

DESIGN OF A FOUR ROTOR HOVERING VEHICLE

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Eryk Brian Nice

May 2004

© 2004 Eryk Brian Nice

ABSTRACT

Potential applications of autonomous vehicles range from unmanned surveillance to

search and rescue applications dangerous to human beings. Vehicles specifically

designed for hover flight have their own possible applications, including the formation

of high gain airborne phased antenna arrays. With this specific application in mind,

the Cornell Autonomous Flying Vehicle (AFV) team sought to produce a four rotor

hovering vehicle capable of eventual untethered acrobatic autonomous flights.

The mechanical design of the AFV included both the selection of a battery-motor-

gearing-prop combination for efficient thrust production and the design of a

lightweight yet sufficiently stiff vehicle structure. The components chosen were

selected from the variety of brushless motors, battery technologies and cell

configurations, and fixed pitch propellers suited to use in a four rotor hovering vehicle.

The vehicle structure settled upon achieved a high degree of stiffness with minimal

weight through the use of thin walled aluminum compression members supported by

stranded steel cable.

In addition to an efficient mechanical design, the vehicle also required onboard control

and inertial navigation. In order to evaluate a variety of potential vehicle sensor,

actuator, estimation, and control scenarios, a fully configurable nonlinear simulation

of vehicle and sensor dynamics was also constructed. For the current iteration of the

vehicle, a square root implementation of a Sigma Point Filter was used for estimation

while a simple Linear Quadratic Regulator based on the nonlinear vehicle dynamics

linearized about hover provided vehicle control. Sensory feedback on the current

vehicle included an onboard inertial measurement unit and a human observer, to be

eventually replaced by GPS or an indoor equivalent.

While a hardware failure prevented the completion of a full range of tests, the team

was able to complete a hands-free hover test that demonstrated the capabilities of the

vehicle. Supplemented with various other final hardware tests, the vehicle

demonstrated stable hover flight, potential vehicle endurance in the range of 10-15

minutes, and possible vertical acceleration of 0.8g beyond hover thrust. The final

vehicle represented a significant achievement in terms of overall design and vehicle

capability while future improvements will demonstrate more advanced nonlinear

control algorithms and acrobatic flight maneuvers.

iii

BIOGRAPHICAL SKETCH

Eryk was born 27 March 1981 in Tucson, AZ. His family moved to the east coast

shortly thereafter and eventually settled in Frederick, MD. While growing up, Eryk

cultivated interests that eventually ranged from lacrosse and mock trial to the assistant

management of a small nishikigoi retail establishment. Following his graduation from

St. John’s Literary Institute at Prospect Hall in 1998, Eryk attended Cornell

University’s College of Engineering. While working towards a Bachelor of Science in

Mechanical Engineering, Eryk continued to explore his interest in small business

through involvement in the management of a small student-run stage lighting and

sound company. Upon obtaining his undergraduate degree, and at the encouragement

of friends, family, and faculty, he elected to remain at Cornell to pursue a Master of

Science degree in design and control of mechanical systems. While future plans are

uncertain, Eryk hopes to eventually own or manage his own engineering firm.

iv

A man's brain is stored powder; it cannot be touched itself off; the fire must come

from the outside. -Mark Twain

To all those who have supported, encouraged, challenged, and inspired me

v

ACKNOWLEDGEMENTS

I would first and foremost like to thank my advisor, Professor Raffaello D’Andrea.

His financial support, intellectual contributions, and personal encouragements are

what made my work possible. I would also like to thank Sean Breheny, my primary

project partner. His electrical design work, late hour company, and occasional

mechanical design suggestions were all major factors in the success of the project.

The remaining two members of the design team, Ali Squalli and Jinwoo Lee, also

provided invaluable support in the electronic engineering aspects of the vehicle design.

In addition to the above mentioned, I owe a lot to the Cornell College of Engineering

faculty. The variety of their expertise would have been worthless without their

willingness to offer support and intellectual guidance both in classes and on their own

time. I would particularly like to thank Professor Mark Campbell for his help on

vehicle state estimation.

Finally, I would like to thank those who have watched and helped me grow. Though

not reflected in the technical content of this document, the support, encouragement,

and love provided by friends and family are perhaps the greatest reason for my success.

This research was funded by Air Force Grant F49620-02-0388.

vi

TABLE OF CONTENTS

BIOGRAPHICAL SKETCH...iii
ACKNOWLEDGEMENTS ...v
TABLE OF CONTENTS ..vi
LIST OF FIGURES...viii
LIST OF TABLES ...x
CHAPTER 1: INTRODUCTION...1
CHAPTER 2: VEHICLE CONCEPTUAL DESIGN...5
CHAPTER 3: ANALYSIS AND COMPONENT-LEVEL DESIGN AND
SELECTION ..10

Motors .. 11
Props... 14
Gearing ... 17
Batteries.. 18
Thrust Module .. 20
Structure ... 23

CHAPTER 4: FABRICATION, ASSEMBLY, HARDWARE TESTING, AND RE-
DESIGN ...27

Pro/E Model ... 27
Assembly Comments.. 29
Prop Testing Rig... 32
Landing Platform.. 33
Vehicle Testing... 36

CHAPTER 5: SIMULATION DEVELOPMENT AND VERIFICATION.................40
Simulation Parameter File .. 41
Full Nonlinear AFV Dynamics .. 42
IMU Bias/Noise Corruption ... 42
State Estimation.. 43
Hover Controller... 44

CHAPTER 6: CONTROL AND ESTIMATION DEVELOPMENT FOR FUTURE
IMPLEMENTATION ONBOARD THE VEHICLE...46

Estimation... 47
Estimator Tuning.. 54
Control.. 57

CHAPTER 7: CONCLUSION ...63
APPENDIX A: BRAINSTORMING NOTES ...65

Configuration.. 65
Structure ... 65
Props... 65
General ... 66

APPENDIX B: COMPONENT CHARACTERISTICS ..67
Motors .. 67
Props... 68
Gears and Belts... 70

vii

Encoders ... 73
Batteries.. 74
Fabricated Parts and Misc Components ... 75

APPENDIX C: DERIVATION OF AFV DYNAMICS ..77
Bases and the Direction Cosines .. 77
Euler Angles ... 77
Applied Forces ... 79
Applied Moments ... 80
Motor Dynamics... 81
Final Differential Equations of Motion, Summary .. 82
System Parameters Key.. 85
State Variables Key .. 85
Measurement Model... 86

APPENDIX D: ASSEMBLY/DISASSEMBLY INSTRUCTIONS89
Pulley Box Removal/Replacement... 89
IMU Removal/Replacement... 89
Battery Replacement .. 89
Pulley Box Disassembly/Reassembly .. 90

APPENDIX E: ELECTRONIC CONTENT ..91
Data CD Contents... 91
4-prop Structure Analysis Code ... 94
8-prop Structure Analysis Code ... 100
Simulation Files.. 108
Simulation Animation Files.. 141

APPENDIX F: Pro/E FILE INFORMATION AND MACHINING SPEC SHEETS150
REFERENCES...177

viii

LIST OF FIGURES

Figure 2-1: Prop Rotation Direction...7
Figure 4-1: Pro/E Model of Assembled Vehicle ..27
Figure 4-2: Prop Testing Rig..33
Figure 4-3: Landing Platform...35
Figure 4-4: Fully Assembled AFV...36
Figure 6-1: Estimation Loop ..48
Figure 6-2: Accelerometer Bias Estimate Errors (m/s2) vs Time (s)51
Figure 6-3: |Original Filtering| - |SR SPF| Velocity Estimate Errors (m/s) vs. Time (s)

..51
Figure 6-4: SR SPF Velocity Estimate Errors (m/s) vs. Time (s)53
Figure 6-5: Motor 2 Voltage (V) vs. Time (s)...56
Figure 6-6: Y Velocity Estimate (m/s) vs. Time (s) ...56
Figure 6-7: True Y Velocity (m/s) vs. Time (s) ...57
Figure 6-8: Prop Local Control Loop...58
Figure 6-9: Vehicle Control Loop ..59
Figure B-1: MaxCim Motor Spec Sheet [14] ...67
Figure B-2: Prop Testing Results ...69
Figure B-3: Motor Timing Pulley Spec Sheet [15] ..70
Figure B-4: Prop Timing Pulley Spec Sheet [15]...71
Figure B-5: Timing Belt Spec Sheet [15]...72
Figure B-6: Encoder Spec Sheet [16] ...73
Figure B-7: Battery Discharge Test Results [17] ...74
Figure E-8: ThreeDAFVsimworkingvelocity.mdl ...109
Figure F-9: drw_boardmount ...152
Figure F-10: drw_centbaseboardsidestandoff ..153
Figure F-11: drw_centbaseimusidestandoff ...154
Figure F-12: drw_eebattretainer ...155
Figure F-13: drw_imumount ..156
Figure F-14: drw_landingbaseplug...157
Figure F-15: drw_landinggearbase...158
Figure F-16: drw_landingspringchannel ..159
Figure F-17: drw_lipolybatthanger...160
Figure F-18: drw_lipolybatthangerretainerrod ...161
Figure F-19: drw_propshaft..162
Figure F-20: drw_propwasher ..163
Figure F-21: drw_pulleyboxextension ...164
Figure F-22: drw_pulleyboxmaxcim..165
Figure F-23: drw_recieverclipbar...166
Figure F-24: drw_recievermount..167
Figure F-25: drw_strutbasewiremount ...168
Figure F-26: drw_strutend..169
Figure F-27: drw_strutimuside ...170
Figure F-28: drw_strutlanding..171

ix

Figure F-29: drw_strutlongprop ...172
Figure F-30: drw_strutmount ...173
Figure F-31: drw_strutplug...174
Figure F-32: drw_strutpluglong ...175
Figure F-33: drw_strutshortprop ..176

x

LIST OF TABLES

Table 2-1: Prop Control Scheme ..8
Table B-1: MaxCim Motor Parameters [14] ..67
Table B-2: Prop Constants..68
Table B-3: Encoder Parameters [16] ..73
Table B-4: Parts and Components Information..75
Table B-5: Supplier Information ..76
Table E-6: Simulation File Relationships...108
Table F-7: Pro/E Files Information ..150

1

CHAPTER 1:

INTRODUCTION

With the advent of new technologies ranging from global positioning systems to faster,

smaller, and lighter computer processors, there has been a surge in development of

unmanned vehicles. The benefits of unmanned vehicles include the removal of

humans from harm’s way and a degree of maneuverability and flexibility in

deployment that has historically been unachievable when accommodations for a

human pilot were necessary. Unmanned and autonomous vehicles are currently in

development for use in air, over land, and in the water by both private and government

agencies.

The Autonomous Flying Vehicle (AFV) project at Cornell University has been an

ongoing attempt to produce a reliable autonomous hovering vehicle. The advantages

of a hovering vehicle over a fixed wing flying vehicle include the minimal space

required for takeoff and landing of the vehicle, maneuverability in obstacle-heavy

environments, and the ability to maintain a static position and orientation if so desired.

One of the more prominent demonstrations of autonomous hovering vehicle potential

applications is the annual Aerial Robotics Competition hosted by the Association for

Unmanned Vehicle Systems, International [7]. This competition draws research and

project teams from around the world to compete in predefined autonomous missions.

However, the competition is dominated primarily by converted hobbyist remote

control (RC) helicopters well suited to the competition’s focus on autonomous

navigation and artificial intelligence. While the AFV shares some capabilities and

potential applications with entrants in this competition, the AFV project specifically

2

has oriented its design efforts towards short range reconnaissance and multiple vehicle

formation flight. The formation flight application provides both a foundation for

another concept, encompassed in the airborne Phase Antenna Array (PAA) project, as

well as a demonstration of both single vehicle control and distributed multi-vehicle

control algorithms [2]. The requirements of these specific applications, discussed

further in the next chapter, include a level of precision, control, maneuverability, and

ease of interface that was not readily provided by solutions based on modified

available RC vehicles.

The legacy version of the flying vehicle was based on an uncommon, though not

unique, four rotor hovering vehicle design. The design was inspired by the purchase

of a remote controlled toy, the Roswell Flyer produced by Area 51 Technologies, that

uses the concept of speed control of four props, two rotating in each direction, to

enable human controlled vehicle hover. The toy was purchased by Professor Raffaello

D’Andrea, the advisor to the AFV project. Though the origin of this conceptual

design is unknown, there have been a number of research projects based on the idea.

The Hoverbot project at the University of Michigan attempted to construct a four rotor

hovering vehicle in 1993 by essentially tying together the tails of four RC helicopters.

The project was quickly abandoned due to hardware difficulties, the most notable of

which was the need to hand craft the pusher rotors necessary for the four rotor design

[12]. The PipeDream project team at the Queensland University of Technology has

designed and built a four rotor hovering vehicle based on model gas powered engines.

Their current version of the vehicle unfortunately suffers from inadequate thrust and

possible control issues. They are currently working on an improved design [11].

There are a number of additional projects that have also attempted to produce a four

rotor flying vehicle without success, including the X4-flyer in Australia and the

3

Gizmocopter in California [6], [10]. The most common problems noted seem to

revolve around inadequate thrust production and inability to produce a control system

capable of achieving stable hover, though most projects make note of intent to remedy

this in future versions.

A group in France claimed success in their attempts to control and track a four rotor

hovering vehicle. While they employed tethered communication and flight times were

limited, they were able to produce hands off hover flights that followed a simple

trajectory. The group used a modified version of a commercially available RC vehicle,

the Draganflyer IV, in order to focus on the stabilization and tracking issues inherent

in the problem without concern for the mechanical design [4]. The Draganflyer IV

actually appears to be a fourth generation version of the Roswell Flyer originally

purchased by the Cornell AFV team [8]. Another project, the Stanford Mesicopter

project, endeavors to produce a miniature version of a four rotor vehicle

approximately the size of a quarter. Though they share the same design concept and

control scheme, the scale of their project addresses very different design issues than

those of previously mentioned projects in aerodynamics, control, and fabrication [9].

The difficulty inherent in producing a total hovering vehicle system capable of

sustained, stable, untethered flight is evident from the problems encountered by the

assorted teams mentioned. In fact, many of the difficulties encountered by other teams

are mirrored in past phases of the Cornell AFV project. While past phases of the

project made headway in development of simple hover control systems and electronic

design, they were bogged down by implementation details and mechanical

shortcomings. At the start of the current phase of the project, the prior team had

produced a version of the vehicle which demonstrated certain conceptual

4

achievements, but was still incapable of stable hover flight due to a lack of adequate

thrust. In addition, the legacy vehicle relied on both power and communication tethers

and external sensing and processing [5], 0. The goals of the current project phase

included migration to a fully self-contained vehicle with onboard power and

navigation systems and wireless communication. Despite the burden of the additional

power and INS payload, the vehicle was also to be capable of reasonably long hover

flights. Additionally, a large degree of maneuverability was desired for potential

future demonstration of acrobatic flight maneuvers and their accompanying nonlinear

control algorithms. Meeting the above requirements would aid in the high degree of

precise control necessary for the PAA application discussed.

Because of the ambitious nature of project goals, the development of the next

generation of the AFV involved a complete redesign of the vehicle from the ground up.

The new vehicle would share little in common with previous versions beyond the four-

rotor hovering vehicle concept. Development of the new version of the AFV can be

easily divided into five major stages:

• vehicle conceptual design

• analysis and component-level design and selection

• fabrication, assembly, hardware testing, and re-design

• simulation development and verification

• control and estimation development for future implementation

Though these five stages occasionally overlapped and sometimes interfered with one

another, they can be discussed independently.

5

CHAPTER 2:

VEHICLE CONCEPTUAL DESIGN

The conceptual design phase included primarily the determination of the general

layout and design of the next-generation AFV. The first step in this phase was the

identification of design goals. After some debate, the team decided upon the

following fundamental vehicle requirements:

• Ability to hover – required for desired airborne phased antennae array (PAA)

application

• Maneuverability in all directions about hover – equally important in PAA

application for tight multi-vehicle formations

• Endurance of no less than ten minutes – ten minutes was judged a practical

minimum to allow for sufficient useful flight time between takeoff and landing

• Sufficient control effort beyond hover to ensure a controllable vehicle –

previous versions of the AFV could not produce more than 5% residual thrust

beyond hover and saturation prevented hover stability

• Onboard power supply and processing – realistic applications would not allow

tethers

In addition to these primary requirements, the following qualities were identified as

desirable if achievable without detriment to the primary requirements:

• Electric power supply – preferable for ease and safety of use and quiet, indoor

operation

• High residual thrust to hover thrust ratio –an acrobatic vehicle was desirable

for its ability to demonstrate controllability in difficult to perform maneuvers

• Minimal cost and complexity

6

APPENDIX A: BRAINSTORMING NOTES contains rough notes on the initial

brainstorming stage of the new vehicle design process. A variety of vehicle

configurations, propulsion methods, and general ideas were explored. Many of the

items on the list were either implemented or going to be implemented until the

problem they addressed was resolved by other means. For example, the use of several

constant speed thrust generation props in addition to smaller maneuver props was

heavily considered until the arrival of new battery technologies allowed for a

maneuverable vehicle with only four thrust/maneuver combination props. Though the

main thrust producing props could still extend the endurance and maneuverability of

the vehicle, the cost savings of utilizing a simpler four prop design was significant. As

an example of a brainstorming topic that was realized in the final version of the

vehicle, the wire-tensioned structure proved to be a beneficial idea that saved

significant structure weight while producing a vehicle body stiffness well beyond that

achieved by previous generation structure designs [5].

Ultimately we decided to stick close to previous designs, utilizing four electric motors

driven by an as-yet unselected battery technology. These four motors would drive

four fixed-pitch propellers. These props would provide the thrust necessary to counter

gravity while also providing sufficient residual thrust for control of roll and pitch (and

subsequently forward and lateral velocity), yaw, and vertical velocity. The nature of

the vehicle control was simple, yet clever. Of the four props, two would turn in the

clockwise direction while two would turn in the counterclockwise direction. The prop

type would match this rotation direction so that both are producing their most efficient

thrust while rotating in the expected direction. The similarly-rotating props would be

located opposite one another. Figure 2-1: Prop Rotation Direction provides a layout of

the four props and their rotation direction.

7

Figure 2-1: Prop Rotation Direction

At hover, all four props would be spinning at the same speed, producing zero net

torque about any body axis and zero net force on the vehicle once gravity was taken

into account. In order to roll or pitch the vehicle, one prop would speed up while its

opposite partner in rotation direction would slow down. The result was a roll or pitch

moment caused by the difference in thrust produced between the two props. However,

since both props changing speed, one increasing while the other decreases, share a

rotation direction, the reduction in drag on one prop is countered by the increase in

drag on the other prop, resulting in no net torque about the yaw axis of the vehicle.

Similarly, since one prop has sped up while the other slowed down, the net thrust has

not changed maintaining zero net force vertically. When the vehicle needs to yaw, a

pair of similarly-rotating props are sped up while the pair of props rotating in the

opposite direction are slowed down. Since similarly rotating props are located across

from one another, speeding up or slowing down both produces no roll or pitch body

moment. Since two have sped up while two slow down, the net thrust also remains

8

constant, producing no change in vertical acceleration. However, since the two props

spinning faster share the same rotation direction, the prop drag produces a nonzero net

yaw torque. The last vehicle degree of freedom controlled, vertical acceleration, is the

simplest of the four and is controlled merely by speeding up or slowing down all four

props equally. Table 2-1: Prop Control Scheme depicts a summary of the vehicle

control scheme.

