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Abstract— This paper introduces the Distributed Flight Ar-
ray (DFA) which is being developed at ETH Zurich. This multi-
rotor platform consists of autonomous rotor modules that are
able to drive, dock with their peers, and fly in a coordinated
fashion. These modules are organized as distributed compu-
tational units with minimal sensory input. This is a complex
system that is rich in dynamics with much room to explore
various strategies of distributed estimation and control. In
this paper, a simple distributed strategy for hover control is
presented and feasibility of the DFA is demonstrated.

I. INTRODUCTION

Vertical take-off and landing vehicles (VTOL) have gained
popularity within the aerial vehicles community over the last
few years. A particular advantage they have over most aerial
vehicles is their unique ability for vertical stationary flight.
Moreover, they provide an excellent platform for exploiting
advanced sensor technology, pushing the limits of energy
storage, and investigating techniques in automatic control.

Until now, researchers in this area have focussed primarily
on quadrotor platforms [1], [2], [3], [4]. The Institute for
Dynamic Systems and Control at ETH Zurich has extended
this design to a multi-rotor platform with distributed control,
which has been designated the Distributed Flight Array
(DFA). The DFA consists of individual modules that are
able to drive autonomously and assemble with their peers
on the ground. Each module can generate enough thrust
using a single fixed propeller to lift itself into the air, but
is unstable in flight. Not until they are joined do these
relatively simple modules evolve into a sophisticated multi-
propeller system capable of coordinated flight, see Fig. 1.
The goal is to have many modules assemble at random,
fly to a predetermined altitude, hover, break apart, fall back
down, and repeat the cycle. This abstract testbed features
rich dynamics and challenging design problems, and will
undoubtedly be an eye-catching pedagogical showpiece for
distributed estimation and control.

Fig. 1. Shown in this figure is a concept representation of the DFA in
a random configuration. The array is composed of interconnected rotor
modules that communicate with one another for coordinated flight.
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This project comprises three key areas of interest: 1) Each
DFA module must be optimized for weight, strength, and
durability. The design challenges mirror those of mod-
ular reconfigurable robots [5] and micro aerial vehicles
[3], which include electromechanical interconnection, inter-
module communication, and energy storage. 2) Modules
must be able to drive and dock reliably with peers using
a minimum number of sensors in order to reduce design
complexity and energy usage. 3) The DFA must be able
to fly in a coordinated fashion regardless of the array’s
configuration. A distributed estimation and control strategy
will be developed for flight; distributed systems can be made
scalable and robust to module failure [6].

This paper focuses on the third key area of interest,
distributed flight control. The outline of this paper is as
follows. In Section II, a brief system description of a DFA
module is given. Section III presents a linearized dynamic
model of the DFA and demonstrates that the force/torque
response characteristics of a module around the hovering
thrust are well approximated as first-order. This model is
used in Section IV, where a simple distributed strategy for
hover control is derived, followed by simulation results that
prove feasibility of the DFA for a small and large set of
modules. Simulation results for a four module array are
shown to be consistent with experimental results in Section
V. Concluding remarks are made in Section VI.

II. MODULE DESCRIPTION

Each DFA module resembles a hexagon with 3D ex-
trusions designed for passive alignment and docking, see
Fig. 2. The chassis is composed of a low-density ethyl
polypropylene (EPP) foam. On each side of the chassis is
a symmetric arrangement of four permanent magnets that
assist in passive alignment during the docking phase and help
to keep the modules interconnected during flight. To dock,
modules drive on the ground and into each other using a set
of three custom made omni-wheels; each wheel is driven by
a brushed DC motor with a built-in encoder.

Mounted to the center of the chassis is a brushless DC
motor with an off-the-shelf motor controller and a 3-blade
propeller capable of producing more than 3 N of thrust. All
modules are exactly the same except for propeller orientation,
where there are two possible orientations: clockwise (CW)
and counterclockwise (CCW). This is necessary in order to
cancel aerodynamic torques in trimmed flight.

Custom-designed electronics were made to meet all the
on-board sensing, communication, and computation require-
ments. Each module comes equipped with a 3-axis rate gyro
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Fig. 2. Shown here are four prototype DFA modules in a docked
configuration. The module’s chassis resembles a hexagon with 3D extrusions
designed for passive alignment and docking; it is made from cut-out sheets
of low-density ethyl polypropylene (EPP) foam. The dotted boxes provide a
preview of the custom-made omni-wheels which are embedded in the foam
and are used to drive the module.

for measuring angular rates and a pressure sensor for mea-
suring altitude. Bi-directional inter-module communication
is accomplished with IrDA via a UART peripheral; there is
an IrDA transceiver mounted to each side of the module.
An ARM7 core microcontroller handles all the required
computation needed for estimation and control.

