotation rates, we express the control
action as {Udes, θ̈des} where Udes is a desired collective
acceleration and θ̈des is a desired angular acceleration. We
integrate the desired angular acceleration over the maneuver
to produce the desired angular rates at each time instant.
This allows us to respect the dynamic limitations of the
vehicle while allowing local feedback on board the vehicle
to compensate for disturbances and for modeling errors as
described in Section V.

For the remainder of this paper, all collective and rotative
accelerations are understood as the desired values. In the
description of the flip below, we make the assumption that
the quadrocopter always reaches a rotation rate of θ̇max. This
can be assured by sufficiently lowering θ̇max depending on
the physical characteristics of the quadrocopter.

We perform the flip in five steps as illustrated by Fig. 5:
1) Acceleration Accelerate up at near-maximum collec-

tive acceleration while rotating slightly away.

time

time

acceleration
start

rotate
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Fig. 5. The collective thrust and commanded angular rate profile of
the multi-flip maneuver, with control actions depicted with respect to the
reduced control envelope at each stage of the primitive (see Fig. 4). Note
that the grayed out variables along with the rest of the profile are fully
determined by the five selected parameters.



2) Start Rotate Use maximum differential thrust to
achieve θ̇max.

3) Coast Hold θ̇max (use a low collective thrust command
to prevent accelerating into ground).

4) Stop Rotate Maximum differential thrust to reach θ̇
slightly less than 0.

5) Recovery Accelerate up with near-maximum collective
thrust with a slight rotational acceleration to stop ver-
tical descent and any remaining horizontal movement.

Each step of the primitive is fully described by 3 values:
a duration Tn, a constant collective acceleration Un, and a
constant rotational acceleration θ̈n. Given that we always
want to be issuing commands on the edge of the reduced
control envelope, Un and θ̈n fully determine each other.

We select the following parameters:
1) U1 - collective acceleration during step 1.
2) T1 - duration of step 1.
3) T3 - duration of step 3 (coasting at θ̇ = θ̇max).
4) U5 - collective acceleration during step 5.
5) T5 - duration of step 5.

and define a vector P i = [U1, T1, T3, U5, T5]
i as a collection

of these parameters at iteration i.
For conciseness, we define a normalized mass distribution

variable α = 2Iyy/ML2. For a given iteration the other steps
are then fully described given these parameters and start/end
and coast conditions:

θ̈1 = −(β − U1)/αL (15)
θ̈2 = −θ̈4 = (β − β)/2αL (16)

U2 = U4 = (β + β)/2 (17)

T2 = (θ̇max − θ̈1T1)/θ̈2 (18)
θ̈3 = 0 (19)
U3 = β (20)

T4 = −(θ̇max + θ̈5T5)/θ̈4 (21)
θ̈5 = (β − U5)/αL (22)

The multi-flip maneuver is parameterized with five vari-
ables. There are also exactly five final error states to mini-
mize when attempting to improve the flip. The problem of
optimizing the flips is thus fully determined.

A. Initial Rough Parameter Guess

It is useful to have a rough guess of the parameter values
for initializing the numerical optimization scheme. To this
end we can drastically simplify the multi-flip primitive and
compute rough guesses for the five parameters. We assume
that the maneuver is perfectly symmetric and make several
simplifications:

• U1 = U5 = 0.9β We assume that we need most of
the available acceleration, minus a small margin so that
we do not violate the reduced control envelope during
gradient calculation and during the initial few iterations.

• We assume that the vehicle is roughly level when
entering step 2 and roughly level when exiting step 4.

Since steps 2 and 4 are mostly a ramp from 0 to θ̇max,
and so have fixed known duration, we can calculate

T3 =
2πN

θ̇max
− θ̇max

θ̈2
, (23)

where θ̈2 is defined above.
• Steps 2, 3 and 4 are roughly ballistic from a vertical

acceleration perspective, so we can compute a guess
for the change in ż accumulated during those steps. This
gives us a requirement for vertical velocity at the end of
step 1, which should be roughly equal to the negative of
the vertical velocity to be canceled by step 5. Therefore,

T1 = T5 =
g(T2 + T3 + T4)

2U1
. (24)

IV. PARAMETER IMPROVEMENT SCHEME

While the true model of the vehicle performing flips is not
known, we use the fact that a first-principles model provides
the correct overall direction for corrective action. The main
idea behind this approach is similar to the algorithm de-
scribed in [15], although we retain the full corrective matrix
and not just the signs.

We acquire a model-optimal parameter set P 0 by follow-
ing a procedure outlined in Fig. 6. First we run a numerical
optimization on the parameters using the model described in
Section II, minimizing a weighted 2-norm of the final error
state defined as the deviation from the nominal final state
defined in Section III. The numerical optimizer is seeded
with an initial parameter set obtained in Section III-A.