Table 2-1: Prop Control Scheme

 ∆ Prop 1 ∆ Prop 2 ∆ Prop 3 ∆ Prop 4
∆Roll+ + 0 - 0
∆Pitch+ 0 - 0 +
∆Yaw+ + - + -

∆A- (up) + + + +

Note that the four prop layout is a minimal and efficient design. Unlike a helicopter’s

inefficient use of a tail rotor purely for cancellation of main rotor yaw torque, all

power available to the AFV is utilized in thrust production or overcoming its

associated propeller drag forces. Though the helicopter arguably reclaims some of this

lost power through the efficiency of the large diameter main rotor, the four prop

design also lends itself to a simple control scheme. As noted above the vehicle has

direct control over four of its degrees of freedom (the remaining two, X and Y position,

being coupled to Roll and Pitch because of the component of thrust acting along these

axes when the vehicle is banked) through the simple speed control of the four motors

driving the four props. The simple motor speed control employed eliminates the

mechanical complexity of helicopter rotor blade pitch control linkages. In addition,

the use of fixed pitch propellers provides some further gain in efficiency due to the

asymmetric prop blade design. Helicopter blades, on the other hand, have

predominantly symmetric cross sections due to some details of variable pitch control.

9

The structure settled upon would consist of a series of struts extending from the

vehicle center to each motor/prop module. Four stiffening wires would be affixed to

the end of each strut. These wires would travel to the end of a vertical strut extending

above and below the vehicle center and to each of the strut ends adjacent to the current

strut. The wires could provide significant stiffening of the struts without adding

significant weight due to the high Young’s modulus of steel. The diameter of the wire,

the height of the vertical center struts (and thus the angle of the wires affixed to the

strut ends), and the thickness of the struts themselves could all be varied as design

parameters.

The details of specific component selection and design can be found in the following

chapter. Information about components specifically related to the EE side of the

design effort (eg, the Inertial Measurement Unit) can be found in the 2003 electronics

documentation [1].

10

CHAPTER 3:

ANALYSIS AND COMPONENT-LEVEL DESIGN AND SELECTION

Once a general vehicle conceptual design was settled upon, the team needed to make

specific choices regarding component selection and design. The mechanical aspects

of vehicle design could be divided into the design of the battery/motor/gearing/prop

combination (thrust-producing module) and the design of the overall structure. The

design scale was driven by a preliminary electronics weight estimate. The estimate of

1.8kg heavily drove the remainder of design as this value coupled with structure

weight determined the effective “payload” that the four thrust-producing modules

would have to lift in addition to their own weight. The thrust modules needed to be

able to each lift their own weight, one quarter of the expected electronics weight, and

one quarter of the structure weight while supplying a residual amount of thrust

sufficient for hover stability and maneuverability. Based on work with previous

versions of the vehicle, it was decided that the residual thrust should fall in the range

of 0.15 – 0.3 g excess thrust beyond vehicle weight. If higher values were obtainable,

these were obviously preferable.

Much of the design effort fell into the development of a proper combination of

batteries, motor, gearing reduction, and propeller to produce an effective thrust

producing unit. Though the four components of the thrust unit were strongly coupled,

variability in choices about gear ratio, number of cells to use in a battery pack, and

prop diameter and pitch enabled a fair amount of latitude in treating these four

categories somewhat independently. Minor tweaks could then be made to bring them

all together as an efficient system. With this freedom, we worked to select what was

11

considered the best option available in each of the four categories. The specific

analyses necessary to finalize the design could then be performed.

Motors

There were several options available in motor selection. Not only were there

numerous brands to select from, but motors seemed to fall into three general

categories. These categories included commercial brushed motors, commercial

brushless motors, and hobby supplier brushless motors. Hobby supplier brushed

motors were also available, but in limited sizes. The principal concern in motor

selection was power output versus motor weight, as any weight added would require

power expenditure to keep it aloft, with a secondary desire for reliable and long-term

performance. Additionally, motors with an onboard encoder for brushed motors or

Hall Effect sensors for brushless motors were ideal for ease of local motor speed

control and brushless commutation. Finally, the motor performance level needed to

fall within the desired range of motor performance. Neither a tiny nor an oversized

motor could satisfy the requirements regardless of how efficient they might be.

Upon examination of motor specifications, it quickly became evident that brushless

motors were able to provide much higher power to weight ratios than their brushed

companions. This benefit seemed to be at the expense of easily available onboard

sensing and simplicity of driving circuitry. While brushed motors need only a simple

DC voltage applied to their terminals, brushless motor driving circuitry can be very

complicated due to the complexities inherent in driving their internal torque-producing

coils properly. The dramatic improvement in power to weight ratio of brushless

motors as compared to brushed motors (the brushless producing as much as double the

12

power for some brands compared) was judged sufficient to work around the

difficulties surrounding brushless motor commutation and sensing.

Having settled on brushless motors, it was still necessary to decide between hobby and

professional-grade brushless motors. The hobby motors, built specifically for flight

applications in some cases, seemed to outmatch the professional motors in power to

weight ratio. Some of this was certainly due to the lightweight, less robust

construction of the hobby motors, though there was also some slight ambiguity in

exactly how to interpret the rather liberal hobby motor power ratings. While

professional grade motors were rated conservatively for high duty cycle operation for

indefinite periods of time, the hobby brushless motor specs were almost certainly

intended for brief periods of high power output with a large degree of convective

cooling. Separation of liberal power ratings from true design advantages achieved

through design specifically for flight (such as the use of lighter weight metals in motor

cans) proved difficult. However, when some of the best performing professional

brushless motors were awarded a 50% power bonus in anticipation of potentially

overdriving them, they still only just matched the specs provided by hobby motor

manufacturers.

In addition to the power to weight ratio differences, the hobby brushless motors

seemed to have fewer options available for high-resolution onboard sensors as

compared to the professional motors. This lack of resolution was likely due to the

same characteristic that aided in higher power ratings. The hobby motors use a few

large diameter wire motor coils rather than the much higher number of windings found

in commercial motors. This difference was easily observable in the significant

cogging torque present in the hobby motors. Ultimately, once again, it was decided

13

that the benefits of the hobby brushless motors were significant and the primary

disadvantage, the low resolution onboard sensors, could be worked around with the

use of an external encoder geared to the motor drive shaft or the propeller shaft.

Initially the Astro 020 motor was selected. It had what was considered to be sufficient

power ratings for minimal weight and the supplier was willing to provide us with

custom versions (actually discontinued models) with Hall Effect sensors. The Astro

motors also came with compact lightweight motor control boards, making them an

attractive choice. After testing, however, it was decided that the motor speed control

supplied by the Astro controllers was not of sufficient resolution and consistency to

suit our needs. We chose instead to design custom motor control circuitry. This

control circuitry allowed the motor to accept RPM commands and perform local

feedback control on the motor/prop combination using the external encoder as a

feedback sensor. The Hall Effect sensor was used primarily for ease of driving the

motor coils.

Extensive work with the Astro 020 motors produced repeated motor failures.

Examination of one failed motor revealed that, partly due to a somewhat questionable

rotor design, the permanent magnets attached to the motor rotors were coming loose

and jamming the rotors. We continued to encounter failures even after supplementary

cooling fins were added to the motors and limits were placed on commanded motor

torque. When the supplier repeatedly failed to deliver replacement orders in a timely

fashion, we decided that a new motor supplier needed to be found. MaxCim Motors

advertised a motor that looked promising. Discussions with the owner of the company

revealed that the MaxCim motor possessed a higher resolution Hall Effect sensor, a

significantly more robust design, significantly higher power ratings, and only slightly

14

higher weight than the Astro 020. The weight increase, the only perceived

disadvantage, proved especially insignificant compared to the anticipated total vehicle

weight. The owner also promised, and delivered, the MaxCim motors with a short

turnaround time. The new motors proved extremely reliable and are currently the

motors used onboard the AFV. Extensive use of the new motors produced no

difficulties or failures. Specific motor characteristics can be found in APPENDIX B:

COMPONENT CHARACTERISTICS.

Props

The initial search for propellers for the vehicle was confined to propellers

commercially available in both pusher and tractor configurations (two of each were

necessary for the vehicle control method employed). While custom props had been

discussed, the cost would be large and the team lacked individuals with any

knowledge of propeller design. Instead we looked into finding the best available

props for efficiency in hover from the available list of props. This entailed both

research into the performance of props and the purchase of an assortment of available

propellers for testing. General web research and experimentation both quickly

revealed that there were certain prop characteristics best suited for our application.

Since hover performance was critical, the best props in forward flight applications

were not optimal for use on the AFV. General web research (hobbyist forums, etc)

revealed that the most efficient prop, as defined as static thrust over input power, was

a large diameter, minimal bladed low pitch prop. An upper limit on prop diameter was

imposed by both the weight of the prop itself and the gearing necessary to make a

reasonably sized motor turn a prop of that size. A lower limit on the number of blades

was imposed via simple balance concerns – two is a practical minimum, though there

was mention of the use of counterbalanced single bladed propellers in endurance

15

competitions. A boundary on the pitch of the prop was imposed by the nature of the

inefficiency of higher pitched props. In higher pitched props designed for forward

flight applications, the pitch is so large that at zero forward speed the blade is

significantly stalled, yielding very inefficient thrust production. As the prop moves

forward at an increasing rate, the effective pitch angle of the prop in the oncoming

flow is reduced until, at one point, flow once again becomes attached and the prop

performs close to its optimum. Onboard the AFV, the prop will be operating primarily

in zero forward speed conditions as the vehicle will predominantly be operating in

hover. The best prop performance can therefore be achieved by selecting a prop that

will produce fully attached flow at zero forward velocity. The critical range appeared

to be a 10 - 14 degree attack angle at 0.75 chord length to ensure fully attached flow

under zero free stream velocity conditions. Higher angles will produce stalled blades

while lower angles will suffer from higher drag to thrust ratios than this ideal range.

The optimum choice at this point was clearly a low pitch, large diameter, two-bladed

prop. Investigation revealed a general consensus among the hobbyist community that

APC propellers excelled in the efficiency, weight, and stiffness categories important to

propeller performance. Designs based on their props available in both pusher and

tractor configurations yielded a workable vehicle solution with sufficient residual

thrust for control, though it would have required the addition of a few main thrust

producing props. This configuration was necessary due to the inefficiency associated

with the fact that the props were above the optimum 10 – 14 degree angle of attack

condition. Additional searching revealed an 18x6 (diameter x pitch, inches) “3D fun

fly” propeller offered by APC. Though this prop was only available in tractor

configuration, inquires revealed that APC was willing to provide a custom-made

propeller for a reasonable fee. The fact that the pusher version would merely be a

16

mirror image of the existing prop removed the burden of custom prop design from our

shoulders. The use of these new props coupled with the LiPoly battery technology

that appeared midway through the project provided a tremendous boost to anticipated

vehicle endurance and maneuverability and enabled us to scale back to a four-prop

vehicle. The cost savings from only purchasing four motors, controllers, and battery

packs rather than eight almost paid for the price of the custom propeller, and certainly

would were multiple vehicles to be produced in the future. The 18x6 was settled upon

for use in the final vehicle.

Note: Attempts to form a vehicle design around the props revealed that there was no

simple way to perform a proper propeller analysis. So many parameters depended on

specific details of prop design that analyses eventually relied upon a few freeware

prop analysis programs, namely ThrustHP and PropSelector, and data from the

manufacturer to make initial selections. Due to approximations and inaccuracies in

these programs, though, they could not be relied upon for detailed design work. Later

design, such as gear ratio and battery configuration selection, was done instead with

the information obtained experimentally from the props ordered. Because the custom

prop ordered was simply a mirror image of an available off-the-shelf design, we were

able to conduct testing and identification of prop thrust and drag coefficients before

the expense of custom prop production was invested. This identification proved

valuable as even the data provided by the manufacturer of the props did not match

with the values obtained in testing. It was only with the experimental data from

testing of the actual prop that we were able to confidently move forward with vehicle

design. Values obtained from testing can be found in APPENDIX B: COMPONENT

CHARACTERISTICS.

17

Gearing

Due to the use of a large diameter prop that requires a fair amount of torque at a

relatively low speed with a brushless motor, which tends to operate at high speeds and

low torques, it was obvious that a relatively high gear reduction would be necessary.

Unfortunately, the selection of off-the-shelf gearing packages was limited primarily to

3.5:1 and lower reductions. The decision was therefore made to build a custom

gearbox with as close to the ideal reduction as was possible. Analysis revealed that

the ideal gear ratio for the size of prop considered was significantly higher than a 7:1

reduction. However, after a reduction of 6.5:1 or so, there was diminished return for

increased gearing. Given these results and available pulley sizes, the decision was

made to go with a 6.7:1 reduction. This reduction was settled upon due to the

additional restriction that the gearing reduction should be kept to a single stage in

order to both maximize gearing efficiency and avoid the weight and expense of adding

additional stages.

Unfortunately, a general rule of thumb regarding gearing is that no stage should

provide greater than a 6:1 reduction in order to maintain a proper gear mesh. One

proposed solution was the use of pulleys and belts rather than spur gears. Initially the

option was suggested in order to allow for possible changing of gear ratios (by careful

center to center distance, pulley size, and belt length selection) without making

changes to the pulley box hardware. However, upon testing a version with a pulley

belt reduction, we found that the pulley’s appeared to operate with higher efficiency

and much less noise than the high-speed spur gear equivalent. Testing further

revealed that if the belt was kept sufficiently short with reasonable tension, the system

could support high frequency control effort changes without chatter issues associated

with stretching of the belt encountered for lower tension arrangements. In addition, it

18

was possible to trade off some center-to-center pulley distance and belt length for a

better mesh between the belt and the smaller of the two pulleys. This trick allowed for

a 100:15 tooth ratio, or 6.7:1 reduction. This brought the reduction very close to the

best practical reduction ratio.

Note: the specific pulleys selected both have set screw hubs rather than the available

Fairloc hubs. Fairloc hub pulleys were initially purchased, but due to the press fit join

between the hub and the pulley there were several instances of pulley failure as the

press fit came apart. Once the hub had vibrated loose the pulley itself could spin

freely preventing any torque transmission. The set screw pulleys resolved this

problem as the set screw passes through both the pulley material and the hub, acting

essentially as a pin to prevent relative motion of the two parts. Please see APPENDIX

B: COMPONENT CHARACTERISTICS for supplier information and details on the

specific pulleys and belts used.

Batteries

The first step in battery selection was consideration of various available battery

technologies. NiMH battery cells appeared to be the best in power density (power to

weight ratio) while still being able to handle current drain at the rates anticipate for the

motors (~25 amps). In particular, the best cell seemed to be the newer NiMH

technologies from Panasonic. The HHR300SCP cell could handle a 20 amp drain rate

for the targeted endurance, 5 – 10 minutes. The team purchased several packs and

conducted extensive testing. This testing revealed large variability in performance of

individual cells, reflected in abrupt but short drops in voltage near the end of the drain

of the battery pack. While some cells could provide their current for nearly the entire

rated capacity, other cells quit much earlier. Researching battery technologies did

19

reveal one means of increasing cell performance. The retailer who sold the NiMH

cells primarily to RC hobbyists used a technique called cell “zapping” which entails

discharging a large bank of high voltage capacitors through each cell. What little

information available on this process suggested that the high voltage pulse spot-welds

the internal connections of the batteries, thus reducing their internal resistance.

Testing confirmed a significant (10%) improvement in voltage at a given drain rate as

compared to unzapped cells. Unfortunately the lack of cell performance consistency

still existed.

As this testing was going on, a few battery manufacturers were just beginning to

market a new battery technology with impressive power to weight ratios. Some of the

latest Lithium Polymer cells were able to handle large current drain rates (on the order

of 7 – 10 A per cell versus the minimal .1A or so drain rates of previous LiPoly cells),

but were typically three times the energy density of the best NiMH cells available. As

batteries were the principle factor determining the weight of the vehicle, both directly

through their own weight and indirectly through the motors and structure required to

lift this weight, the savings accorded by moving to the LiPoly cells enabled previously

unexpected performance. The LiPoly batteries not only enabled maneuverability on

the order of 0.9 g excess above hover thrust, but also stretched the potential endurance

to 15 – 25 minutes. In addition to these weight benefits, the cells themselves were

much more homogenous in performance, providing consistent and reliable

performance from cell to cell as compared to the NiMH cells studied. This

consistency also allowed for the placement of cells in parallel to maximize battery

pack performance and flexibility. The only disadvantages perceived in use of the

LiPoly cells were limited early availability, which was remedied through contact with

a distributor capable of supplying our relatively large demand, and cost. For

20

comparable total power provided, the LiPoly cells cost roughly 60% more than the

NiMH technology cells. However, this cost was judged well worth the value of a

lighter power source (and correspondingly scaled down vehicle) and more reliable,

repeatable performance. The specific layout of the battery pack (number of cells in

series/parallel) was left as a final design parameter to be selected as part of the

integration of props, gearing, motors, and batteries into a single thrust producing

module. Please see APPENDIX B: COMPONENT CHARACTERISTICS for

discharge plots, supplier information, model number, and further details on the battery

cells used.

Thrust Module

As mentioned previously, the best options available in propellers, motors, gearing, and

batteries were selected. However, there was a good deal of matching done in this

process. The gearing served to match the motor torque-speed curve as well as was

possible to the prop drag-rpm curve. Insufficient gearing would cause the system to

waste power as the motor became torque-limited below its max efficiency point, and

an excess in gearing could limit the maximum speed of the prop, and thus the

maximum achievable thrust for a selected prop. Similarly, once the motor, gearing,

and prop was selected, the battery cells, available nominally in 3.6V 1200mAh units,

had to be assembled in parallel and series to create the proper voltage/current source to

match the rest of the thrust system. In some sense, gearing and current handling

capability of the batteries were coupled. A large number of batteries in parallel would

allow large current to flow, which would in turn allow large torque to be produced in

the motor. This large torque could be passed through less gearing to turn a prop.

However, keeping the weight of the batteries constant, more cells in parallel means

that the total voltage of the pack would be lower, limiting the maximum speed of the

21

motor. However, since less gearing is used in this scenario, the maximum speed of the

prop may well come out to be roughly the same as in the higher voltage, higher geared

case.

This situation only becomes more complicated with the addition of PWM for motor

voltage control, its associated effects, and battery cell internal resistance. In order to

get a good rough idea of the desired operating point, however, basic analyses can be

performed by choosing a current draw and voltage. The gearing ratio is then selected

to force the motor to operate at that point for a given desired prop speed. The batteries

can then be selected to provide this current at the stated voltage. The equations

governing this relationship follow.

For an applied voltage, V, and desired prop RPM, α/G, where G is the gear ratio, the

torque produced by the motor is:

 ()v
i

m kV
R
k

ατ −= (3-1)

where R, ki and kv are parameters defining the motor performance with units Ohm,

Nm/Amp, and Volts/RPM, respectively. In order for the motor to remain at a given

speed, the torque produced by the motor applied to the prop, G*τm must cancel the

nominal drag on the prop, D.