Also embedded in the chassis is a Lithium-Ion Polymer
battery that is capable of powering both the motors and
electronics for up to 5 minutes of flight. Table I list some of
the physical attributes that characterize a DFA module.

TABLE I
PHYSICAL ATTRIBUTES OF A DFA MODULE

Symbol Description Value
` Characteristic length † 0.250 m
- Propeller duct diameter 0.180 m
m Mass per module 0.180 kg

† Defined as the distance between opposite faces of a module

III. MODELING

The full dynamics of the DFA can be quite complex if
effects like the flexibility of the propellers, aerodynamic
effects of the propeller duct, and the forces that keep
the modules together are considered. Since the goal is to
determine the feasibility of flight for the DFA, the system
is simply modeled as a rigid body without any compliant
inter-module connections, incorporating a force and torque
generation process at each module around the hovering
equilibrium.

A. Flight Dynamics

The DFA’s body coordinate frame B is defined as the set
of orthogonal axes that coincide with the array’s center of
mass and that is oriented to the principal axes of rotation. A
sequence of three rotations described by Euler angles α, β,
γ acting along the z-, y-, x-axis in this order describe the
orientation of the DFA’s body coordinate frame with respect
to the inertial coordinate frame.

Let (xi, yi) be the coordinate location of the module i
with respect to the body coordinate frame. The altitude and
attitude of the DFA can be controlled by varying the force (or
thrust) fi and torque τi produced by each module, see Fig. 3.
How these control forces are generated will be described
later. The total thrust generated by N modules is the sum of
all thrusts produced by each module, F =

∑N
i=1 fi. The

rolling torque is the sum of all thrusts acting along the
moment arm yi, Tγ =

∑N
i=1 yifi. Similarly, the pitching

torque is the sum of all thrusts acting along the moment
arm xi, Tβ = −

∑N
i=1 xifi. The yawing torque is the sum

of all reaction torques produced by each module; it will be
shown that the torque can be accurately modeled as a linear
function of thrust. Hence, the yawing torque can be expressed
as Tα =

∑N
i=1 cifi.
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Fig. 3. Shown in this diagram is the inertial coordinate frame and the DFA’s
body coordinate frame B with force/torque vectors produced by various
modules. The body coordinate frame is chosen to coincide with the array’s
center of mass and is oriented to the principal axes of rotation.

Transforming the total thrust vector F to the inertial
coordinate frame results in a translational force along each
axis. The translational accelerations ẍ and ÿ in the inertial
coordinate frame is a consequence of a pitch β and roll
γ rotation, respectively. Since the system is being modeled
around the equilibrium, small angles are used to approximate
the rotation in γ and β. The rotation in yaw, however, is
not assumed to be small. The following set of equations
summarize the dynamics of the array to first-order, except
for the yaw angle α:

Nmẍ = (β cosα+ γ sinα)
N∑
i=1

fi (1)

Nmÿ = (β sinα− γ cosα)
N∑
i=1

fi (2)

Nmz̈ =
N∑
i=1

fi −Nmg (3)

Ixγ̈ =
N∑
i=1

yifi (4)

Iyβ̈ = −
N∑
i=1

xifi (5)

Izα̈ =
N∑
i=1

cifi (6)
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where Nm is the total mass of the array, (Ix, Iy, Iz) are the
principal mass moments of inertia, and g is the acceleration
constant due to gravity. Both x and y components of force
are written here for the sake of completeness. However, they
are not required for hovering and are left out in what follows.

The principal mass moments of inertia can be written as
the following:

Ix = εx
Nm

4

(
`
√
N

2

)2

Iy = εy
Nm

4

(
`
√
N

2

)2

Iz = εz
Nm

2

(
`
√
N

2

)2

where (εx, εy, εz) captures the mass distribution of the array.

Assuming that the array configuration is relatively circular,
`
√
N

2 is comparable to the radius of the array. If this config-
uration is also full, like a disk, (εx, εy, εz) are expected to
be close to 1. In reality, the configuration of the array may
be sparse due to unpredictable docking constraints. In such
a case, the values of (εx, εy, εz) are expected to be greater
than 1.

The equations of motion are normalized in order to gain
some intuition on how the size of the array affects flight
dynamics:

x̂i =
xi
`
√
N

2

, ŷi =
yi
`
√
N

2

, ĉi =
ci
`
, Ai =

fi
m

where x̂i and ŷi are normalized position coordinates and
are at most on the order of 1 for a circular array, ĉi is
the normalized force to torque conversion constant and is
expected to be much less than 1, and Ai is the normalized
thrust in units of acceleration.