The optimization of the parameter set using the model
results in an initial parameter set P 0. If the solver succeeded
then this parameter set allows the vehicle to perform the
required maneuver in simulation, returning exactly to the
starting state with a 2πN pitch offset.

We define F(P i) to be a column vector of the final error
from simulating the flip primitive with parameter set P i

using the model and Ei as the final error vector obtained
by running the same on a real vehicle in the Flying Machine
Arena testbed.

We calculate a numerical approximation of the Jacobian
matrix J reflecting the sensitivity of the final error states to

numerical
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rough
parameter

guess
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Fig. 6. Outline of the method for finding the initial parameter set P0.



the parameters about the model’s optimal parameter set P 0.
Since the final error F(P 0) = 0,

F(P 0 + P̃ ) ≈ F(P 0) +
∂F

∂P
P̃ = 0+ JP̃ , (25)

where, as noted above, F(·) is the output of running the 2D
quadrocopter model. This expresses a linear approximation
of the effects of a parameter perturbation P̃ .

For problems where the size of the final state equals the
number of parameters and where the Jacobian is invertible,
the corrective matrix from final error to parameter space
is simply the inverse of the Jacobian J−1. To improve the
maneuvers in the real world we use the inverse Jacobian
matrix at each iteration combined with a step size γ,

P i+1 = P i − γJ−1Ei , (26)

where Ei is the final state error vector from running an
experiment using the parameter set P i and γ is a step size
between 0 and 1. The step size γ can be used to trade off
convergence rate for noise rejection.

V. EXPERIMENTAL SETUP

We tested our approach in the ETH Zurich Flying Ma-
chine Arena on our customized quadrocopters. The system
is highly modular in both design and implementation, so
we describe the quadrocopter and the off-board hardware
separately.

A. The Flying Vehicle

The quadrotor vehicles used for the following experiments
are highly modified Ascending Technologies X3D ’Hum-
mingbird’ quadrocopters. We replaced the onboard sensors
and central electronics completely while keeping the original
propulsion system, the motor controllers, and the frame.
The design and physical properties of the standard X3D
quadrocopter are described in detail in [16].

The standard firmware on the motor controllers was up-
graded to speed-control firmware from the standard torque-
control version. The motor controllers accept commands
discretized to 200 steps at update rates greater than 1 kHz.
We derived a function from command to nominal hover-
condition thrust experimentally. Rotor speed control allows
us to largely ignore effects of battery voltage and internal
resistance, including transients, except for extremely high
commands where the achievable rotor speed is limited by
the current voltage.

In order to have better control over the onboard algorithms
and to have access to better-quality and higher-range rate
gyro data we replaced the central electronics with our own
design. An overview of the onboard controller is shown in
Fig. 7. We used the following angular rate sensors: a dual-
axis IDG650 ±2000◦/s rate gyro for pitch and roll and a
single-axis ISZ-650 ±2000◦/s rate gyro for sensing yaw rate.

The onboard control loop samples the rate gyros and
computes new motor commands at 800 Hz. The attitude rate
control loops are decoupled from one another. A PI controller
produces a differential thrust command based on the current

pitch rate and the current desired pitch rate command. The
roll rate is controlled similarly. Yaw rate is controlled via
a proportional controller without an integral gain. Propeller
wear trim factors allow for precise balancing of the quadro-
copter. The outputs of the controller are combined as shown
in Fig. 7 and constrained between maximum and minimum
command values before being sent to the motor controllers.

Each vehicle is equipped with two radio systems: a one-
way 35 MHz analog hobbyist pulse-position-modulation
(PPM) receiver and a bidirectional 2.4 GHz IEEE 802.15.4 or
IEEE 802.11b transceiver for non-time-critical communica-
tion such as data feedback or onboard parameter reads/writes.

Commands are usually received by the vehicle via the
35 MHz radio at approximately 50 Hz. During open-loop
maneuvers, commands are instead generated on-the-fly via a
function that uses the current onboard maneuver parameters.
In the case of the flip, the open-loop command profile
corresponds exactly to that shown in Fig. 5, sampled at 800
Hz.

The approach of generating commands directly onboard
the vehicles allows us to update the desired angle rates and
collective thrust commands every 1.25ms with virtually no
communication delays. While this approach assures good
maneuver repeatability, it does add some difficulty to off-
board detection of when exactly the vehicle begins and ends
the open loop maneuver and switches to normal control.
We have found that a good understanding of communication
delays is vital to measuring the final state error accurately.