 0
*

=
−

=
t

m

J
DG τ

α& (3-2)

 2)/(* GkDG dm ατ == (3-3)

22

where kd is the coefficient of drag of the prop and Jt is the adjusted mass moment of

inertia of the prop and motor rotor. The above relationships can be used to get a good

idea of maximum battery/motor/gearing/prop thrust performance by inserting in the

maximum voltage and current draw of the battery pack. An estimate of endurance can

be obtained by calculating the hover point of the system from the relationship “thrust

= kt(α/G)2,” setting thrust equal to the weight of one quarter of the vehicle and solving

for alpha. This alpha can be used to compute a motor current draw. When this current

draw is compared against the capacity of the battery pack, a rough approximate of

endurance can be obtained.

It should be noted, however, that this lower current draw is theoretically obtained by

applying a lower voltage to the system. PWM, the method used to obtain this

effective lower voltage, has its own effects on battery performance. A more accurate

analysis was developed by Sean Breheny on the EE side of the project. His analysis

was used for the final battery pack configuration and gearing selections reflected in the

current AFV. Information about his analysis can be found in the 2003 electronics

documentation [1]. The above simplified method was suitable for all but final value

tuning, though, and was used to initially select the smaller range of prop, motor,

battery combinations reflected in the previous sections’ discussions. A simple

spreadsheet was assembled to compare maximum thrust and an endurance estimate

across configurations. The weight of the vehicle was calculated simply as the sum of

some constant mass (EE components, structure, etc) and some mass that was scaled

with the number of battery cells and motor and prop sizes. This spreadsheet, motor

analysis.xls, can be found on the AFVMechECD in the Analysis&Simulation folder.

23

The final battery configuration settled upon was an array of 2 cells in parallel by 7

cells in series per motor. This configuration yielded roughly 15 minutes endurance

with a maximum vertical total thrust of 0.79 g above hover. An additional

approximately 8 minutes of endurance and 0.15 g vertical thrust can be obtained by

substitution of the 2x7 cell array with a 4x8 cell array. The maneuverability of the

vehicle does not increase substantially because though the residual thrust increases

drastically with the addition of more batteries, so too does the weight of the vehicle.

The disadvantages to moving to the larger packs are the substantially higher battery

cost (more than double) and the increase in prop hover RPM. The latter would

necessitate a stiffer structure to ensure that the range of prop operating frequencies

does not overlap the natural frequency of vehicle structure flexible modes.

In addition to the design details associated with the core thrust producing components,

an encoder was selected to provide the high resolution sensing of prop speed necessary

for local feedback control of the prop. The encoder selected was a fairly standard

1024 CPR optical encoder provided by US Digital. For details on this encoder, please

see APPENDIX B: COMPONENT CHARACTERISTICS.

Structure

The structure of the vehicle needed to satisfy multiple requirements. Most generally,

it needed to hold the various parts of the vehicle together while remaining as

lightweight as possible. Additionally, the structure needed to have a modal natural

frequency sufficiently large to avoid resonance with vibrations caused by the rotation

of the propellers. The most effective solution to the design requirements seemed to be

a wire-stiffened structure. A structure consisting primarily of members in pure tension

and compression could provide the most efficient use of material for structure stiffness

24

and strength. Thin-walled aluminum tubing was decided upon for the radial

compression members since it could provide the minimal strength required of the

compression members while maintaining the stiffness required to prevent buckling.

Stainless steel was used for the tensioning wire for its superior stiffness to weight ratio.

Because the wire is only loaded in tension, the cross section can be shaped almost

arbitrarily, allowing for the use of compact and flexible stranded wire.

An additional benefit of the wire-stiffened structure design, beyond its efficient

conversion of weight to stiffness, is the ability to change the stiffness of the vehicle

easily. By substitution of the wire with a similar wire of larger or smaller diameter,

the stiffness and weight of the vehicle can be changed should it be decided that the

current size is insufficiently stiff or overly and unnecessarily heavy for a given

operation range of the vehicle propellers.

In order to perform an analysis to determine the appropriate wire and compression

member sizes, a combination of ANSYS finite element modeling and a MATLAB m

file was used. The MATLAB file fourpropsplotted.m performs a simplified analysis

of the structure by examining the displacement of the end of a compression member

co-located with the motor/prop combination. The compression member is assumed to

be held fixed in rotation and displacement at the end that meets the center of the

vehicle. Similarly, the wires connected to the end of the compression member where

the motor/prop combination is located are assumed to be held fixed at their other ends.

This is not an entirely valid assumption as two of the four wires run to adjacent

motor/prop assemblies at the end of adjacent compression members. However, for the

purposes of simplification, it was assumed and the more complex potential modes

were left to ANSYS analysis.

25

Having constructed the problem in this manner, the code then effectively displaces the

motor/prop combination in each of its principal directions, namely radially (along the

axis extending from the vehicle center through the motor/prop combination),

tangentially, and vertically, and determines a spring constant as a combination of

stiffness contributed by the wires and the compression member. This spring constant

is combined with the mass lumped at the end of the compression member consisting of

the motor/prop assembly to produce an estimate of the natural resonant frequency of

the arm in the direction examined. The same method is applied to rotational

displacement about each of these three directions. The output, then, is a list of six

computed frequencies, all of which must be reasonably higher than the highest

frequency of normal prop rotation. This would ensure that there was no adverse

interaction between prop rotation and structure vibration.

The expected hover prop rotation rate was approximately 66Hz given the prop

coefficient of thrust kt, the final vehicle weight of 6.2 kg, and the relationship between

prop RPM and thrust production. The absolute highest prop rotation rate was found to

be 90Hz given the limitations of the battery packs. It was therefore decided that the

minimum resonant mode of the vehicle must have a frequency greater than 100Hz.

This may seem somewhat close to the upper range 90Hz value, but the vehicle would

rarely be performing at this peak level and even then for only very brief spurts of time.

In addition, the least-stiff mode of the vehicle turned out to be the torsional mode

about the radial direction, which is the least likely mode to be excited from imbalances

in the prop. In order to help stiffen the structure against this mode, the compression

member ends with “wings” were added. These extensions result in larger restorative

torque being generated by the circumferential wire in response to rotation of the

motor/prop combination about the axis of the compression member.

26

In order to verify the validity of the MATLAB file analysis, an ANSYS finite element

model (FEM), Structure.db, was constructed. Though the final vehicle design was not

constructed explicitly in an FEM, cases compared between the ANSYS FEM and

MATLAB suggested that the MATLAB code was in agreement on modal shapes and

in fact slightly conservative in its computations of modal frequency as compared to the

more accurate ANSYS model, lending validity to use of the much more flexible

MATLAB code to do the iterative design work and final wire/compression member

size determinations. The files for both methods of structure analysis can be found in

APPENDIX E: ELECTRONIC CONTENT.

In the end, a combination of material availability and MATLAB results determined the

member dimensions. 1/16” 19-strand SS wire and 3/8” OD 0.028” wall thickness

aluminum tubing was selected. Though these two selections work well for the vehicle,

future versions may consider more strands of a smaller diameter (to maintain roughly

the same cross-sectional area and stiffness) for the wire to aid in routing and handling

of the wire. Also, given the superior performance of the final thrust modules, weight

became less of a constraint on vehicle performance. Considering the relatively small

percentage of total vehicle weight that structure comprises, thicker walled aluminum

tubing could be considered. Though sufficient for the task, the thin-walled tubing is

somewhat sensitive to buckling if loaded incorrectly. Please see Table B-4: Parts and

Components Information in APPENDIX B: COMPONENT CHARACTERISTICS for

supplier information and part numbers for the structure components.

27

CHAPTER 4:

FABRICATION, ASSEMBLY, HARDWARE TESTING, AND RE-DESIGN

Once all components were selected and all major fabricated parts were designed, what

remained was the fabrication, assembly, hardware testing, and design iteration of the

various vehicle subsystems. Except for the specific comments made below,

fabrication and assembly is left to the skill and experience of the individual.

Pro/E Model

Figure 4-1: Pro/E Model of Assembled Vehicle

In order to aid in fabrication and redesign of the vehicle, it was first modeled in its

entirety in Pro/Engineer. The Pro/E model can be found in the folder labeled ProE on

the AFVMechECD. In order to access the model, simply specify this directory as the

working directory. AFVParts.xls, also located on this cd at Documentation\2003-

28

2004\Designof4RotHoverVehicle\Part Data, contains a complete list of all final

version parts present on the vehicle in the worksheet labeled ProEparts. The Excel

file also contains a full list of all non-fabricated mechanical parts (eg, motors) along

with supplier information in the worksheet named Supplier&Stock info. The

ProEparts table is reproduced in Table F-7: Pro/E Files Information in Appendix F:

Pro/E FILE INFORMATION AND MACHINING SPEC SHEETS. The

Supplier&Stock info table is reproduced in part in Table B-4: Parts and Components

Information in APPENDIX B: COMPONENT CHARACTERISTICS.

A few conventions were employed for simplicity in understanding and navigating the

Pro/E model. All part file names begin with prt_. Similar convention applies to

assemblies (asm_) and drawings (drw_). Drawings will be named to match their part

with the exception of the file type prefix. Printouts of the drawings can be used for

easy and accurate machining of replacement parts, should this become necessary. In

all cases, part names should be reasonably intuitive, but when in doubt a part name can

be easily obtained by clicking on it in its parent assembly.

All units are English, and are consistent with the Pro/E unit convention. Material

density has been assigned to all parts to properly represent the mass of the finished

part. For simple machined parts, this density is simply the density of the material they

are machined from. For parts like the EE boards and motors, the density was obtained

by dividing the final measured weight by the model volume. The unmodeled mass of

the wire and turnbuckles are absorbed into a slightly higher density associated with the

vehicle struts. The use of correct part densities allows the use of the Pro/E provided

mass moment of inertia matrix for controller design.

29

In the fully assembled model, asm_bodycent.asm, all plastic parts constructed from

Nylon 6/6 appear brown while all parts constructed from aluminum (6061 T6 or better

alloy, except for small diameter threaded rod tubes) appear silver.

All screws used on the vehicle, excepting set screws and the IMU mounting screws

but including the board mounting standoffs, are English 4-40 of varying lengths.

These screws require a hole diameter of 0.089” for holes to be tapped, and 0.11” for

through holes. Screw head types are specified in the Pro/E model, but should be

apparent from application: pan heads where a wide or flat head is desired, deep socket

heads where greater torque is desired and clearance allows.

The only remaining fastener type used are 5/64” rolled steel spring pins of varying

length. These holes remain empty in the Pro/E model, but their location and function

is obvious upon inspection of the model.

Assembly Comments

The majority of the vehicle assembly process is intuitive given the Pro/E model.

There were, however, a few initial assembly tips that helped in the fabrication of a

more robust vehicle.

• Tight tolerances are necessary in the fabrication of the pulley-box or the prop

shafts. Any play either due to gaps between the shaft and the bearings, or

between the bearings and the pulley-box will result in chatter and vibration

when the prop is rotating. It is recommended that fine-grit sandpaper be used

to do the final thousandth of an inch of material removal on the prop shafts to

ensure a tight, almost press fit. The use of a sufficiently sharp bit with ample

cutting fluid while machining the pulley box should be enough to ensure a tight

30

fit of the bearing into the pulley box. If absolutely necessary, a small bit of

glue can be used to seat the bearing permanently in the box, though care must

be taken that no glue makes its way into the bearing itself.

• Spring pin press fits should not be removed once assembled. Rather than

permitting disassembly and reassembly of components by use of a loose spring

pin press, the spring pins should be tightly pressed to ensure permanent

assembly. Spring pins were used for their weight savings, not for their

potential ability to be disassembled. In addition, parts joined by pins should be

match drilled wherever possible.

• Care should be taken in the order in which components are pinned. All pins

should be inserted via a press, and the order should be chosen such that the

most difficult to assemble joints are accomplished first.

In addition to these one-time assembly details, there are a few procedures that should

be kept in mind should any non-destructive assembly or disassembly become

necessary. A detailed list of instructions is included in APPENDIX D:

ASSEMBLY/DISASSEMBLY INSTRUCTIONS.

Some iteration was necessary to arrive at the final vehicle design. These iterations,

including items such as design of shock-absorbing landing feet, implementation of a

disassembly joint in the landing legs, and re-design and re-fabrication of the pulley-

boxes to solve torsional flexibility issues, are all reflected in the final versions of the

Pro/E model and the final vehicle itself.

There is still room for potential improvement of the AFV beyond those critical re-

design steps already taken. While not necessary, the following improvements would

31

be desirable in either future versions of the vehicle or, given time, modifications of

specific parts of the current vehicle:

• Lose weight where possible – the extension piece connecting the pulley box to

the compression member end in particular is over-designed.

• Stiffer upper plate – the upper plate is currently constructed of plastic to

preserve weight. While it is sufficient, it deforms noticeably when fully loaded.

The addition of either a stiffening metal plate or the redesign of the plate

would be beneficial as the deformation of this plate affects the EE board

mounting.

• Changes to structure wire/tubing sizes – as mentioned in the structure section

above, smaller diameter stranded wire or thicker walled aluminum tubing may

be beneficial.

• Stiffer center strut mount – the current mount relies heavily on the strength

provided by the steel IMU case. The mount can be re-machined from

aluminum or stiffened by the addition of an aluminum insert in the event that

the current IMU is no longer used.

Once the individual vehicle components were verified, it was necessary to assemble

the entire vehicle for a whole-vehicle hardware test. In order to work with the

assembled vehicle hardware, a landing platform that functioned also as a tethered

power supply and vehicle constraint was constructed. In addition to this landing

platform, a prop testing rig was also constructed for identification of prop parameters

necessary in eventual control design and safe testing of an individual thrust module

without concern for securing the entire vehicle.

32

Prop Testing Rig

Though analysis can answer many questions, ultimately testing confirmed the validity

of thrust module analyses. A special testing mount was constructed for identification

of prop parameters and testing of motor/pulley-box/prop combinations and local

control. The prop testing rig can be used to perform thrust measurements by

weighting or counter-weighting it appropriately. It can be converted to work similarly

as a drag testing station by simply remounting the arm of the rig in the appropriate

pivot hole. It can also be used as a secure and safe test bed for motor controller

development and propeller parameter determination. It consists primarily of a

mounting plate, which can be clamped to a convenient surface, a 1024 CPR digital

encoder for arm angle information, and a boom arm that can, with the appropriate

adapter installed, mount a full motor/pulley box/prop assembly. A vice applied at the

pivot of the arm can lock the arm in place when the angular degree of freedom is not

required of the rig. Figure 4-2: Prop Testing Rig depicts the testing rig fully

assembled for thrust testing. Note the hole and channel cut for remounting the boom

arm for torque/drag tests.

33

Figure 4-2: Prop Testing Rig

Landing Platform

In addition to the fabrication of the vehicle itself, it was decided that a special landing

platform for the vehicle should be constructed. This platform had the initial purpose

of providing a primarily open elevated surface for the vehicle to take off and land on

in order to avoid the complications caused by propeller airflow interactions with the

ground (ground effect) in takeoff and landing. The functionality of the platform was

34

expanded to include a leveling capability for the platform in order to help initialize the

IMU and subtract the proper gravity vector. In addition, the platform was mounted on

the top of a mobile cart which could transport the large lead acid battery supply

employed in tethered power flight of the vehicle. The large variable resistor array

used to help the lead acid battery source simulate the resistance of the onboard battery

packs is also mounted conveniently on the cart. The top is removable for

transportation and storage of the cart.

The final function of the cart was to constrain the vehicle during early hardware and

controls tests. High tensile strength braided fishing line was used to tie the vehicle

down to the platform. Depending on the specific test being conducted, various lengths

of constraint tether could be played out. Even before any controller was developed for

the vehicle, vehicle “hover” tests were performed by ramping up all four propellers to

just above hover speed. This confirmed the absence of problems with excitation of

vehicle flexible modes at any prop speed tested. In addition, tests of this nature helped

test proper interaction of various system components, such as the communication

between the main EE boards and the individual motor control boards.

Later testing of hover controllers utilized the constraint of the platform and fishing line

to prevent the vehicle from flipping or allowing contact between a prop and any

nearby objects, including the platform itself. This was a benefit particularly when

controllers that turned out to be unstable were tested, though excessive constraint

prevented proper knowledge of the effectiveness of an apparently stable controller

because of the nonlinear interaction between the constraints and the vehicle. Figure

4-3: Landing Platform depicts the landing platform with all accessories mounted.

35

Figure 4-3: Landing Platform

36

Vehicle Testing

Figure 4-4: Fully Assembled AFV

Figure 4-4: Fully Assembled AFV depicts the fully assembled vehicle. Once the

various vehicle subsystems were verified, the vehicle only needed a simple control and

inertial navigation system (INS) before we could commence hover tests. The simple

INS was developed by Sean Breheny. It consisted primarily of low pass and high pass

filtering of the IMU data in an attempt to remove noise and constant bias from the

measurements. The measurements were then rotated into the global coordinate system

and integrated in order to keep track of global state. For further details on the INS

used, please consult either the 2003 electronics documentation or currfilterest.m in

APPENDIX E: ELECTRONIC CONTENT [1]. This initial INS provided somewhat

inaccurate state information subject to drift. However, when combined with a human

contribution in the form of velocity commands sent via a standard remote control

transmitter/receiver, the INS performed suitably well for simple hover tests.

37

The controller utilized was a simple gain matrix. This gain matrix multiplied the

current best state estimate in order to calculate four commanded thrust values for the

four propellers. These thrust values were passed through a nonlinear transformation to

obtain four propeller RPM commands which were then fed to the four local prop

control loops. The gain matrix was formed as a simple combination of gains based on

linearized decoupled dynamics. For example, a positive x velocity error would

multiply a single gain. The resulting values would then be added and subtracted to the

two appropriate props to cause the vehicle to bank back towards the negative x

direction. The same was done for the other velocities, the Euler angles, and the Euler

angular rates. The commands for each prop from each gain multiplication would then

all be simply added together to form the commanded thrust for that prop. These gains

were predominantly tuned by hand with guidance from propeller commanded thrust

saturation values and expected disturbance magnitudes. The bulk of the tuning was

done in an early version of the vehicle simulation, to be discussed in the following

chapter.