The normalized thrust Ai can be broken down into its
components, Ai = Āi+ai, where Āi is the normalized thrust
required to establish equilibrium about hover and ai is the
normalized control input. In the special case where there is
an equal number of CW and CCW rotating propellers in the
array, one can set Āi = g. In general, however, the system
may be over-actuated with an unequal number of CW and
CCW rotating propellers. In this case, one can choose the
values of Āi via least squares, or any other suitable method.

The following set of equations summarize the normalized
and linearized equations of motion about hover:

z̈ =
1
N

N∑
i=1

ai (7)

Îxγ̈ =
1
N

N∑
i=1

ŷiai (8)

Îyβ̈ = − 1
N

N∑
i=1

x̂iai (9)

Îzα̈ =
1
N

N∑
i=1

ĉiai (10)

where

Îx =
εx`
√
N

8
, Îy =

εy`
√
N

8
, Îz =

εz`N

8
(11)

It can be seen from the equations above that the maximum
vertical acceleration z̈ is independent of N . The maximum
accelerations in roll γ̈ and in pitch β̈, however, decrease by
a factor of

√
N , while the maximum acceleration in yaw α̈

decreases by a factor of N .
Note that the DFA requires at least four modules for hover

control; four is the minimum number of control inputs ai
needed to control the four degrees of freedom, Eq. 7 –
10. However, this is only a necessary condition and not
a sufficient condition for hover control. For example, four
modules lined together in a row would not be linearly
stable in attitude. This would lead to a system that is either
controllable in roll but not pitch, or vice versa.

B. Force & Torque Generation

The module’s force-torque generation unit – motor con-
troller, brushless DC motor, battery, propeller, and propeller
duct – is treated as a grey box model consisting of a physical
model with some unknown parameters. The input to this
system is a pulse-width modulation (PWM) duty cycle D,
which effectively controls the angular velocity of the rotor.
The output to this system is both the generated force and
torque of the module. Voltage of the battery can also be
considered as an input to the system. However, the effects
of voltage on the dynamics of the system are ignored since
the nominal voltage of Lithium-Ion Polymer batteries is
relatively constant over the battery cycle. The force-torque
characteristics that are described here assume the nominal
voltage case around the equilibrium thrust.

Assuming that the force experienced by a module is
dominated by the thrust of the rotor, experiments were
conducted to verify that force and torque are proportional to
the square of the rotor’s angular velocity [7]. Measurements
of force and torque were made at various duty cycles around
the equilibrium thrust. Experimental results show that force
and duty cycle can be approximated by an affine relationship,
while the torque resulting from the propeller’s drag can be
approximated as a linear function of thrust, see Fig. 4(a) –
4(b). Other experiments demonstrated the rate of change in
angular momentum of the propeller to be negligible. Recall
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that this force-torque relationship was used in Eq. 6 and is
expressed in the following:

τi = cfi (12)

where c = ± 1.13 × 10−2 m. Note that the sign of c
depends on the rotation of the propeller: the sign is positive
when the propeller rotates CCW and negative when the
propeller rotates CW.
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(a) A linear least squares fit of the data relating thrust f to PWM duty cycle
D results in the function f(D) = 6.68 × 10−2 D − 8.41 × 10−1.
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(b) A linear least squares fit to the function cf(D) of the data
relating torque τ to PWM duty cycle D results in the function
τ(D) = 1.13 × 10−2 f(D).

Fig. 4. Force and torque values were measured with a 6-axis force-torque
strain gauge load cell at various PWM duty cycles near equilibrium (approx.
D = 39%). At each duty cycle, 500 measurements were made over a period
of 5 seconds. The dash-dotted lines in the plots represent the PWM duty
cycle that generates equilibrium thrust and the corresponding torque.

Motivated by the results in Fig. 4, the transfer function
Gf which relates the input desired thrust f(D) to the output
thrust is modeled as a linear time-invariant system. The
transfer function that was obtained from the Bode plot of the
thrust response, shown in Fig. 5, was found to approximate
a first-order system:

Gf (s) =
ω

s+ ω

where ω = 14.3 rad/s.
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Fig. 5. Bode plot of the thrust response is shown here to approximate
a first-order system. Sinusoidal varying duty cycle with an offset equal to
the equilibrium thrust and an amplitude equivalent to 0.5 N was sent to the
system. Force and torque measurements were made using a 6-axis force-
torque strain gauge load cell. The dash-dotted lines in the plots represent the
−3 dB frequency, which is 14.3 rad/s, and the corresponding magnitude
and phase at this frequency. Note that at high frequencies the measured
phase diverges from the model; this is due to unmodeled dynamics, such
as delays.