B. The ETH Flying Machine Arena

The ETH Flying Machine Arena (FMA) is a 10×10×10m
space built for research involving small flying vehicles. The
overall organization of the system is similar to [1]. The space
is equipped with a motion capture system for localization
and a set of protective nets to reduce the occurrence of
catastrophic crashes. We use a Vicon motion capture sys-
tem with 8 cameras to achieve redundant retro-reflective
marker localization at 200 Hz with millimeter accuracy. Each
quadrocopter carries a unique arrangement of three such
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Fig. 7. Logical layout of the onboard controller. The variables p, q, and r
refer to roll, pitch, and yaw body rates, respectively. In the case of the flip
maneuver as described above, qdes = θ̇des, while pdes = rdes = 0.
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Fig. 8. Overview of the ETH Flying Machine Arena testbed.

markers allowing the Vicon system to measure each vehicle’s
full position and attitude at each frame.

The conceptual organization of the components in the
FMA is shown in Fig. 8. A flexible, reflective data seri-
alization scheme allows for convenient online visualization
of all data sent over the network and also for recording,
playback, and export of near-arbitrary data series. All data
is sent back and forth using the multicast UDP scheme; any
specific hardware interfacing is handled by dedicated bridges,
allowing the core processes to be completely separate from
hardware interfacing issues. A convenient side-effect of this
setup is that components are binary-identical when running
in the real system or in simulation. In addition, played back
data is automatically accepted by components as actual, real-
time data, allowing for convenient debugging functionality.

Similarly to [1], the localization data is used by a set of
processes that run estimation and control algorithms on a
set of typical desktop PCs. The resulting commands are sent
via hobbyist PPM channels to the quadrocopters with a 50
Hz update rate as described above. Under usual operation
the vehicle’s translational degrees of freedom are controlled
by linear PID controllers designed for near-hover operation.
Yaw is held at a constant angle via a proportional controller.

To execute an iteration of the flip, a managing process first
uploads a set of parameters and then signals the vehicle to
begin executing the maneuver. The vehicle then executes the
primitive on its own, ignoring hover controller commands
for the duration of the flip. Once the primitive is over, or
if certain safety constraints are broken, the vehicle resumes
normal operation and reports the end of the primitive to
the managing process. The final error is then recovered
from filtered Vicon data, parameters adjusted as described
in Section IV, and the process is repeated.

VI. EXPERIMENTS

A. Double flips (N = 2)

Fig. 9 shows the evolution of final state errors for a
129-iteration 1600 ◦/s double-flip experiment. The maneuver
converges within the first 40 to 50 iterations. Note the
increase in error at the very end of the experiment, likely
due to the battery running low.

B. Triple flips (N = 3)

The trajectory for a triple flip maneuver according to the
model and on the actual system can be seen in Fig. 2.
Fig. 10 depicts the evolution of the final state errors and
maneuver parameters over a 78-iteration experiment. Note
that the initial error is quite large (-4 m/s and -2 m/s lateral
and vertical velocities, respectively). Since this maneuver
is longer in duration than the single and double flips, we
experienced significantly worse repeatability than the shorter
maneuvers. A small step size was especially important for the
first few iterations as the thrust parameters typically evolve
right near their upper limit. The parameters continue a slow
evolution throughout the experiment, compensating for the
slight changes in the transient voltage response of the battery
throughout the flight.

C. 1300 ◦/s double flips with 1600 ◦/s triple-flip J and P 0

One of the side effects of the described approach is that a
Jacobian generated for triple flips will also work to improve
single or double flips. For example, if the vehicle performs
two flips on the first iteration (due to model errors or a
θ̇max mismatch), it will converge to a double flip (Fig. 11).
We found that the Jacobians generated for different numbers
of flips are surprisingly similar, once again supporting the
signed gradient intuition [15]. However, the initial error is
much larger than with a properly-generated P 0.

VII. CONCLUSION

We have demonstrated a simple and intuitive method for
iteratively improving quadrocopter flips. Our method requires
only the final state error to be measured and is simple and
lightweight to implement. The model used in the method
uses straightforward, measurable parameters and does not
require extensive parameter identification experiments. Dur-
ing iterative parameter adjustment, user control over system
convergence speed is provided by a step size parameter,
an essential feature for successful implementation on real

Fig. 9. Evolution of final state errors over a 129-iteration run of a 1600
◦/s double flip. Step size γ was set to 0.1.



Fig. 10. Final state error and parameter evolution over 78 iterations for
a triple flip. Step size γ=0.1. Note that the parameter values are relative to
and normalized by their initial values.

Fig. 11. Final state error and parameter evolution over 124 iterations for
a vehicle with θ̇max = 1300◦/s using J and P 0 calculated for θ̇max =
1600◦/s. Step size γ = 0.07. Note that θf is normalized to (−π, π).

systems. The method can be extended to other aerobatic
maneuvers and is well suited as a bootstrapping mecha-
nism for generating feasible trajectories for more involved
learning/adaptation algorithms. A video of the algorithm
in action and relevant source code are available online at
www.idsc.ethz.ch/people/staff/lupashin-s.
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