Once the INS and control algorithms were in place and debugged, we were able to

perform our first controlled flight tests. The vehicle was kept on a fairly short tether

during these initial tests in order to prevent damage to either the vehicle or its

surroundings. The vehicle did have enough play, however, to provide us with

feedback on typical prop RPM excursions from hover RPM in response to natural

disturbances given the controller currently loaded. In addition, we were able to take

actual in-flight IMU data in order to improve upon the accuracy of the simulation of

sensor noise used in tuning the controller. After only a few iterations of control gain

matrices, the vehicle demonstrated very stable hover. Noise in commanded prop

speeds was minimal, suggesting that the gains were not excessively large. Despite this,

38

though, the vehicle responded quite strongly to attempts to disturb the vehicle. While

the vehicle, as a product of the design, is unable to directly resist disturbances in the

plane of the propellers, the vehicle was quick to bank in opposition of forces applied

in this plane. In addition, it was extremely difficult to disturb the vehicle in any of its

angular degrees of freedom. This was primarily due to the large gains assigned to

these degrees of freedom because of their importance both to physical vehicle stability

and to the stability of the decoupled linearized controller. Finally, while the short

constraint tethers prevented a truly unhindered view of controller performance and

vehicle stability, there were extended periods of time where the velocity error was

sufficiently small to allow the vehicle to hover in place, constraints slack. During

these periods the vehicle remained extremely still without any human intervention

either directly via forces applied to the vehicle or via the wireless RC link. A video of

one of the hover tests performed, ActualHoverTest.avi, is available in the 2003

Documentation folder on the AFVMechECD. Though this video was not of the latest,

most stable flights, it does show a large degree of stability in hover.

The final vehicle weighed approximately 6.22 kg. During the simple hover tests

performed we were able to verify parameters such as the hover prop RPM and typical

control deviations from this value. As it turns out, we actually underestimated the

coefficient of thrust of the prop slightly. The result was a vehicle that hovered at

slightly lower power consumption than anticipated. Given this information, the actual

vehicle likely would outperform the predicted maneuverability and endurance. These

specs were not tested, though, as all initial hover tests were performed with the power

tether for simplicity. Verification of vehicle endurance and other predicted

performance specs were left to later, less constrained flight tests.

39

Unfortunately before we were able to perform less constrained flight tests, the AFV

suffered a crash and the IMU was damaged. As the IMU was the most expensive

component, our only option was to send it off for repair. The repair bill quoted was

much higher than expected, and at this time the team decided to consider lower cost

alternatives to the high end IMU used. The extensive delivery time required for a new

unit unfortunately meant that the actual integration of a new IMU would extend

beyond the scope of the current project phase. However, armed with the data

collected from flight tests and in anticipation of the new IMU, extensive work was

done on the development of a more accurate simulation, a more complex filtering

scheme, and more straightforward control. This work is detailed in the following two

chapters.

40

CHAPTER 5:

SIMULATION DEVELOPMENT AND VERIFICATION

In preparation for vehicle hover tests and in order to aid in development and tuning of

the vehicle control system, we opted to work on the development of a simulation of

the full vehicle nonlinear dynamics. Early versions of the simulation contained the

nonlinear dynamics model with simple white process noise driving the system and

white additive sensor noise corrupting the true inertial measurements. This model was

sufficient to tune the simple control system used on board the vehicle. Unfortunately,

because of the simplistic nature of the noise simulation, the controller was only truly

representative of the real system at the beginning of flight tests when accumulated

state estimation errors were still small. Both in order to more accurately model the

true vehicle and sensor dynamics and in anticipation of future more complicated

controllers and vehicle maneuvers, the simulation was expanded significantly. With

an accurate representation of both vehicle and sensor dynamics and the freedom to test

a wide range of control algorithms, the simulation would become a valuable tool in

future project development.

As mentioned previously, in order to aid in controller and estimator design, a full

nonlinear dynamics model of the AFV was developed. This model was combined

with an assortment of other model components and integrated into a Simulink model,

ThreeDAFVsimworkingvelocity.mdl. The model in its current form performs global

state feedback control. The Simulink model contains force and torque disturbances,

sensor bias and noise, a linearized hover feedback controller, a nonlinear state

estimator, and plotting windows for various state and performance comparison

variables. The model is capable of producing a text file with a linear gain matrix for

41

use onboard the actual vehicle. It is also capable of producing an AVI video

visualization of the AFV given the state simulation time history.

If the model is built and tuned carefully in order to closely match the true system, the

model can be used as an effective tool to design, tune, and test controllers and state

estimators. Discussion of control and estimation logic and tuning can be found in

CHAPTER 6: CONTROL AND ESTIMATION DEVELOPMENT FOR FUTURE

IMPLEMENTATION. The major components of the model can be identified as

follows:

Simulation Parameter File

The file ThreeDAFVmodelconsts.m contains an extensive list of parameters both

entered and computed. This file must be run before every simulink model run. In

addition to defining process and sensor noise levels the file is also responsible for

providing vehicle parameters such as prop pitch, motor and prop constants, and

geometry information. This information was obtained primarily through a

combination of hardware testing and analyses performed in the solid Pro/E model of

the vehicle. The degree of precision in machining coupled with the convenience of the

tools available in Pro/E contributed in many ways to the accuracy of the final

simulation. The file also defines estimator noise matrices and initializes the state

estimate, its covariance matrices, and variables necessary for the running of the

simpler filtering model used on the AFV. In addition to all this, the file is also

responsible for computation of an LQR gain matrix based on the linearized state

dynamics computed from the simplified state dynamics found in

ThreeDAFVstatedervThrust.m. Most changes to the simulation are accomplished

through changes to the parameters contained in this file.

42

Full Nonlinear AFV Dynamics

The full nonlinear AFV dynamics are derived in Appendix C: DERIVATION OF

AFV DYNAMICS using Euler angles and global position variables. Note that the use

of Euler angles for state result in a singularity at theta = 90 degrees. The derived

dynamic model is implemented, among other places, within

ThreeDAFVstatedervNew.m which is called every simulation time step by the

Simulink model. In addition to providing the true state derivatives that Simulink uses

to track the true vehicle state, this file also produces the local angular rates and

accelerations that a perfect set of sensors would measure. This true measurement is

fed to the next block within the model, the IMU dynamics.

IMU Bias/Noise Corruption

In order to accurately replicate typical sensor measurements on board the vehicle, the

signal corruption block of the model was developed. This block corrupts the true

vehicle acceleration and rotation rates with possible sensor rotation and displacement

from the vehicle center of mass and a bias offset and white noise. The measurements

are rotated in IMUgeometry.m according to the parameters in the constants file.

Accelerations contributed by centrifugal force from vehicle rotation combined with

accelerometer offset from the center of mass are added to the accelerometer

measurements. Sensor bias is randomly generated at the start of a run according to

turn-on sensor bias specs. The bias is then subject to random walk driven by white

noise and bounded by feedback. The measurement models used in simulation and

some discussion of the tuning of parameters such as the white noise power driving the

bias random walk are included in APPENDIX C: DERIVATION OF AFV

DYNAMICS. The corrupted measurements are then fed at the same rate as the true

IMU produces measurements to the filtering block, which attempts to estimate bias

43

and cull accurate sensor readings from the noisy signals. It is important that the model

is tuned carefully to match the bias magnitude and drift expected from the actual

sensors. As in all aspects of the model, the more closely the sensor inaccuracies can

match the true system, the better the results achieved when controllers and estimators

are tuned on the simulated system.

State Estimation

In the true system sensor noise and bias values will not be known. The state estimator,

run in estimatestate.m, is therefore blind to the true vehicle state tracked by the

simulation. Instead the state estimation block attempts to, at the proper simulated

estimation frequency, produce a best estimate of current vehicle state given input from

both the IMU and a human operator, as discussed in the next chapter. In order to do

this it also estimates all six sensor biases associated with the IMU accelerometers and

rate gyros in addition to the state. The core of the estimator is a square root

implementation of a Sigma Point filter. This filter is realized in srspf.m, generously

provided by Professor Mark Campbell of the Cornell MAE department, and makes use

of the nonlinear dynamics file ThreeDAFVstatedervNoVolts.m and its parent file

ffunmine.m. The control effort inputs are the four prop RPM values and their rate of

change, provided in the true system by the encoders located on the four prop shafts.

The nonlinear measurement equations used by the filter include IMUgeometry_f.m and

its parent file hfunmine.m. In the simulink model, the simpler filtering implemented

on board the vehicle is run in parallel to the SR SPF in the file currfilterest.m. The

Simulink model presents several plots for performance comparison between the two

filtering methods. The effectiveness of the more advanced filtering method is

discussed in more detail in the following chapter.

44

Hover Controller

Once the estimator has provided its best guess at current vehicle state, the state is

multiplied by the linear gain matrix created in ThreeDAFVmodelconsts.m. The results

of this multiplication are four prop commanded thrust values. These four thrust values

are added to thrust values commanded by the human operator and are then passed

through a nonlinear transformation, thrusttorads.m, to compute desired prop RPM

values. These four RPM values are passed through PID blocks that simulate the four

local motor controllers onboard the vehicle. The time constants of the simulated

response to commanded changes in prop speed match closely with the values recorded

in actual testing due to matching of the variable R in the motor dynamics to the best

calculated value based on the same prop controller tests. The output of the simulated

PID gain blocks are voltages which are then fed back into the full nonlinear dynamics

model discussed above. The loop continues for the duration of the simulation.

Post-Simulation Processing

Once a Simulink simulation has been run with satisfactory results, the data loaded into

the workspace can be processed to generate either a controller text file to be loaded

onto the AFV or an AVI movie of the simulated AFV. Running animate_afv.m will

produce the AVI movie given the simulation data in the Matlab workspace. Edits to

the boundaries of the virtual camera for the simulation can be made in the same file.

The AVI movie occasionally provides a visualization of AFV behavior that can

convey much more information than the two dimensional plots of various individual

vehicle states. The original versions of the animation files were written by Sean

Breheny with help from Professor Raffaello D’Andrea. The files were modified for

use with the current vehicle and simulation information.

45

Any additional model information should be either self-explanatory or covered in

more depth within the actual code. All code discussed in this section can be found in

APPENDIX E: ELECTRONIC CONTENT.

46

CHAPTER 6:

CONTROL AND ESTIMATION DEVELOPMENT FOR FUTURE

IMPLEMENTATION ONBOARD THE VEHICLE

Once the hardware testing, vehicle assembly, and basic hover flight tests were

complete, the work that remained to be done was the construction of more advanced

INS and control algorithms for eventual use onboard the AFV. The initial attempt was

rather simplistic in nature as, at the time, the team was primarily interested in simply

achieving stable hover. The DSP utilized onboard, though powerful, had its

processing limits. As such, the initial inertial navigation system consisted primarily of

high-pass and low-pass filtering of the inertial sensor data in an attempt to remove

sensor bias and noise from the measurements. The control scheme implemented was

the simple decoupled controller discussed in previous chapters. While this system

worked well, and even enabled some good hover tests, the system was still prone to

inaccuracies and required a fair amount of hand tuning. Some of the inaccuracies

stemmed from the fact that selection of filter corner frequencies resulted in either

failure to fully filter out noise or bias or the filtering out of true vehicle motion

measurements.

Due to an assortment of project developments, including the availability of certain

new technologies and the drift inherent in the current system (though a human could

trim the vehicle to keep it from drifting, this trim value would itself constantly

increase due to the lack of estimation of the bias parameters themselves), some

changes to the vehicle are anticipated including the use of a lower cost IMU and the

integration of a more powerful onboard processor. It was also decided that both the

effectiveness of a more complex filtering scheme and the lower limit for a less

47

accurate IMU would be evaluated in the existing simulation before making the desired

changes to the system. Though the actual implementation of new filtering scheme and

the lower cost IMU extends beyond the scope of this document, the changes were

examined in detail in the simulation constructed.

Estimation

The primary function of the vehicle state estimator is to provide an up to date best

guess at the current vehicle state given potentially noisy or biased measurements of

some function of the state and the current control input. For the current iteration of the

vehicle, the measurements are provided primarily by a combination of a six degree of

freedom inertial measurement unit providing three axis angular rates and accelerations

and a human observer, to be discussed in further detail below. The state to be

estimated most convenient to the desired functionality of the vehicle and the

anticipated control scheme is a combination of vehicle global position and velocity

and Euler angles and their rates. In order to make use of the measurement equations

derived in APPENDIX C: DERIVATION OF AFV DYNAMICS, the biases

associated with the six IMU sensors are also estimated. The estimation loop is

summarized in Figure 6-1 and is discussed in more detail below.

48

Figure 6-1: Estimation Loop

The vehicle dynamics are extremely nonlinear. This is largely due to the desire to

control and track the vehicle in global coordinates while control effort (prop thrust and

drag) is applied in local coordinates. In addition, inertial measurements and the bias

parameters to be estimated are in the local frame. A nonlinear state estimator was

therefore necessary. Initially an Extended Kalman Filter was designed to handle the

estimation of both the state and the six IMU sensor bias parameters. This filter was

cumbersome to implement, though, with extremely large and complex Jacobian terms

because of the highly nonlinear dynamics. Evaluating these terms consumed a large

amount of processor power and transcription of these matrices from derivation to

implementation presented many opportunities for error. The next filter considered

was a square root implementation of a Sigma Point Filter (SRSPF). The processing

49

time for this filter was at least comparable if not better than the EKF. In addition, it

was much simpler to implement due to the direct use of the original dynamics

equations rather than their complex Jacobian. Opportunity for error was thus

significantly reduced. The filter also seemed to converge much more quickly than the

EKF, and was much more robust to a range of tuned noise values. The measurement

update step was also simplified dramatically with the use of the SRSPF. Because the

accelerometers cannot all be located exactly at the vehicle center of mass, they

measure a centrifugal force term associated with the angular rates as well. This lumps

further nonlinearities upon the nonlinear dynamics (since the measurement is inertial,

not of state directly) and further complicated the Jacobians used in the EKF.

The initial configuration of the AFV was to use the IMU as all available

measurements. The calibration step, unfortunately, uses accelerometer information to

initialize vehicle angle, preventing a proper calibration of IMU accelerometer bias

errors. Though rate gyros also have bias issues, they are dramatically less significant

both because of the identification of bias in the calibration step and because of the

observability of angle through the vehicle dynamics. The accelerometer bias therefore

would continually tell the vehicle that it was accelerating, resulting in continually

increasing velocity error. In addition, velocity and position are not observable through

an inertial sensor. Accumulated error therefore cannot be eliminated. The high-pass

filtering utilized helped, but did not eliminate this problem. In early hover tests a

human operator would send velocity commands to the AFV in order to cancel out the

drift that would develop. By sending velocity commands roughly equal to the current

velocity error, the AFV could be made to hover in place. This dependence on human

operation was both undesirable and could even cause problems as the velocity

command required grew ever larger. The first step to help the problem was the

50

implementation of the more complex filtering scheme, the SRSPF. The estimation of

the accelerometer bias parameters alone decreased velocity error significantly. Figure

6-2: Accelerometer Bias Estimate Errors (m/s2) vs Time (s) and Figure 6-3: |Original

Filtering| - |SR SPF| Velocity Estimate Errors (m/s) vs. Time (s) show both the success

in estimation of the accelerometer bias parameters as well as the superior performance

of the SRSPF as compared to the original filtering scheme. The test case for these

figures, as all future figures, is for an initial roll angle of pi/15, or 12.5 degrees. An

animation of this test case, DocsTestCase.avi, can be found in the 2003

Documentation folder on the AFVMechECD. Note that the parameter estimate error

remains small in time despite the drifting true bias. Despite this improvement,

however, the aforementioned problem with accumulated error was still an issue.

Before an accurate estimate of the bias parameters could be established, some error

would already have accumulated. In addition, the parameter estimation is not perfect

due to the presence of a certain level of process noise.

51

Figure 6-2: Accelerometer Bias Estimate Errors (m/s2) vs Time (s)

Figure 6-3: |Original Filtering| - |SR SPF| Velocity Estimate Errors (m/s) vs. Time (s)

52

The use of a human observer was still necessary at this point. However, whereas

before the necessary human input for error cancellation was continuously increasing,

the vehicle could now be made to hover in place with a constant trim input. While this

was an improvement, ideally the vehicle would remain stationary with little to no

human input. Though thrown together auto-trimming methods could likely produce

this desired behavior, it was proposed that we treat the human input as both a control

input and a measurement. As a simple case, if the human input is 1m/s in one

direction, this could be treated as a measurement of 1 m/s in the opposite direction. In

fact, a human observer attempting to drive vehicle state error to zero can be effectively

modeled as a PD controller (on position) with relatively noisy/drifty PD gains. This

treatment of the human input makes global velocity and position observable. This

human state correction will ideally require less and less human input as time passes.

Once the accelerometer biases are estimated fairly accurately and the accumulated

error has been cancelled out by the human input, the vehicle should hover well without

any additional human input. If it does drift due to small inaccuracies, a small human

input is all that is needed. Ideally, the noise parameters would be tuned to allow for

use of accelerometer information for fast dynamics while the human input helps zero

out errors. While the variation in human gains could cause a problem, there are three

possible solutions. The first is to estimate the PD gains themselves. This would

increase the estimated parameters significantly, and is not desirable. The second

option is to associate a large amount of sensor noise with the human “measurement”

based on constant gains. The third option, which turned out to work the best in

simulation, was to simply assume the human measurements have little noise and allow

temporary errors in velocity and position estimates. This requires slightly more

human input to keep the vehicle still than if the parameters were estimated, but the

vehicle can still be driven to a decent hover without excessive effort or additional filter

53

complexity. Figure 6-4: SR SPF Velocity Estimate Errors (m/s) vs. Time (s) shows

the velocity error as a function of time making use of a noisy human measurement.

Note that while there is still some noise in the hover, this is primarily due to the

vehicle’s lack of ability to produce forces to directly counter process noise in the x and

y directions. Instead, in order to react to forces in the horizontal plane, the vehicle

must roll or pitch, and this reaction takes time.

Figure 6-4: SR SPF Velocity Estimate Errors (m/s) vs. Time (s)

It should be noted that ultimately the human will be removed from the estimation and

control loop completely. The use of human input in the loop for a so-called

autonomous vehicle was only considered with the expectation that future versions of

the vehicle would replace the human input with GPS or some indoor simulated GPS

package. The addition of an absolute position measurement of this nature coupled

54

with the estimation of onboard inertial sensor bias parameters would allow for

extremely accurate and drift-free navigation even if the absolute position information

was available only at a relatively slow rate.

In addition to the real-time estimation of vehicle state and sensor bias parameters,

batch processing of flight data can potentially be used for estimation of vehicle

physical parameters such as the true positions of accelerometers, IMU rotation from

the vehicle principal axes, and prop thrust and drag coefficients. No estimation of this

nature has yet been performed due to the lack of the unconstrained flight data

necessary for filtering of this type.

Estimator Tuning

The estimator noise matrices were created largely using the actual noise levels

produced in the simulation. While this may seem like a cheat, the noise levels used in

simulation have been tuned to best represent worst case noise levels in the true system.

Even with close to the “true” noise levels available to the filter, though, some further

tuning was necessary. Specifically, as touched upon earlier, there was some need to

set the ratio of accelerometer noise to human measurement noise to produce the proper

balance of accelerometer measurements and human input used for position and

velocity estimation. Since the double integration of the accelerometers can drive the

position estimate off extremely quickly, the human measurement was given less noise

than would be expected from the variation in human PD gains. The noise matrices can

be found in ThreeDAFVmodelconsts.m in APPENDIX E: ELECTRONIC CONTENT.

Experimentation with the system suggests that the current balance of noise levels

produces an estimate that trusts the human measurement roughly 75% while trusting

the accelerometers roughly 25%. In addition to this deviation from “true” noise levels,

55

the estimates produced originally were still fairly noisy. A noisy estimate,

unfortunately, results in noisy control since the control used is a simple gain matrix. It

was therefore necessary to adjust the noise levels to produce a smoother estimate.