IV. CONTROL

This section presents a simple distributed strategy for
hover control based on physical parameters of the DFA. The
derivation of this control strategy is generalized, and assumes
full state feedback of the system, see Eq. 13. It is assumed
that an estimator is used to obtain the state of the system.

Starting with the dynamic model of the DFA that was
developed in the previous section, the normalized and lin-
earized equations of motion about the equilibrium, Eq. 7 –
10, can be written as

Ms̈ = PTa

where

M = diag(1, Îx, Îy, Îz)
s = [z, γ, β, α]T

a = [a1, . . . , aN ]T

The matrix P contains information pertaining to the con-
figuration of the array and can be written as

P = [pz,pγ ,pβ ,pα]

where

pz =
1
N

[1, . . . , 1]T pγ =
1
N

[ŷ1, . . . , ŷN ]T

pβ = − 1
N

[x̂1, . . . , x̂N ]T pα =
1
N

[ĉ1, . . . , ĉN ]T
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The goal is to develop a control strategy that decouples
the degrees of freedom. Consider the control strategy of the
following form:

a = Qf(z, ż, γ, γ̇, β, β̇, α, α̇) (13)

where

Q = [qz,qγ ,qβ ,qα],
f = [fz(z, ż), fγ(γ, γ̇), fβ(β, β̇), fα(α, α̇)]T

where the f · ( · ) are arbitrary functions, to be determined.
The objective is to first design Q such that PTQ = I4.

This results in the following diagonal system:

z̈ = fz(z, ż)
Îxγ̈ = fγ(γ, γ̇)

Îyβ̈ = fβ(β, β̇)

Îzα̈ = fα(α, α̇)

Note that since P ∈ RN×4 and Q ∈ RN×4, the objective
is over-determined for an array with more than four modules.

Also note that pz , pγ , and pβ are orthogonal; this is a
result of the chosen coordinate system, see Fig. 3. Moreover,
if there are an equal number of CW and CCW modules, then
pz and pα are also orthogonal. In what follows, consider an
equal number of CW and CCW modules; the results can
readily be generalized.

Let Q = PDQ, where

D = diag(
1

‖pz‖2
,

1
‖pγ‖2

,
1

‖pβ‖2
,

1
‖pα‖2

)

where ‖ · ‖ is the Euclidean norm.
Multiplying PT on both sides yields:

I4 = PTQ = PTPDQ

=


‖pz‖2 0 0 0

0 ‖pγ‖2 0 pTγ pα
0 0 ‖pβ‖2 pTβpα
0 pTαpγ pTαpβ ‖pα‖2

DQ

=


1 0 0 0
0 1 0 e1
0 0 1 e2
0 e3 e4 1

Q

where

e1 =
pTγ pα
‖pα‖2

e2 =
pTβpα
‖pα‖2

e3 =
pTαpγ
‖pγ‖2

e4 =
pTαpβ
‖pβ‖2

It can readily be shown that,

Q =
[
1 0
0 Q

]

where

Q =
1

1− (e2e4 + e3e1)

1− e2e4 e1e4 −e1
e2e3 1− e3e1 −e2
−e3 −e4 1


In the special case where there is a large number of CW

and CCW modules that are uniformly distributed in the array,
pγ and pβ are also orthogonal to pα; this can be made
mathematically precise, but the intuition is simple: a roll or
pitch action employs roughly the same number of CW and
CCW modules, and thus the net yawing torque is zero. The
result of having a large number of modules N in the array
is that the ei → 0, which results in Q→ I3 and Q→ PD.
One could then use the following simple decoupling strategy:

qz =
pz
‖pz‖2

qγ =
pγ
‖pγ‖2

qβ =
pβ
‖pβ‖2

qα =
pα
‖pα‖2

It can be shown that the elements of Q above are not
a function of N . Thus the decoupling strategy is also
independent of N .

This decoupling strategy has the desirable property of
minimizing the inter-module shear stresses in the array
resulting from pitch and roll errors. This is readily seen
by substituting Q into the control strategy, Eq. 13, and
analyzing the resulting expression. It is clear that the control
input ai increases linearly the further away a module is
from the center of mass. As a result, the tangential forces
acting along the sides of a module are minimized. This is
an important feature because too much shear stress would
cause the module(s) to break away from the main array.

Note that this control strategy only works if both P
and (Îx, Îy, Îz) are known. Both of these can be computed
if the position and the direction of propeller rotation for
each module is known; this assumes that all modules are
identically the same, and that the mass and mass moments
of inertia are given. It follows that position and the direction
of propeller rotation is the only information that needs to be
communicated across the array before taking flight.