Most of the noise observed was in the position and velocity state estimates. The

solution, then, was to either reduce the process noise parameters or to increase the

measurement noise parameters. Excessive decrease in the process noise parameters

would prevent the estimate from changing to follow changes in true state due to

process noise. Excessive increase in measurement noise values would result in a

similar discounting of the accelerometer measurements. The best compromise was to

change both parameters by the same amount, a factor of ten. The final velocity state

estimates were still noisy, but remained both accurate and smooth enough to prevent

excessive control jitter. The later portion of Figure 6-5: Motor 2 Voltage (V) vs.

Time (s) shows the typical noise on the control effort during hover. A range of less

than one Volt was well within acceptable limits. Figure 6-6: Y Velocity Estimate (m/s)

vs. Time (s) shows the noise levels on y velocity estimates, which along with the x

velocity estimate make up the two noisiest states. Again, the small variation about the

actual value is well within acceptable limits. Apart from the two ratio adjustments

discussed, very little noise tuning was necessary. This is almost certainly due in part

to the fairly robust way in which the SRSPF handles noise covariance matrices. Many

different noise matrices were tried, and variations in entire orders of magnitude from

the true values still resulted in a stable estimator without major differences in

performance beyond those discussed.

56

Figure 6-5: Motor 2 Voltage (V) vs. Time (s)

Figure 6-6: Y Velocity Estimate (m/s) vs. Time (s)

57

Figure 6-7: True Y Velocity (m/s) vs. Time (s)

Control

In order to simplify the control problem, two main control loops were implemented.

The first lower level loop handled simple feedback control of each of the four thrust

modules. Using input from the encoders located on the prop shafts, each motor

control board performed simple PID control on prop speed by varying the voltage

applied to the motor via PWM. The input to the control loop was a simple prop speed

commanded by the main AFV processing module. Figure 6-8: Prop Local Control

Loop contains a graphical representation of the loop. For details of tuning and design

of the motor/prop control loop, please see the 2003 electronics documentation [1].

58

Figure 6-8: Prop Local Control Loop

The second outer control loop was more complex due to details of implementation and

tuning. These details are discussed below. The general idea, however, was to

stabilize the vehicle and permit the vehicle to follow simple velocity and yaw angle

commands received from the PC base station via wireless. The loop would take these

commands and compare them to the current best estimate of the state provided by the

estimator. The resulting difference would feed the vehicle outer loop controller,

which in turn produces four commanded prop RPM values. These four values are fed

to the local prop control loop which presumably produces the necessary thrust and

yaw torques via speed control of the props. Resulting angular rates and vehicle

accelerations are sensed by the onboard IMU. These sensor measurements and the

current prop speeds provided by the encoders are then fed into the state estimator to

produce the next loop cycles best estimate of current state. The process, including the

human in the loop configuration settled upon below, is summarized in Figure 6-9:

Vehicle Control Loop.

59

Figure 6-9: Vehicle Control Loop

Though the long term goals of the project involve eventually moving to nonlinear

vehicle control, the current stage of the project requires only a controller that can

accept velocity commands about hover. A simple LQR gain matrix was therefore

created based on the linearized equations of motion about the hover state. In order to

help reduce the nonlinearity of the system being controlled, the controller was

designed to produce four thrust values. The necessary nonlinear transformation could

then be applied to these four thrust values to get the desired prop RPM values. Since

thrust varies with RPM squared, and the transformation could be easily backed out of

the dynamics, this strategy helped produce a more linear controller. The four RPM

values produced are then fed to the four local motor controllers which contain their

own PID feedback loop on prop speed. In order to tune the LQR control weights, and

thus controller performance, the simulation was started with some initial nonzero state,

60

such as 10 degrees of roll or 1 m/s z velocity, and the state response and voltage

applied were observed. Saturation was expected to barely occur for nonzero states of

the magnitude mentioned. Because of the coupling between roll and pitch angles and

x and y velocities, the responses seen could not be simply tuned to produce a small

amount of overshoot before settling to the final value. However, by tuning the

appropriate nonzero states to just produce saturation, excellent performance was

achieved.

As it turns out, the LQR controller generated by a uniform state weighting matrix

performed almost exactly as desired. In fact, the gain matrix produced turned out to

be fairly insensitive to changes to individual weights. This is likely due to the highly

coupled nature of most of the states. The weighting for y velocity, for example, would

have to be increased dramatically to see significant change in the gains used for roll or

y position since y velocity is controlled by roll angle and directly influences y position.

This left the control effort weight to be tuned. Depending on how much trade off

between speed of response and disturbance rejection for potential saturation with large

disturbances is desired, the weight can be raised or lowered. For the above mentioned

disturbance situations a weight of one worked well. Figure 6-5: Motor 2 Voltage (V)

vs. Time (s) shows the voltage history for motor 2 given an initial roll angle of 12.5

degrees. Note that the voltage saturates very briefly before falling. Figure 6-7: True

Y Velocity (m/s) vs. Time (s) contains the true time history of y velocity. Note first

that the state has almost completely settled in under five seconds. This includes

zeroing of the initial roll angle as well as the y velocity produced by this roll angle and

the y position error produced by this y velocity. Though the y velocity response may

seem under damped, this behavior is in fact due to the need to zero the y position error

61

caused by the initial positive velocity error, which forces a nearly equal but opposite

negative peak. The y velocity case is most representative of controller performance in

general.

In addition to this nominal hover controller, some direct human control over vehicle

behavior was desired. If the controller was to for some reason produce large errors

quickly, ideally a human operator would be able to control the vehicle by hand, if only

briefly. The current implementation allows the human operator to directly influence

the voltages applied to each of the four motors. This provides the most robust vehicle

response to human input, but it also has questionable effects on the stability of the

total vehicle control. The gains used were therefore kept to approximately 1/10th the

gains seen in the LQR hover controller. The human therefore can have a noticeable

influence on the vehicle by sending a strong signal, but most of the time the human

input will only produce a slight tendency for the vehicle to return to a true zero state.

Though this influence may seem minimal, the human input is also being used for

measurement in the estimator, and the bulk of the zeroing of the true state is done in

this manner. The relative gains on the various states were based on a pre-LQR version

of the controller that commanded prop RPM values in the same way that the human

input applies control commands. Alternatives, such as the use of the human input

purely as a measurement, were considered and rejected for their lack of direct control

over the vehicle.

The thorough simulation of the vehicle dynamics and measurement dynamics

provided an effective test bed for extensive experimentation and filter tuning. Though

the final estimator and control gains settled upon are fairly simple and straightforward,

they are the product of trying a number of different control and estimation

62

configurations and noise matrices. Though the proposed new real time SRSPF

performs much better than the original filtering scheme, especially with the addition of

human input as measurement, it is at the expense of processing power. Fortunately

this processing power should be available in the next iteration of the vehicle

electronics.

63

CHAPTER 7:

CONCLUSION

In the past year and a half encompassing the current phase of the AFV project, much

was accomplished. On the mechanical side, a fresh vehicle design combined with

selection of robust and well-performing components resulted in a vehicle capable of

stable hover flight. Though unverified by final vehicle tests, component testing and

vehicle analysis suggests that the vehicle would be capable of both impressive

maneuverability and significant endurance for a hovering electric powered vehicle.

The largest improvement of the current version of the vehicle over legacy versions

was the demonstration of stable hover flight despite the additional weight and design

concerns caused by operation without tethered power supply and the addition of a

functional fully self-contained onboard inertial navigation system. The addition of

onboard power supply and sensing was not a trivial step as the batteries, IMU and its

supporting electronics alone comprised approximately half of the total final vehicle

weight. Of the remaining weight, a significant portion was due to the need to scale a

vehicle up enough to enable it to carry this additional burden. The end product was a

vehicle approximately six times the weight of previous incarnations that is capable of

roughly double the total thrust of previous designs as normalized against vehicle

weight. The complete lack of tethers for communication or power supply has brought

the vehicle almost to the point where it can operate in real world situations without

human intervention given the addition of appropriate global sensors and AI support

provided by the PC base station.

In addition to the above mentioned accomplishments, a fair amount of work was also

completed to aid in the further evolution of the project and vehicle. The simulation

64

designed is capable of highly accurate simulation of vehicle and sensor dynamics

while still providing a degree of flexibility that enables the user to test a variety of

control systems, estimators, potential sensors and actuators, and modeled scenarios.

Work has already been done with the simulation to both aid in the selection of a new

lower cost IMU and develop a more accurate on board state estimator. Future near

term work will likely include the development and testing of a nonlinear control

system and the tuning of estimation and control to accommodate the addition of GPS

or a comparable indoor positioning system.

Though initial goals established by the team seemed lofty and at times unattainable,

the final product produced argues for the competency and persistence of the entire

team. Though design of a unique kind of vehicle and implementation of concepts in

ever problematic hardware offered up countless pitfalls and apparent dead ends, the

team was able to demonstrate the feasibility of a highly maneuverable four rotor

hovering unmanned vehicle through hard work, persistence, and the occasional break

provided by the advent of new technologies.

65

APPENDIX A:

BRAINSTORMING NOTES

Configuration

• Use of thrust vectoring (solenoids that open and close thrust ports)
• Current four prop design – requires vehicle tilt
• Two coaxial counter rotating blades for primary thrust. Smaller “omni” blades

(rotors axis parallel to ground) for maneuvering - Decoupled degrees of
freedom.

• Does rotation matter? Could drive counter rotating blades with same
motor….some variation in which blade gets more applied power to control
yaw?

• Brushless main thrust motor, brushed for maneuver:
• Main CCW, four CW
• 1 main CW, 1 main CCW, four as current
• above, either side by side or coaxial
• Two stage air acceleration? 14x4 then 14x8? (parallel versus series/coaxial

rotors)
• Want efficient design – helicopter tail fins throw away ~30% of power,

counter-rotating props are much more efficient.

Structure

• Center of mass with respect to thrust props…..higher cg increases response by
decreasing inertia, but also increases response to disturbance torques. Same
goes for footprint of rotors… further apart increases torque, but decreases
speed of rotation for set prop translation.

• Use of wire to tension AFV, increase stiffness without adding significant
weight.

• Foam vibration damping at the motor/prop attachment (rubber washers)
• How can we increase passive stability? Parachutist idea… dangle batteries?

Props

• Use of helicopter rotors versus props. Rotors are less efficient due to
symmetric blade design, but could allow more rapid thrust changes.

• Use of piezoelectric bimetal or bimorph in propeller blades to vary the angle of
attack/airfoil shape during flight – Electric thrust control.

• Fewer the blades, the more efficient. Endurance flight competitions,
competitors actually use 1 blade with a counterbalance.

• Lower the pitch, the more efficient the thrust per power. However, this
reduces (fixed wing) top speed, and increases the RPM necessary to get a

66

given thrust as compared to higher pitch, less efficient versions. Only benefit
is in reducing pitch until blade no longer stalls for zero free stream velocity.

• Larger the diameter, more efficient. Large diameter props accelerate a lot of
air a little bit, which is more efficient than accelerating a little air a lot.

• APC props are best for any application not in need of downline braking
(essentially drag on the vehicle when in glide, prop not turning – this is
important for larger models). They have a narrower, more efficient tip and
overall more efficient design than their competitors.

• Propellers work similar to gears in terms of thrust and max translation speed.
• Smaller propellers have smaller inertia, benefit for maneuvering when varying

speed? Slowing and speeding up blades decreases agility. Vary speed rather
than torque. Helicopters keep speed constant, vary torque by varying blade
angle.

• Helicopters prefer high inertia rotors since maneuvering is controlled
independent of rotor speed.

• Propeller in plate/duct to reduce tip vortices, increase prop efficiency.
• Have props under vehicle – motors/mounting don’t interfere with stronger

airflow exiting prop

General

• Power supply possibilities – prefer electric?
• Rapid altitude changes necessary?
• Cooling fins parallel to airflow for electronics?
• Gear encoder to increase resolution?
• Large gear ratio plus hall effect sensors may be sufficient for brushless motors

67

APPENDIX B:

COMPONENT CHARACTERISTICS

Motors

Figure B-1: MaxCim Motor Spec Sheet [14]

Table B-1: MaxCim Motor Parameters [14]

Motor Parameters (Units) Model MaxN32-
13D

Torque Constant (Oz.In./Amp) 0.548
Voltage Constant (rpm/Volt) 2500
Motor Constant (Oz.In./Sqrt(Watts)) 3.96
Rated Power* (Watts) > 1200*
Line-Line Resistance (Ohms) 0.022
Max. Current (Amps) 70
Idle current Io - (7 cells) (Amps) 2.5
Max. Operating Speed (rpm) (cells) 50,000 (18)
Cogging Torque (Oz.In.) <0.3
Weight with connectors (Oz.) 7.5

68

Props

Table B-2: Prop Constants

18x6 prop RPM
N
thrust

Model
based

Nm
Torque

Model
based kd kt

PropSelector 4000 15.28 14.74 0.359 0.551 2.05E-06 8.71E-05
 4700 21.10 20.35 0.496 0.761 2.05E-06 8.71E-05
 5200 25.83 24.91 0.607 0.931 2.05E-06 8.71E-05

Test Data 1712 2.62 2.70 0.166 0.101 5.18E-06 8.17E-05
 2580 5.78 6.13 0.276 0.229 3.78E-06 7.92E-05
 3190 9.34 9.37 0.357 0.350 3.20E-06 8.37E-05
 4020 14.96 14.89 0.533 0.556 3.01E-06 8.44E-05

APC 4470 20.91 18.41 0.719 0.688 3.28E-06 9.54E-05

Modeled 3.14E-06 8.40E-05

Prop diameter: 18”
Prop pitch: 6”
Prop weight: 130 g
Hub diameter: 1.75”
Hub depth: 5/8”
Hub bore: 3/8”

69

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1000 1500 2000 2500 3000 3500 4000 4500

RPM

Th
ru

st
(N

)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

D
ra

g
(N

m
)

Meas thrust Modeled thrust Meas drag Modeled drag

Figure B-2: Prop Testing Results

70

Gears and Belts

Figure B-3: Motor Timing Pulley Spec Sheet [15]

Part Number: A 6A51-015DF0606
Unit: Inch
Pitch: GT2 (2MM)
No. Of Grooves: 15
Material: Aluminum Alloy
Belt Width: .236 (6MM)
Bore Size (B) : 0.188"
Flange & Hub Configuration: 2 Flanges / With Hub
Pitch Dia.: 0.376"
Outside Dia. (O.D.): 0.356"
Overall Length (E): 0.563"
Hub Dia. (C): 0.555"
Hub Proj. (D): 15/64"
(S): 7/64"
Flange Dia. (F.D.): 0.555"

71

Figure B-4: Prop Timing Pulley Spec Sheet [15]

Part Number: A 6Z51-100DF0608
Unit: Inch
Pitch: GT (2mm)
No. Of Grooves: 100
Material: Polycarbonate
Belt Width: .236(6mm)"
Bore Size (B): 0.250"
Bore Config.: Brass Insert
Flange Config.: 2 Flanges / With Hub
Pitch Dia.: 2.506"
Outside Dia. (O.D.): 2.486"
Overall Length: 0.688"
Flange Dia. (F.D.): 2.71"

72

Figure B-5: Timing Belt Spec Sheet [15]

Part Number: A 6R51M116060
Unit: Metric
Belt Type: Single Sided
Pitch: GT (2MM)
No. Of Grooves: 116
Belt Width: 6.0 mm
Material: Neoprene
Tension Member(cords): Fiberglass
Pitch Length: 232 mm

73

Encoders

Figure B-6: Encoder Spec Sheet [16]

Table B-3: Encoder Parameters [16]

Parameter Dimension Units

Moment of Inertia 8.0 x 10^-6 oz-in-s²

Hub Set Screw 3-48 or 4-48 in.

Hex Wrench Size .050 in.

Encoder Base Plate Thickness .135 in.

3 Mounting Screw Size 0-80 in.

2 Mounting Screw Size 2-56 or 4-40 in.

3 Screw Bolt Circle Diameter .823 ±.005 in.

2 Screw Bolt Circle Diameter .750 ±.005 in.

Required Shaft Length
With E-option
With H-option

.445 to .570*

.445 to .750*
=>.445*

in.
in.
in.

Weight .80 oz.

74

Batteries

Figure B-7: Battery Discharge Test Results [17]

Unit: E-tec 1200
Capacity: 1200 mAh
Maximum continuous drain rate: 6 C
Maximum drain rate: 7.5C
Unpackaged weight: 24 g
Nominal Voltage: 4.2 V

75

Fabricated Parts and Misc Components

Table B-4: Parts and Components Information
Category Part Quantity Supplier Part #
Stand-alone
components IMU 1 Systron-Donner

Structure IMU mount McMaster 8733K23
 Board mount McMaster 8733K23
 Strut mount McMaster 8733K38
 Threaded rod McMaster 94435A357

Threaded rod
sleeves McMaster 7237K17

 All struts McMaster 9924K13
 Strut plugs McMaster 9061K15

Tension wire
rope 30 feet McMaster 3458T24

Midget
turnbuckles 3 McMaster 3003T144

 Wire rope clips 6 McMaster 3677T51

Strut ends/pulley
box mount McMaster 89215K17

Landing
block/motor
board mount McMaster 8732K16

 Battery hangers McMaster 8733K23

Battery hanger
retainer McMaster 8732K11

Strut ends/pulley
box mount McMaster 89215K17

Landing gear
springs 4 McMaster 1986K13

Landing gear
spring channel McMaster 8538K19

Misc Fasteners
EE main board
standoffs 8 McMaster 92745A320

EE motor board
standoffs 16 McMaster 92745A324

Motor end strut
spring pin 4 McMaster 92383A159

Center end strut
spring pin 4 McMaster 92383A155

Battery hanger
mount spring pin 8 McMaster 92383A157

Landing gear
mounting spring
pin 12 McMaster 92383A157

Pulley box joint
spring pin 16 McMaster 92383A151

Body threaded
rod nuts McMaster 95170A370

76

Table B-4 (Continued)

Vibration
Absorbtion
washers McMaster 90130A007

Batteries 4 series EE pack
Bishop Power
Products E-tec 1200 Li-Poly

7 series x 2
parallel motor
pack

Bishop Power
Products E-tec 1200 Li-Poly

Pulley box
components

Motor control
board 4

 Pusher prop 2 APC LP18060WP
 Tractor prop 2 APC LP18060W
 Brushless motor 4 MaxCim MaxN32-13D
 Encoder 4 US Digital E5S-1024-375-IHA
 Encoder cable 4 US Digital CA-3620-8IN

Motor
board/main
board comm
cable 4 US Digital CA-3620-11IN

 15 tooth pulley 4 SDP A 6A51-015DF0606
 100 tooth pulley 4 SDP A 6Z51-100DF0608
 116 tooth belt 4 SDP A 6R51M116060

Prop shaft
bearings 8 McMaster 57155K166

 Prop shaft collar 4 McMaster 6157K12
 Prop washer McMaster 8974K711

Prop shaft lock
nut 4 McMaster 90101A240

Pulleybox
extension McMaster 6023K193

 Pulleybox McMaster 6546K11
 Prop shaft McMaster 9061K15

Landing
platform Edge guard McMaster 8451A55
 Platform sheet 1 McMaster 9232T221

Note: EXCEL file contains description column.

Table B-5: Supplier Information

APC www.apcprop.com
McMaster www.mcmaster.com
SDP www.sdp-si.com
US Digital www.usdigital.com
MaxCim www.maxcim.com
Bishop Power Products www.b-p-p.com

77

APPENDIX C:

DERIVATION OF AFV DYNAMICS

The following is a derivation of the equations of motion for the AFV assuming it is a
rigid body acted on by thrust forces generated by the propellers, drag forces generated
by the propellers, gravity, disturbance forces in the global frame and disturbance
torques in the local frame. Analysis will include not only straightforward propeller
thrust/drag effects, but will also take into account the change in propeller effective
pitch with changes in free stream velocity as observed by the prop (due to vehicle
translation and rotation). Advancing/retreating blade effects are specifically neglected
due to the assumption that the vehicle will primarily operate with small lateral
velocities. Following the derivation of the dynamics equations is a derivation of the
measurement equations assuming an onboard strap down inertial measurement unit.

Bases and the Direction Cosines
The basis for the space coordinate system, which is fixed in space, is given by [x y z]’.
The space coordinate system is a standard right-handed coordinate system with z
pointing down. The basis for the body coordinate system, which is fixed to the AFV,
is given by [n o a]’. The two coordinate systems are related by the relationship [x y
z]’ = A*[n o a]’, where A is the rotation matrix.

Inversion of the rotation matrix yields

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

z
y
x

A
a
o
n

1 (C-1)

Prop location in body coordinates – rotation direction:
Prop1: [L 0 0]’ -a
Prop2: [0 L 0]’ a
Prop3: [-L 0 0]’ -a
Prop4: [0 -L 0]’ a

Euler Angles
The rotation matrix is defined using the Roll Pitch Yaw (RPY) Angles. These angles
define the rotation matrix via successive rotations about the Roll, Pitch, and Yaw
angles of the body coordinate system. Since we are rotating about the body coordinate
system, successive rotations pre-multiply previous rotations.

A(φ,θ,ψ) = Yaw*Pitch*Roll
A(φ,θ,ψ) = Rot(a,ψ)*Rot(o,θ)*Rot(n,φ)

78

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

φφ
φφ

θθ

θθ
ψψ
ψψ

CS
SC

CS

SC
CS

SC
A

0
0

001

0
010

0

100
0
0

 (C-2)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+
+−

=
φθφθθ

φψφθψφψφθψθψ
φψφθψφψφθψθψ

CCSCS
SCCSSCCSSSCS
SSCSCCSSSCCC

A (C-3)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
+−

−
=−

θψφψφθψφψφθψ
θψφψφθψφψφθψ

θφθφθ

CCCSSSCSSCSC
CSCCSSSSCCSS
SSCCC

A 1 (C-4)

Euler time derivatives are related to body angular rates by the matrix M

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

a

o

n

z

y

x

AMM
ω
ω
ω

ω
ω
ω

ψ
θ
φ

11

&

&

&

 (C-5)

Where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

φ
θψψ

ψψψ

θθ

θθ
ψψ
ψψ

ω
ω
ω

&

&

&

0
0

0

0

100
0
0

0
0

0
010

0

100
0
0

CS
SC

CS

SC
CS
SC

z

y

x

 (C-6)

yielding

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=−

1
0

0
1

θψθψ
ψψ
θ
ψ

θ
ψ

TSTC
CS
C
S

C
C

M (C-7)

Differentiating yields the relationship between body torques and Euler rates

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−−

a

o

n

a

o

n

a

o

n

a

o

n

AMAMAMAM

ω
ω
ω

ω
ω
ω

ψ
ω
ω
ω

θ
ω
ω
ω

φ
ψ
θ
φ

&

&

&

&&

&&

&&

1
111)()()((C-8)

For body velocities and global velocities

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

z
y
x

A
a
o
n

&

&

&

&

&

&
1 (C-9)

since we are concerned only with the velocity of the center of mass of the vehicle,
located at n=o=a=0.

79

Applied Forces
The nominal thrust produced by each prop varies with the prop angular velocity
squared

2
itinom kT α= (C-10)

where kt is the coefficient of thrust of the prop

However, the thrust is affected by losses and gains due to prop motion relative to
stationary air affecting the effective prop pitch. It is assumed that the prop produces
zero thrust at the prop pitch speed, equal to prop pitch*rotations/second. It is also
assumed that when the vehicle rotates the prop sees a linear velocity equal to L*body
rotation radians/second

()

()

()

()⎥
⎦

⎤
⎢
⎣

⎡
−+−=

⎥
⎦

⎤
⎢
⎣

⎡
−++=

⎥
⎦

⎤
⎢
⎣

⎡
−++=

⎥
⎦

⎤
⎢
⎣

⎡
−+−=

annom

aonom

annom

aonom

wa
PP

LTT

wa
PP

LTT

wa
PP

LTT

wa
PP

LTT

&

&

&

&

33
44

33
33

22
22

11
11

221

221

221

221

α
πω

α
π

α
πω

α
π

α
πω

α
π

α
πω

α
π

 (C-11)

where L is the radial distance of the prop center and P is the prop pitch in meters

The corresponding thrust vectors are

 aTT ii ˆ−= (C-12)

The wind loading disturbance forces are

aawkF

oowkF

nnwkF

aua

oso

nsn

ˆ)(

ˆ)(

ˆ)(

&

&

&

−=

−=

−=

 (C-13)

However, wind forces are expected to act in the global frame

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a

o

n

z

y

x

F
F
F

A
F
F
F

 (C-14)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a
o
n

w
w
w

k
k

k
A

F
F
F

a

o

n

u

s

s

z

y

x

&

&

&

00
00
00

 (C-15)

With

80

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

z

y

x

a

o

n

w
w
w

A
w
w
w

1 (C-16)

The weight of the vehicle acts at the center of mass, and is given by

 zmgW ˆ= (C-17)

Linear momentum balance yields

 ()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+++−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

F
F
F

ATTTTg
z
y
x

m
1
0
0

1
0
0

4321

&&

&&

&&

 (C-18)

Applied Moments
The nominal drag produced by each prop is

 2
idi kD α= (C-19)

where kd is the coefficient of drag of the prop

Drag moments are assumed to be affected by prop motion or free stream velocity in
the same way thrust is affected.

()

()

()

()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

and

aod

and

aod

wa
PP

LkD

wa
PP

LkD

wa
PP

LkD

wa
PP

LkD

&

&

&

&

44

2
44

33

2
33

22

2
22

11

2
11

221

221

221

221

α
πω

α
πα

α
πω

α
πα

α
πω

α
πα

α
πω

α
πα

 (C-20)

Drag moment vectors are then given by

aDD

aDD

aDD

aDD

ˆ

ˆ

ˆ

ˆ

44

33

22

11

−=

=

−=

=

 (C-21)

The moments about the center of mass generated by the thrust forces are given by

81

nLTTxr

oLTTxr

nLTTxr

oLTTxr

ˆ

ˆ

ˆ

ˆ

444

333

222

111

=

−=

−=

=

 (C-22)

The moment produced by temporary inequalities in the sum of the changes of angular
momentum of the four individual props is
 ()4231 αααα &&&& −−+= tma JM (C-23)

 aMM mama ˆ= (C-24)
where Jt is the mass moment of inertia of a single prop (and geared motor rotor) about
its rotation axis

The disturbance torques are

a

o

n

aa

oo

nn

ˆ

ˆ

ˆ

ττ

ττ

ττ

=

=

=

 (C-25)

Angular momentum balance,

()
()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−+
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a

o

n

a

o

n

a

o

n

maa

o

n

xJ
MDDDD

TTL
TTL

J
ω
ω
ω

ω
ω
ω

τ
τ
τ

ω
ω
ω

4231

31

24

&

&

&

 (C-26)

()
()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−+
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−

a

o

n

a

o

n

a

o

n

maa

o

n

xJJJ
MDDDD

TTL
TTL

J
ω
ω
ω

ω
ω
ω

τ
τ
τ

ω
ω
ω

11

4231

31

24
1

&

&

&
 (C-27)

Where J is the full rotational mass moment of inertia matrix for the vehicle.
Equation C-8 coupled with angular momentum balance results give us the full
equations of motion in rotation.

Motor Dynamics
The motor torques are given by

82

()

()

()

()v
i

m

v
i

m

v
i

m

v
i

m

kV
R
k

kV
R
k

kV
R
k

kV
R
k

444

333

222

111

ατ

ατ

ατ

ατ

−=

−=

−=

−=

 (C-28)

where ki and kv are motor torque and speed constants, appropriately transformed to
take gearing into account, and R is the resistance of the motor

The rate of change of prop speed is simply torque minus drag divided by the total
prop/gear/motor rotor mass moment of inertia

t

m

t

m

t

m

t

m

J
D

J
D

J
D

J
D

44
4

33
3

22
2

11
1

−
=

−
=

−
=

−
=

τα

τα

τα

τα

&

&

&

&

 (C-29)

Final Differential Equations of Motion, Summary

 ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+++

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

F
F
F

m
A

m
TTTT

m
g

z
y
x

1

1
0
0

1
0
0

4321

&&

&&

&&

 (C-30)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−−

a

o

n

a

o

n

a

o

n

a

o

n

AMAMAMAM

ω
ω
ω

ω
ω
ω

ψ
ω
ω
ω

θ
ω
ω
ω

φ
ψ
θ
φ

&

&

&

&&

&&

&&

1
111)()()((C-31)

t

m

t

m

t

m

t

m

J
D

J
D

J
D

J
D

44
4

33
3

22
2

11
1

−
=

−
=

−
=

−
=

τα

τα

τα

τα

&

&

&

&

 (C-32)

83

Subsets, in order of calculation:

 ()vii
i

mi kV
R
k ατ −= (C-33)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

z

y

x

a

o

n

w
w
w

A
w
w
w

1 (C-34)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a
o
n

A
z
y
x

&

&

&

&

&

&

 (C-35)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

z
y
x

A
a
o
n

&

&

&

&

&

&
1 (C-36)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a
o
n

w
w
w

k
k

k
A

F
F
F

a

o

n

u

s

s

z

y

x

&

&

&

00
00
00

 (C-37)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

φ
θ
ψ

ω
ω
ω

&

&

&

MA

a

o

n
1 (C-38)

()

()

()

()⎥
⎦

⎤
⎢
⎣

⎡
−+−=

⎥
⎦

⎤
⎢
⎣

⎡
−++=

⎥
⎦

⎤
⎢
⎣

⎡
−++=

⎥
⎦

⎤
⎢
⎣

⎡
−+−=

annom

aonom

annom

aonom

wa
PP

LTT

wa
PP

LTT

wa
PP

LTT

wa
PP

LTT

&

&

&

&

33
44

33
33

22
22

11
11

221

221

221

221

α
πω

α
π

α
πω

α
π

α
πω

α
π

α
πω

α
π

 (C-39)

84

()

()

()

()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

and

aod

and

aod

wa
PP

LkD

wa
PP

LkD

wa
PP

LkD

wa
PP

LkD

&

&

&

&

44

2
44

33

2
33

22

2
22

11

2
11

221

221

221

221

α
πω

α
πα

α
πω

α
πα

α
πω

α
πα

α
πω

α
πα

 (C-40)

 ()4231 αααα &&&& −−+= tma JM (C-41)

()
()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−+
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−

a

o

n

a

o

n

a

o

n

maa

o

n

xJJJ
MDDDD

TTL
TTL

J
ω
ω
ω

ω
ω
ω

τ
τ
τ

ω
ω
ω

11

4231

31

24
1

&

&

&

 (C-42)

These nonlinear equations are of the final form ()vuqfq ,,=& where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

a

o

n

z

y

x

w
w
w

v

V
V
V
V

u

z
y
x
z
y
x

q

τ
τ
τ

α
α
α
α
ψ
θ
φ
ψ
θ
φ

4

3

2

1

4

3

2

1

&

&

&

&

&

&

 (C-43)

85

System Parameters Key
kd= coefficient relating yaw torque caused by prop drag to prop RPM – prop drag

coeff
kt= coefficient relating prop thrust to prop RPM – prop thrust coeff
km= coefficient relating changes in prop angular momentum to vehicle yaw torque –

single prop moment of inertia
kq= coefficient defining the torque/speed curve of the prop motor – defines slope of

torque/speed curve – see kb for solving
kb= coefficient relating input voltage to prop motor performance – kb/kq = Motor

rad/s/volt – kbkm = torque/volt
kr= coefficient defining how retreating/advancing blade effects produce moments on

the props when the vehicle is moving in yaw – approx equal to Lka – Approaches
exactly equal when L is sufficiently large to allow for negligible differences in prop
blade velocity on the outside of the prop hub and on the inside when the vehicle is
yawing

kw= coefficient defining how prop thrust varies with changes in effective prop pitch
due to vehicle roll and pitch – approx equal to Lkp – Approaches exactly equal
when L is sufficiently large to allow for negligible differences in prop blade
velocity on the outside of the prop hub and on the inside when the vehicle is rolling
or pitching

kg= coefficient defining how prop thrust varies with advancing/retreating blade effects
due to vehicle yaw – approx equal to L2ke - Exactly equal when L is sufficiently
large to allow for negligible differences in prop blade velocity on the outside of the
prop hub and on the inside when the vehicle is yawing

kj= coefficient defining how prop thrust varies with advancing/retreating blade effects
due to vehicle yaw – approx equal to L2kh - Exactly equal when L is sufficiently
large to allow for negligible differences in prop blade velocity on the outside of the
prop hub and on the inside when the vehicle is yawing - equal to kgkd/kt?

ks= coefficient relating lateral wind velocity to disturbance force (P/A) – air
momentum at certain airspeed hitting certain vehicle cross sectional area, plus drag

ku= coefficient relating vertical wind velocity to disturbance force (P/A) – air
momentum at certain airspeed hitting certain vehicle cross sectional area, plus drag

J= vehicle mass moment of inertia matrix
m = mass of the vehicle
L= radial distance of prop centers from vehicle center of mass
g = gravity

State Variables Key
αi= angular velocity of the four props
ωi= vehicle angular velocity about body coordinate axis i – sensor input
Vi= voltage applied to motor i – control output
ψ= Euler yaw angle of body coordinate axis relative to space coordinate axis
θ= Euler pitch angle of body coordinate axis relative to space coordinate axis
φ= Euler roll angle of body coordinate axis relative to space coordinate axis
x,y,z = position of body coordinate axis relative to space coordinate axis origin

86

ndot, odot, adot= rate of change of body linear coordinates (body velocity relative to
body coordinate axes)

τi= disturbance torque about body coordinate axis i
wi= disturbance wind velocity in space coordinate axis i, in units of ndot, odot, and

idot

Measurement Model
Ideally perfect measurements of the full state would be available for control. However,
sensors instead produce slightly biased, noisy measurements of the vehicle
acceleration and angular rates. It is assumed that these measurements have three
primary sources of potential error:

• Non-ideal sensor placement
• Sensor drift
• White noise added to final sensor measurement

Scale factor error is another potential source of sensor error, but it will not be
estimated due to vehicle operation in a relatively small range of measurement
magnitudes and the typically relatively good sensor specs for this parameter.

Sensors are not perfectly placed on the vehicle’s body. Ideally all three
accelerometers were placed perfectly at the vehicle center of mass. However, in
practice, all three accelerometers cannot be located at the same point within an IMU
and even if they were, the IMU itself may not be mounted exactly at the vehicle CM.
Instead, it is assumed that the accelerometers are offset in the direction they measure
by some amount beta. This offset will cause rotational rates to add to the sensor
measurement due to the measurement of centrifugal forces.

For generality, it will also be assumed that the IMU may be rotated from true
alignment with the AFV principal axes. This simply adds a rotation matrix
transforming the true AFV coordinates into the actual IMU coordinates. The
measurement will also have a bias offset, DELTA, and white noise, w. The
measurement equations then follow.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a

o

n

a

o

n

aactual

oactual

nactual

ameas

omeas

nmeas

w
w
w

R

ω

ω

ω

ω

ω

ω

ω
ω
ω

ω
ω
ω

 (C-44)

solving for actual measurements yields:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

a

o

n

a

o

n

ameas

omeas

nmeas

aactual

oactual

nactual

w
w
w

R

ω

ω

ω

ω

ω

ω

ω
ω
ω

ω
ω
ω

1 (C-45)

Since noise will not be known in the course of measurement and estimation, the
equation reduces to the following:

87

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

a

o

n

ameas

omeas

nmeas

aactual

oactual

nactual

R

ω

ω

ω

ω
ω
ω

ω
ω
ω

1 (C-46)

Having acquired a guess at the actual rates, this information can be backed out of
acceleration measurements:

()
()
() ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++
++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a

o

n

a

o

n

oactualnactualaactual

aactualnactualoactual

aactualoactualnactual

meas

meas

meas

w
w
w

a
o
n

R
a
o
n

ωωβ
ωωβ
ωωβ

&&

&&

&&

&&

&&

&&

 (C-47)

solving for actual measurements yields:

()
()
()⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

oactualnactuala

aactualnactualo

aactualoactualn

a

o

n

a

o

n

meas

meas

meas

actual

actual

actual

w
w
w

a
o
n

R
a
o
n

ωωβ
ωωβ
ωωβ

&&

&&

&&

&&

&&

&&
1 (C-48)

With noise assumed zero,

()
()
()⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

oactualnactuala

aactualnactualo

aactualoactualn

a

o

n

meas

meas

meas

actual

actual

actual

a
o
n

R
a
o
n

ωωβ
ωωβ
ωωβ

&&

&&

&&

&&

&&

&&
1 (C-49)

The offsets themselves have drift which can be modeled as driven by white noise.
This modeling is only necessary for simulation of sensor corruption. There is a
feedback term, kappa, which places a bound on the amount the parameter can drift
from its initial value. In the following equations, Del tilda is a deviation from the
initial parameter value. The bound placed on the drift is described by the ratio of
kappa to the white noise power. If both are raised, the drift will be jagged, but will not
go far. If both are lowered, the drift will appear smoother. If kappa is raised and the
power lowered, the bounding range is decreased.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

a

o

n

a

o

n

noa

a

o

n

r
r
r

~
~
~

κ
&

&

&

 (C-50)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

a

o

n

a

o

n

a

o

n

r
r
r

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

κ
~
~
~

&

&

&

 (C-51)

In order to convert the above measurements from local to global coordinates, the
proper rotation given the current state must be applied:

88

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a
o
n

A
y
y
x

 (C-52)

where A is as defined in the vehicle nonlinear dynamics.

The primary shortcoming of the measurements provided thus far is their failure to
provide any absolute information about vehicle velocity and position. This
information is unobservable given inertial measurements and the vehicle dynamics.
While estimation of the above sensor parameters can reduce the accrual of errors in
these states, there is no way to remove error from the system once it is accumulated.
This will cause the vehicle to drift increasingly with time. A final version of the
vehicle could utilize GPS to provide absolute position information. However, GPS
restricts the testing of the vehicle to outdoors. Instead, there will be a human
controlling a joystick attempting to simply cancel out drift. The signals sent from this
human interface device will be treated both as an outer loop control signal (to be
discussed later) and a measurement of absolute position and velocity, yaw and yaw
rate.