Now that the control strategy has been decoupled, one can
consider each degree of freedom separately. For example, the
following functions can be chosen:

fz(z, ż) = −2ωzζz ż − ω2
z(z − zd) (14)

fγ(γ, γ̇) = −Îx(2ωγζγ γ̇ + ω2
γγ) (15)

fβ(β, β̇) = −Îy(2ωβζβ β̇ + ω2
ββ) (16)

fα(α, α̇) = −Îz(2ωαζαα̇+ ω2
αα) (17)

where each degree of freedom is a second-order system with
(ωz, ωγ , ωβ , ωα) representing the natural frequencies of the
system and (ζz, ζγ , ζβ , ζα) representing the damping ratios.
The variable zd represents the desired hovering altitude. The
natural frequencies and damping ratios are tuning parameters
that depend on the DFA’s mass moments of inertia, which is
affected by the size and configuration of the array, see Eq.
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Fig. 6. Simulation results for a 4-module configuration, where (ωz , ωγ , ωβ , ωα) = (1.2, 13, 13, 1) and (ζz , ζγ , ζβ , ζα) = (1, 1, 1, 1).
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Fig. 7. Simulation results for a 20-module configuration, where (ωz , ωγ , ωβ , ωα) = (0.67, 5.81, 5.81, 0.45) and (ζz , ζγ , ζβ , ζα) = (1, 1, 1, 1).

11. Note that the effect of array size is more pronounced
in the yaw degree of freedom than in roll and/or pitch by a
factor of

√
N .

This control strategy uses normalized thrust as the control
input, which is not the case as described in Section III-B.
Thrust dynamics and saturation of the control inputs should
be considered. Time-scale separation is needed between the
desired dynamics of the system and the rotor dynamics. A
way to achieve this is to invert the transfer function Gf
over a desired frequency range, enough to achieve time-scale
separation.

This control strategy has been simulated in MATLAB for
random array configurations consisting of 4 modules, up to
20 modules, see Fig. 6 – 7. Simulation experiments take into
account sensor noise derived from physical experiments and
the motor model described in Section III-B.

V. EXPERIMENTS

The linear model presented in Section III and the results
gathered from simulating the controller shown in Section IV

were verified by testing the control strategy on the DFA in
the array configuration shown in Fig. 2. Initial experiments
established that the pressure sensor performed poorly and
provided imprecise altitude measurements. Moreover, yaw
control was intentionally left out to simplify the experiments.
Consequently, experiments were made using only roll and
pitch as feedback to the controller, see Eq. 15 – 16.

Before taking flight, the modules synchronized themselves
via IrDA and calibrated their sensors by removing sensor
offsets over a 5 second initialization sequence. Rate-gyro
measurements were made at 200 Hz and the controller was
operated at 60 Hz. The control input fz was set to a very
small value. A Vicon MX system [8] was used to measure
both altitude and attitude of the DFA, see Fig. 8(b) – 8(c).

The DFA was shown to fly successfully with roll and pitch
control. The experimental results look promising as they are
comparable to the simulated system, thus verifying the utility
of the linear model and simulator, see Fig. 8(a) – 8(b).

One interesting and unexpected result was observed due to
yaw being left uncontrolled: the DFA ascended in a spiraling
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(a) Simulated results for a 4-module configuration without any feedback on
altitude, where (ωγ , ωβ) = (13, 13) and (ζγ , ζβ) = (1, 1).
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(b) The controller that was used in simulation, see Fig. 8(a), was also used
in an experimental flight test; the measurements obtained from this test are
shown here.
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(c) A plot of the DFA’s 3D position relative to its take-off origin, obtained
from experimental results.

Fig. 8. Shown here are results gathered from a simulation and an
experimental flight test without any feedback on altitude. Experimental
measurements were made using a Vicon MX system.

motion, keeping its xy position of climb within the perimeter
of the spiral. Assuming that γ and β are non-zero, and that
the magnitude of α is increasing over time, this behavior is
in fact expected due to the sine and cosine terms seen in Eq.
1 – 2. This then motivates the following constant yaw-rate
control law:

fα(α̇) = −Îzωα(α̇− α̇d)

where α̇d is the desired yaw-rate.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the Distributed Flight Array (DFA), a
unique modular multi-rotor vehicle capable of autonomously
self-assembling on the ground and taking flight. The DFA
has been shown to fly both in simulation and in experiment
by using a simple distributed strategy for hover control. The
DFA is currently undergoing its second revision which will
enable coordinated flight experiments on a larger scale. These
results will be presented in future work.
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