The human observer will have two two-axis thumbsticks, allowing for the
transmission of four data values each step. One thumbstick will be linked to vehicle x
and y axes while the other thumbstick will control z and yaw. A typical human
observer attempting to control a state can be modeled as a PD controller with variation
in the PD gains from step to step. Since x and y are controlled from the same
thumbstick and are identical in how they respond dynamically, it can be assumed that
they have identical PD gains. The measurement obtained from the human observer
can be modeled by the following relationship:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ψψψψ

ψ
ψ

nt
nt
nt
nt

z
y
x
z
y
x

PD
PD

PD
PD

TS
TS
TS
TS

z

y

x

zz

xyxy

xyxy

z

y

x

&

&

&

&

000000
000000
000000
000000

 (C-53)

where ntis are measurement noise. While there is no true measurement noise, the
measurement noise nti can be used to handle the variations in PD gains inherent in a
human operator.

89

APPENDIX D:

ASSEMBLY/DISASSEMBLY INSTRUCTIONS

While there should be no regular need for mechanical maintenance of the AFV, there
may arise a need to disassemble the vehicle for the servicing of damaged parts in the
event of a crash or component failure. If this becomes necessary, the following guide
should help.

Pulley Box Removal/Replacement
The pulley box assembly is a self-contained unit. It can be swapped directly with
another of the same prop type without adjustment of the tensioning wires. When
removing a pulley box assembly, simply unscrew the four mounting screws. When re-
mounting an assembly, replace and tighten these four screws. Be careful to tighten all
four screws at roughly the same rate and to the same final tension. Insufficient tension
will result in vibration of the pulley box assembly. Excess tension may shear the
screw head off. Some minor adjustments to the angle at which the pulley box mates
with the vehicle may be made by tightening the bottom two screws more or less than
the top two screws. Two vibration isolation rings should be used between the strut
end and the pulley box extension piece, slipped around the mounting screws.

IMU Removal/Replacement
In order to remove the IMU, first remove tension on all three wire turnbuckles until
the wires are close to slack. Loosen the four wire clamp screws in the bottom center
strut end and slip the wires off of the strut. The IMU should slide down and out. The
IMU can now be removed from its plastic mount. In order to reassemble, follow the
disassembly instructions in reverse. Re-tension all three wires before tightening the
four wire clamp screws. It may be necessary to slacken the wires, adjust the bottom
strut slightly, and re-tension the wires in order to ensure that the base strut is properly
vertical. Once this is done, tension the wires as far as the turnbuckles allow without
significant resistance. No additional readjustment should be necessary assuming no
other wire clamp screws were touched.

Battery Replacement
Battery changing is a fairly straightforward task. The four motor battery packs are
removed by loosening the retaining screw on top of the mounts and twisting the
retaining bar parallel to the vehicle structural struts. The EE battery pack is held in
place by a simple friction fit. It can be removed by pushing the pack out the one side
of the mounting clip that does not have a retaining bump. When replacing the motor
battery packs or hooking the motor boards up to the power tether, the smaller
connectors should always be attached first, and contact verified, before connecting the
large connectors. The small connector has a resistor in line to prevent sparking
between connectors as the capacitors onboard the motor control boards charge rapidly
in response to applied voltage.

90

Pulley Box Disassembly/Reassembly
If it becomes necessary to disassemble a pulley box assemble, the prop must first be
removed. Once the retaining nut on the prop shaft has been removed, discard it. With
the prop and the prop shaft washer beneath it removed, the encoder can be accessed
and disassembled. LocTite removal solution should be applied to the large pulley set
screw, and the set screw removed. The shaft collar at the base of the prop shaft is then
removed. The prop shaft can now be pulled upwards out of the pulley box assembly.
From here, the large pulley or the prop shaft bearings can be replaced or serviced.
Removal or service of the motor, small pulley, belt, or motor shaft bearing requires
removal of the motor. To dismount the motor, first loosen the small pulley set screw
using the LocTite removal solution. Slowly unscrew the motor mounting screws,
keeping the unscrewed length equal across both. Keep the motor pulled as far down
from the pulley box as possible to avoid jamming a mounting screw against the small
pulley. Re-assemble by following the above directions in reverse. Some slight
sanding of the motor and prop shaft may be necessary to remove burs from set screw
marring. Clean pulley set screw holes thoroughly as residual removal solution may
prevent fresh LocTite from setting properly. Replacement of the large plastic pulley
may be necessary if the removal solution has degraded the plastic of the pulley. Apply
fresh LocTite to set screws when they are replaced, ensuring that the set screws line up
with any flats on the shafts they mount to. Do not run the motor until the LocTite has
set completely. Be sure to use a fresh locknut on the prop shaft when assembly is
complete as the deformable nylon insert is not reusable.

Should any disassembly beyond what is described above be required, some freshly
machined parts may be necessary. Parts joined with spring pins are likely unable to be
disassembled and reassembled without damage to the involved parts. Loose
connections should not be tolerated as they will affect the integrity and resonant
frequency of the structure.

91

APPENDIX E:

ELECTRONIC CONTENT
Data CD Contents
The AFVMechECD contains documentation and files relating to the mechanical
design and simulation aspects of the Cornell AFV project. Software packages utilized
included ANSYS for finite element analysis, MATLAB 6.5 for analysis and
simulation, Simulink for simulation, Microsoft Excel 2002 for analysis and
documentation, and Microsoft Word 2002 for documentation. CD navigation should
be self-explanatory.

 AFVMechECD

 Analysis&Simulation

 2dsim

 AFVmodelconsts.m
 TwoDmodstatederv.mdl

 3dsim

 afv animation
 afv4.bmp
 animate_afv.m
 display_afv.m
 make_afv.m
 myrot.m
 rotobj.m

 estimation
 measurement

 hfunmine.m
 IMUgeometry_f.m

 prediction
 ffunmine.m
 ThreeDAFVstatedervNoVolts

 currfilterest.m
 estimatestate.m
 srspf.m

 initialization
 ThreeDAFVmodelconsts.m
 ThreeDAFVstatedervThrust.m

 old controllers
 misc controllers, number corresponds to data log number

 old versions
 Misc old versions not necessarily working.zip
 Working 3dsim_EKF without LQR.zip

92

 simulation
 IMUgeometry.m
 ThreeDAFVstatedervNew.m

 sensortuning.mdl
 Sim File Hierarchy.xls
 ThreeDAFVsimworkingvelocity.mdl
 thrusttorads.m

 Structure

 4 prop
 FourPropsStructureAnalysis.m

 8 prop
 EightPropAFVPlotted3d.m
 EightPropsStructureAnalysis.m
 Structure.db/b

 motor analysis.xls

 Documentation

 2001

 AFV Vision System.doc
 Mechanical and Aerodynamic System Design.doc
 Design&ImpofControl&SensingforCUAFV.doc

 2003-2004

 Designof4RotHoverVehicle

 Figures

 Components Appendix
 Misc components info figures

 Simulation Plots
 Misc simulation plot BMPs

 Misc document figure BMPs

 Part Data

 Prop Data
 18X6 APC DATA.DAT
 prop thrust-drag tests.xls

 Pulley Data
 Misc pulley/belt info

 Preliminary Documents

 AFV brainstorming.doc
 AFV eqns motion and measurement.doc
 Flowcharts for contro-estimation.vsd

93

 Designof4RotHoverVehicle
 Defense.ppt
 DocsTestCase.avi
 ActualHoverTest.avi

 AFV Electronics Documentation.doc

 Machining Drawings

 Misc Machining Spec Sheet BMPs

 ProE

 Misc Pro/E model files

 Prop Programs

 PropSelector.zip
 Thrusthpv20d.zip

A printout of all code utilized for design or simulation follows.

94

4-prop Structure Analysis Code

% FourPropsStructureAnalysis.m
% Author: Eryk Nice

% This m file will perform a simplified analysis of the natural frequency
% of structure flexible modes given the four-prop wire stiffened design.
% These computed values for natural frequency must be significantly higher
% than the highest expected prop operating frequency to avoid problems with
% structural interaction with any cyclic prop forces.

% set to 1 if you wish to display prop coordinates
disppropco = 0;

%Tip to tip prop clearence - defines minimum radius of props from vehicle
%center
tttpc = 2*25.4/1000;

%Thrust prop radius
tpropr = 9*25.4/1000;

%width of thrust motor mount block from center - affects rotational prop
%mode
ttzwidth = 2*25.4/1000;

% minimum distance from prop tip to wire - vertical clearence of prop above
% wire
pttwdist = 2*25.4/1000;
% height of vertical strut above center - affects up and down mode of prop
zheight = 5*25.4/1000;
[0 0 zheight]';
% height of thrust motor mount block above center
tmzheight = 0.5*25.4/1000;

% computer the x,y coordinates of four props given above parameters
disp('Thrust prop coordinates')
tprop1=[tpropr+tttpc/2, tpropr+tttpc/2];
tprop2=[tpropr+tttpc/2, -tpropr-tttpc/2];
tprop3=[-tpropr-tttpc/2, -tpropr-tttpc/2];
tprop4=[-tpropr-tttpc/2, tpropr+tttpc/2];

% if flag is true, display coordinates
if disppropco == 1
[tpropr+tttpc/2 tpropr+tttpc/2 0]'
[tpropr+tttpc/2 -tpropr-tttpc/2 0]'
[-tpropr-tttpc/2 -tpropr-tttpc/2 0]'
[-tpropr-tttpc/2 tpropr+tttpc/2 0]'

[tpropr+tttpc/2 tpropr+tttpc/2 tmzheight/2]'
[tpropr+tttpc/2 -tpropr-tttpc/2 tmzheight/2]'
[-tpropr-tttpc/2 -tpropr-tttpc/2 tmzheight/2]'
[-tpropr-tttpc/2 tpropr+tttpc/2 tmzheight/2]'

[tpropr+tttpc/2 tpropr+tttpc/2 -tmzheight/2]'

95

[tpropr+tttpc/2 -tpropr-tttpc/2 -tmzheight/2]'
[-tpropr-tttpc/2 -tpropr-tttpc/2 -tmzheight/2]'
[-tpropr-tttpc/2 tpropr+tttpc/2 -tmzheight/2]'
end

%Thrust prop radial distance
tproprdist = (2*(tpropr+tttpc/2)^2)^0.5

%Circles for plotting
tproppts1 = mkcirc(tprop1(1),tprop1(2),tpropr);
tproppts2 = mkcirc(tprop2(1),tprop2(2),tpropr);
tproppts3 = mkcirc(tprop3(1),tprop3(2),tpropr);
tproppts4 = mkcirc(tprop4(1),tprop4(2),tpropr);

%Plot props
figure(1)
plot(tproppts1(:,1),tproppts1(:,2))
hold on
plot(tproppts2(:,1),tproppts2(:,2))
plot(tproppts3(:,1),tproppts3(:,2))
plot(tproppts4(:,1),tproppts4(:,2))

%Plot IMU
plot([0 2.5*25.4/1000 0 -2.5*25.4/1000 0],[2.5*25.4/1000 0 -2.5*25.4/1000 0 2.5*25.4/1000])

%Plot struts to prop centers
plot([0 tprop1(1)],[0 tprop1(2)])
plot([0 tprop2(1)],[0 tprop2(2)])
plot([0 tprop3(1)],[0 tprop3(2)])
plot([0 tprop4(1)],[0 tprop4(2)])

disp('plot thrust motor mounts')
plot([tprop1(1)-ttzwidth*sin(pi/4) tprop1(1)+ttzwidth*sin(pi/4)],[tprop1(2)+ttzwidth*sin(pi/4)
tprop1(2)-ttzwidth*sin(pi/4)])
plot([tprop2(1)+ttzwidth*sin(pi/4) tprop2(1)-ttzwidth*sin(pi/4)],[tprop2(2)+ttzwidth*sin(pi/4)
tprop2(2)-ttzwidth*sin(pi/4)])
plot([tprop3(1)+ttzwidth*sin(pi/4) tprop3(1)-ttzwidth*sin(pi/4)],[tprop3(2)-ttzwidth*sin(pi/4)
tprop3(2)+ttzwidth*sin(pi/4)])
plot([tprop4(1)-ttzwidth*sin(pi/4) tprop4(1)+ttzwidth*sin(pi/4)],[tprop4(2)-ttzwidth*sin(pi/4)
tprop4(2)+ttzwidth*sin(pi/4)])

if disppropco == 1
[tprop1(1)-ttzwidth*sin(pi/4) tprop1(1)+ttzwidth*sin(pi/4);tprop1(2)+ttzwidth*sin(pi/4) tprop1(2)-
ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop2(1)+ttzwidth*sin(pi/4) tprop2(1)-ttzwidth*sin(pi/4);tprop2(2)+ttzwidth*sin(pi/4) tprop2(2)-
ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop3(1)+ttzwidth*sin(pi/4) tprop3(1)-ttzwidth*sin(pi/4);tprop3(2)-ttzwidth*sin(pi/4)
tprop3(2)+ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop4(1)-ttzwidth*sin(pi/4) tprop4(1)+ttzwidth*sin(pi/4);tprop4(2)-ttzwidth*sin(pi/4)
tprop4(2)+ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop1(1)-ttzwidth*sin(pi/4) tprop1(1)+ttzwidth*sin(pi/4);tprop1(2)+ttzwidth*sin(pi/4) tprop1(2)-
ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]
[tprop2(1)+ttzwidth*sin(pi/4) tprop2(1)-ttzwidth*sin(pi/4);tprop2(2)+ttzwidth*sin(pi/4) tprop2(2)-
ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]

96

[tprop3(1)+ttzwidth*sin(pi/4) tprop3(1)-ttzwidth*sin(pi/4);tprop3(2)-ttzwidth*sin(pi/4)
tprop3(2)+ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]
[tprop4(1)-ttzwidth*sin(pi/4) tprop4(1)+ttzwidth*sin(pi/4);tprop4(2)-ttzwidth*sin(pi/4)
tprop4(2)+ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]
end

%Plot Circumferential wire
plot([tprop1(1)+ttzwidth*sin(pi/4) tprop2(1)+ttzwidth*sin(pi/4)],[tprop1(2)-ttzwidth*sin(pi/4)
tprop2(2)+ttzwidth*sin(pi/4)])
plot([tprop2(1)-ttzwidth*sin(pi/4) tprop3(1)+ttzwidth*sin(pi/4)],[tprop2(2)-ttzwidth*sin(pi/4)
tprop3(2)-ttzwidth*sin(pi/4)])
plot([tprop3(1)-ttzwidth*sin(pi/4) tprop4(1)-ttzwidth*sin(pi/4)],[tprop3(2)+ttzwidth*sin(pi/4)
tprop4(2)-ttzwidth*sin(pi/4)])
plot([tprop4(1)+ttzwidth*sin(pi/4) tprop1(1)-ttzwidth*sin(pi/4)],[tprop4(2)+ttzwidth*sin(pi/4)
tprop1(2)+ttzwidth*sin(pi/4)])

%Compute length of circumferencial wire for weight purposes
circumfwirelength = distance(tprop1(1)+ttzwidth*sin(pi/4), tprop2(1)+ttzwidth*sin(pi/4), tprop1(1)-
ttzwidth*sin(pi/4), tprop1(2)+ttzwidth*sin(pi/4));
circumftotalwirelength = 4*circumfwirelength;

flatanglethrustprops = pi/4;

axis([-0.4 0.4 -0.4 0.4])
axis square
grid on
title('Prop layout (meters)')
hold off

%Height of thrust prop above strut - function of clearence and wire angle
tpzheight = tpropr*(zheight-tmzheight)/tproprdist + pttwdist + tmzheight;

figure(2)
%plot thrust props
plot([(-(tpropr+tttpc/2)-tpropr) (-(tpropr+tttpc/2)+tpropr)],[tpzheight tpzheight])
hold on
plot([((tpropr+tttpc/2)-tpropr) ((tpropr+tttpc/2)+tpropr)],[tpzheight tpzheight])
%plot IMU
plot([3.53/2*25.4/1000 -3.53/2*25.4/1000 -3.53/2*25.4/1000 3.53/2*25.4/1000 3.53/2*25.4/1000],[-
1.77*25.4/1000 -1.77*25.4/1000 (3.84-1.77)*25.4/1000 (3.84-1.77)*25.4/1000 -1.77*25.4/1000]);

%plot thrust prop verts
plot([-(tpropr+tttpc/2) -(tpropr+tttpc/2)],[0 tpzheight])
plot([(tpropr+tttpc/2) (tpropr+tttpc/2)],[0 tpzheight])
%plot motor mount block
plot([-(tpropr+tttpc/2) -(tpropr+tttpc/2)],[-tmzheight tmzheight])
plot([(tpropr+tttpc/2) (tpropr+tttpc/2)],[-tmzheight tmzheight])
%plot thrust struts
plot([-(tpropr+tttpc/2) (tpropr+tttpc/2)],[0 0])
%plot manuever wires
plot([-(tpropr+tttpc/2) 0 (tpropr+tttpc/2)],[tmzheight zheight tmzheight])
plot([(tpropr+tttpc/2) 0 -(tpropr+tttpc/2)],[-tmzheight -zheight -tmzheight])
%plot verts

97

plot([0 0],[zheight -zheight])
anglethrustprops = atan((zheight-tmzheight)/tproprdist);

%Compute length of vertical stiffening wires for weight purposes
thrustwirelength = distance(0, zheight, tproprdist, tmzheight);
thrusttotalwirelength = 8*thrustwirelength;

axis([-0.4 0.4 -0.4 0.4])
axis square
grid on
title('Thrust prop side views (meters)')
hold off

totalwirelength=thrusttotalwirelength+circumftotalwirelength + 8*ttzwidth
totalstrutlength=zheight*2+tproprdist*4;

%wire info
%wirer=0.000865; %5/64 1-19
wirer=0.000692; %1/16 1-19

%compute wire weight
wiredens = 7920;
wireA=3.14159*wirer*wirer;
wirev=wireA*totalwirelength;
wireweight = wiredens*wirev

wireE = 190000000000;
freqthrustprop = 7450/60

%motor & prop weight
tmasskg = .5;

%manuever motor & prop rotational inertia
tmassI = 0.5*0.03^2;

%Beam info (strut tubing)
beamE = 70000000000;
beamG = 26000000000;
beamor = 3/5*25.4/1000;
beamwallthickness = .028*25.4/1000;
beamir = beamor-beamwallthickness;
beamI = 0.25*pi*(beamor^4-beamir^4);
beamJ = 0.5*pi*(beamor^4-beamir^4);
beamdens = 2710;
beamA = pi*(beamor^2-beamir^2);
beamv = beamA*totalstrutlength;
beamweight = beamv*beamdens

thrustbeamL = tproprdist;

beamstrength = 120000000;

% assume we load the beam in compression to half of its max strength, and

98

% use this to compute the tension of the stiffening wire
beamload = beamstrength*beamA/2;
verttension = beamload/2/cos(anglethrustprops);
circumftension = beamload/2/cos(0.6172);

% The following computations examine a single cantelevered prop
% configuration assuming the center end of the strut is a fixed constraint
% and the four wires attached to the gear box are fixed at their other end.
% The frequency is approximated by displacing the motor/prop combination
% in the vertical, tangential, or radial direction or rotating about these
% three directions. The force produced by the spring of the stiffening
% wires or the spring of the strut is used to compute an effective spring
% constant. This spring constant is them combined with the mass of the
% motor/prop combination and a natural frequency is obtained. The
% assumption is made that the bulk of the relevant weight is found in the
% motor/prop combo.

% VERTICAL

kzthrustwireflat = (2*circumftension/circumfwirelength);
kzthrustwirevert = 2*wireE*wireA*sin(anglethrustprops)*sin(anglethrustprops)/thrustwirelength;
kzthrustwire = kzthrustwireflat + kzthrustwirevert;
kzthruststrut = 3*beamE*beamI/(thrustbeamL)^3;

kzthrust = kzthrustwire + kzthruststrut;

znaturalfreqthruststrut = (kzthrust/tmasskg)^0.5/2/pi

% TANGENTIAL

ktthrustwireflat =
(2*wireE*wireA*sin(flatanglethrustprops)*sin(flatanglethrustprops)/thrustwirelength);
ktthrustwirevert = 2*verttension/thrustwirelength;
ktthrustwire = ktthrustwireflat + ktthrustwirevert;
ktthruststrut = 3*beamE*beamI/(thrustbeamL)^3;

ktthrust = ktthrustwire + ktthruststrut;

tnaturalfreqthruststrut = (ktthrust/tmasskg)^0.5/2/pi

% RADIAL

krthrustwireflat =
(2*wireE*wireA*cos(flatanglethrustprops)*cos(flatanglethrustprops)/circumfwirelength);
krthrustwirevert = 2*wireE*wireA*cos(anglethrustprops)*cos(anglethrustprops)/thrustwirelength;
krthrustwire = krthrustwireflat + krthrustwirevert;
krthruststrut = beamE*beamA/thrustbeamL;

krthrust = krthrustwire + krthruststrut;

rnaturalfreqthruststrut = (krthrust/tmasskg)^0.5/2/pi

%Torsional about radius

tkrthrustwireflat = 0.5*(2*circumftension/circumfwirelength)*ttzwidth^2;

99

tkrthrustwirevert = 0.5*2*verttension/thrustwirelength*tmzheight^2;
tkrthrustwire = tkrthrustwireflat + tkrthrustwirevert;
tkrthruststrut = beamG*beamJ/thrustbeamL;

tkrthrust = tkrthrustwire + tkrthruststrut;

trnaturalfreqthruststrut = (tkrthrust/tmassI)^0.5/2/pi

%Torsional about tangent

tktthrustwireflat =
0.5*(2*wireE*wireA*cos(flatanglethrustprops)*cos(flatanglethrustprops)/circumfwirelength)*ttzwidth^
2;
tktthrustwirevert =
0.5*2*wireE*wireA*cos(anglethrustprops)*cos(anglethrustprops)/thrustwirelength*tmzheight^2;
tktthrustwire = tktthrustwireflat + tktthrustwirevert;
tktthruststrut = beamE*beamI/thrustbeamL;

tktthrust = tktthrustwire + tktthruststrut;

ttnaturalfreqthruststrut = (tktthrust/tmassI)^0.5/2/pi

%Torsional about vertical

tkzthrustwireflat =
0.5*(2*wireE*wireA*cos(flatanglethrustprops)*cos(flatanglethrustprops)/circumfwirelength)*ttzwidth^
2;
tkzthrustwirevert = 0;
tkzthrustwire = tkzthrustwireflat + tkzthrustwirevert;
tkzthruststrut = beamE*beamI/thrustbeamL;

tkzthrust = tkzthrustwire + tkzthruststrut;

tznaturalfreqthruststrut = (tkzthrust/tmassI)^0.5/2/pi

100

8-prop Structure Analysis Code

% EightPropsStructureAnalysis.m

disppropco = 0;

%Tip to tip prop clearence
tttpc = 2*25.4/1000;

%Thrust prop radius
tpropr = 10*25.4/1000;

%Manuever prop radius
mpropr = 7*25.4/1000;

%width of manuever motor mount block from center
mtzwidth = 3*25.4/1000;
%width of thrust motor mount block from center
ttzwidth = 4*25.4/1000;

%distance from prop tip to wire
pttwdist = 2*25.4/1000;
%height of vertical strut above center
zheight = 12*25.4/1000;
[0 0 zheight]'
%height of manuever motor mount block above center
mmzheight = 0.5*25.4/1000;
%height of thrust motor mount block above center
tmzheight = 0.5*25.4/1000;

disp('Thrust prop coordinates')
tprop1=[tpropr+tttpc/2, tpropr+tttpc/2];
tprop2=[tpropr+tttpc/2, -tpropr-tttpc/2];
tprop3=[-tpropr-tttpc/2, -tpropr-tttpc/2];
tprop4=[-tpropr-tttpc/2, tpropr+tttpc/2];

if disppropco == 1
[tpropr+tttpc/2 tpropr+tttpc/2 0]'
[tpropr+tttpc/2 -tpropr-tttpc/2 0]'
[-tpropr-tttpc/2 -tpropr-tttpc/2 0]'
[-tpropr-tttpc/2 tpropr+tttpc/2 0]'

[tpropr+tttpc/2 tpropr+tttpc/2 tmzheight/2]'
[tpropr+tttpc/2 -tpropr-tttpc/2 tmzheight/2]'
[-tpropr-tttpc/2 -tpropr-tttpc/2 tmzheight/2]'
[-tpropr-tttpc/2 tpropr+tttpc/2 tmzheight/2]'

[tpropr+tttpc/2 tpropr+tttpc/2 -tmzheight/2]'
[tpropr+tttpc/2 -tpropr-tttpc/2 -tmzheight/2]'
[-tpropr-tttpc/2 -tpropr-tttpc/2 -tmzheight/2]'
[-tpropr-tttpc/2 tpropr+tttpc/2 -tmzheight/2]'
end

101

%Thrust prop radial distance
tproprdist = (2*(tpropr+tttpc/2)^2)^0.5;

%Manuever prop radial distance
mproprdist = ((tpropr+mpropr+tttpc)^2 - (tpropr+tttpc/2)^2)^0.5 + tpropr+tttpc/2;

disp('Manuever prop coordinates')
mprop1=[0, mproprdist];
mprop2=[mproprdist, 0];
mprop3=[0, -mproprdist];
mprop4=[-mproprdist, 0];

if disppropco == 1
[0 mproprdist 0]'
[mproprdist 0 0]'
[0 -mproprdist 0]'
[-mproprdist 0 0]'

[0 mproprdist mmzheight/2]'
[mproprdist 0 mmzheight/2]'
[0 -mproprdist mmzheight/2]'
[-mproprdist 0 mmzheight/2]'

[0 mproprdist -mmzheight/2]'
[mproprdist 0 -mmzheight/2]'
[0 -mproprdist -mmzheight/2]'
[-mproprdist 0 -mmzheight/2]'
end

%Circles for plotting
tproppts1 = mkcirc(tprop1(1),tprop1(2),tpropr);
tproppts2 = mkcirc(tprop2(1),tprop2(2),tpropr);
tproppts3 = mkcirc(tprop3(1),tprop3(2),tpropr);
tproppts4 = mkcirc(tprop4(1),tprop4(2),tpropr);

mproppts1 = mkcirc(mprop1(1),mprop1(2),mpropr);
mproppts2 = mkcirc(mprop2(1),mprop2(2),mpropr);
mproppts3 = mkcirc(mprop3(1),mprop3(2),mpropr);
mproppts4 = mkcirc(mprop4(1),mprop4(2),mpropr);

%Plot props
figure(1)
plot(tproppts1(:,1),tproppts1(:,2))
hold on
plot(tproppts2(:,1),tproppts2(:,2))
plot(tproppts3(:,1),tproppts3(:,2))
plot(tproppts4(:,1),tproppts4(:,2))

plot(mproppts1(:,1),mproppts1(:,2))
plot(mproppts2(:,1),mproppts2(:,2))
plot(mproppts3(:,1),mproppts3(:,2))
plot(mproppts4(:,1),mproppts4(:,2))

102

%Plot IMU
plot([0 2.5*25.4/1000 0 -2.5*25.4/1000 0],[2.5*25.4/1000 0 -2.5*25.4/1000 0 2.5*25.4/1000])

%Plot struts to prop centers
plot([0 tprop1(1)],[0 tprop1(2)])
plot([0 tprop2(1)],[0 tprop2(2)])
plot([0 tprop3(1)],[0 tprop3(2)])
plot([0 tprop4(1)],[0 tprop4(2)])

plot([0 mprop1(1)],[0 mprop1(2)])
plot([0 mprop2(1)],[0 mprop2(2)])
plot([0 mprop3(1)],[0 mprop3(2)])
plot([0 mprop4(1)],[0 mprop4(2)])

disp('plot thrust motor mounts')
plot([tprop1(1)-ttzwidth*sin(pi/4) tprop1(1)+ttzwidth*sin(pi/4)],[tprop1(2)+ttzwidth*sin(pi/4)
tprop1(2)-ttzwidth*sin(pi/4)])
plot([tprop2(1)+ttzwidth*sin(pi/4) tprop2(1)-ttzwidth*sin(pi/4)],[tprop2(2)+ttzwidth*sin(pi/4)
tprop2(2)-ttzwidth*sin(pi/4)])
plot([tprop3(1)+ttzwidth*sin(pi/4) tprop3(1)-ttzwidth*sin(pi/4)],[tprop3(2)-ttzwidth*sin(pi/4)
tprop3(2)+ttzwidth*sin(pi/4)])
plot([tprop4(1)-ttzwidth*sin(pi/4) tprop4(1)+ttzwidth*sin(pi/4)],[tprop4(2)-ttzwidth*sin(pi/4)
tprop4(2)+ttzwidth*sin(pi/4)])

if disppropco == 1
[tprop1(1)-ttzwidth*sin(pi/4) tprop1(1)+ttzwidth*sin(pi/4);tprop1(2)+ttzwidth*sin(pi/4) tprop1(2)-
ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop2(1)+ttzwidth*sin(pi/4) tprop2(1)-ttzwidth*sin(pi/4);tprop2(2)+ttzwidth*sin(pi/4) tprop2(2)-
ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop3(1)+ttzwidth*sin(pi/4) tprop3(1)-ttzwidth*sin(pi/4);tprop3(2)-ttzwidth*sin(pi/4)
tprop3(2)+ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop4(1)-ttzwidth*sin(pi/4) tprop4(1)+ttzwidth*sin(pi/4);tprop4(2)-ttzwidth*sin(pi/4)
tprop4(2)+ttzwidth*sin(pi/4);tmzheight/2 tmzheight/2]
[tprop1(1)-ttzwidth*sin(pi/4) tprop1(1)+ttzwidth*sin(pi/4);tprop1(2)+ttzwidth*sin(pi/4) tprop1(2)-
ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]
[tprop2(1)+ttzwidth*sin(pi/4) tprop2(1)-ttzwidth*sin(pi/4);tprop2(2)+ttzwidth*sin(pi/4) tprop2(2)-
ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]
[tprop3(1)+ttzwidth*sin(pi/4) tprop3(1)-ttzwidth*sin(pi/4);tprop3(2)-ttzwidth*sin(pi/4)
tprop3(2)+ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]
[tprop4(1)-ttzwidth*sin(pi/4) tprop4(1)+ttzwidth*sin(pi/4);tprop4(2)-ttzwidth*sin(pi/4)
tprop4(2)+ttzwidth*sin(pi/4);-tmzheight/2 -tmzheight/2]
end

disp('plot manuever motor mounts')
plot([mprop1(1)-mtzwidth mprop1(1)+mtzwidth],[mprop1(2) mprop1(2)])
plot([mprop2(1) mprop2(1)],[mprop2(2)+mtzwidth mprop2(2)-mtzwidth])
plot([mprop3(1)+mtzwidth mprop3(1)-mtzwidth],[mprop3(2) mprop3(2)])
plot([mprop4(1) mprop4(1)],[mprop4(2)-mtzwidth mprop4(2)+mtzwidth])

if disppropco == 1
[mprop1(1)-mtzwidth mprop1(1)+mtzwidth;mprop1(2) mprop1(2);mmzheight/2 mmzheight/2]
[mprop2(1) mprop2(1);mprop2(2)+mtzwidth mprop2(2)-mtzwidth;mmzheight/2 mmzheight/2]
[mprop3(1)+mtzwidth mprop3(1)-mtzwidth;mprop3(2) mprop3(2);mmzheight/2 mmzheight/2]
[mprop4(1) mprop4(1);mprop4(2)-mtzwidth mprop4(2)+mtzwidth;mmzheight/2 mmzheight/2]

103

[mprop1(1)-mtzwidth mprop1(1)+mtzwidth;mprop1(2) mprop1(2);-mmzheight/2 -mmzheight/2]
[mprop2(1) mprop2(1);mprop2(2)+mtzwidth mprop2(2)-mtzwidth;-mmzheight/2 -mmzheight/2]
[mprop3(1)+mtzwidth mprop3(1)-mtzwidth;mprop3(2) mprop3(2);-mmzheight/2 -mmzheight/2]
[mprop4(1) mprop4(1);mprop4(2)-mtzwidth mprop4(2)+mtzwidth;-mmzheight/2 -mmzheight/2]
end

%Plot Circumferencial wire
plot([mprop1(1)+mtzwidth tprop1(1)-ttzwidth*sin(pi/4)],[mprop1(2) tprop1(2)+ttzwidth*sin(pi/4)])
plot([tprop1(1)+ttzwidth*sin(pi/4) mprop2(1)],[tprop1(2)-ttzwidth*sin(pi/4) mprop2(2)+mtzwidth])
plot([mprop2(1) tprop2(1)+ttzwidth*sin(pi/4)],[mprop2(2)-mtzwidth tprop2(2)+ttzwidth*sin(pi/4)])
plot([tprop2(1)-ttzwidth*sin(pi/4) mprop3(1)+mtzwidth],[tprop2(2)-ttzwidth*sin(pi/4) mprop3(2)])
plot([mprop3(1)-mtzwidth tprop3(1)+ttzwidth*sin(pi/4)],[mprop3(2) tprop3(2)-ttzwidth*sin(pi/4)])
plot([tprop3(1)-ttzwidth*sin(pi/4) mprop4(1)],[tprop3(2)+ttzwidth*sin(pi/4) mprop4(2)-mtzwidth])
plot([mprop4(1) tprop4(1)-ttzwidth*sin(pi/4)],[mprop4(2)+mtzwidth tprop4(2)-ttzwidth*sin(pi/4)])
plot([tprop4(1)+ttzwidth*sin(pi/4) mprop1(1)-mtzwidth],[tprop4(2)+ttzwidth*sin(pi/4) mprop1(2)])

circumfwirelength = distance(mprop1(1)+mtzwidth, mprop1(2), tprop1(1)-ttzwidth*sin(pi/4),
tprop1(2)+ttzwidth*sin(pi/4));
circumftotalwirelength = 8*circumfwirelength;

flatanglemanueverprops = acos((mproprdist-(tproprdist+ttzwidth)*sin(pi/4))/circumfwirelength);
flatanglethrustprops = pi/2-(asin((mproprdist-(tproprdist+ttzwidth)*sin(pi/4))/circumfwirelength) - pi/4);

axis([-40*25.4/1000 40*25.4/1000 -40*25.4/1000 40*25.4/1000])
axis square
grid on
title('Prop layout (meters)')
hold off

%Height of manuever prop above strut
mpzheight = mpropr*(zheight-mmzheight)/mproprdist + pttwdist + mmzheight;

%Height of thrust prop above strut
tpzheight = tpropr*(zheight-tmzheight)/tproprdist + pttwdist + tmzheight;

figure(2)
%plot manuever props
plot([(-mproprdist-mpropr) (-mproprdist+mpropr)],[-mpzheight -mpzheight])
hold on
plot([(mproprdist-mpropr) (mproprdist+mpropr)],[-mpzheight -mpzheight])
%plot manuever prop verts
plot([-mproprdist -mproprdist],[0 -mpzheight])
plot([mproprdist mproprdist],[0 -mpzheight])
%plot motor mount block
plot([-mproprdist -mproprdist],[-mmzheight mmzheight])
plot([mproprdist mproprdist],[-mmzheight mmzheight])
%plot manuever struts
plot([-mproprdist mproprdist],[0 0])
%plot manuever wires
plot([-mproprdist 0 mproprdist],[mmzheight zheight mmzheight])
plot([mproprdist 0 -mproprdist],[-mmzheight -zheight -mmzheight])
%plot verts
plot([0 0],[zheight -zheight])
anglemanueverprops = atan((zheight-mmzheight)/mproprdist);

104

manueverwirelength = distance(0, zheight, mproprdist, mmzheight);
manuevertotalwirelength = 8*manueverwirelength;

axis([-40*25.4/1000 40*25.4/1000 -40*25.4/1000 40*25.4/1000])
axis square
grid on
title('Manuever prop side view (meters)')
hold off

figure(3)
%plot thrust props
plot([(-tproprdist-tpropr) (-tproprdist+tpropr)],[tpzheight tpzheight])
hold on
plot([(tproprdist-tpropr) (tproprdist+tpropr)],[tpzheight tpzheight])
%plot IMU
plot([3.53/2*25.4/1000 -3.53/2*25.4/1000 -3.53/2*25.4/1000 3.53/2*25.4/1000 3.53/2*25.4/1000],[-
1.77*25.4/1000 -1.77*25.4/1000 (3.84-1.77)*25.4/1000 (3.84-1.77)*25.4/1000 -1.77*25.4/1000]);

%plot thrust prop verts
plot([-tproprdist -tproprdist],[0 tpzheight])
plot([tproprdist tproprdist],[0 tpzheight])
%plot motor mount block
plot([-tproprdist -tproprdist],[-tmzheight tmzheight])
plot([tproprdist tproprdist],[-tmzheight tmzheight])
%plot thrust struts
plot([-tproprdist tproprdist],[0 0])
%plot manuever wires
plot([-tproprdist 0 tproprdist],[tmzheight zheight tmzheight])
plot([tproprdist 0 -tproprdist],[-tmzheight -zheight -tmzheight])
%plot verts
plot([0 0],[zheight -zheight])
anglethrustprops = atan((zheight-tmzheight)/tproprdist);

thrustwirelength = distance(0, zheight, tproprdist, tmzheight);
thrusttotalwirelength = 8*thrustwirelength;

axis([-40*25.4/1000 40*25.4/1000 -40*25.4/1000 40*25.4/1000])
axis square
grid on
title('Thrust prop side views (meters)')
hold off

totalwirelength=thrusttotalwirelength+manuevertotalwirelength+circumftotalwirelength*2;
totalstrutlength=zheight*2+tproprdist*4+mproprdist*4;

%wire info
wirer=0.0006;
wiredens = 7920
wireA=3.14159*wirer*wirer
wirev=wireA*totalwirelength;
wireweight = wiredens*wirev;

wireE = 190000000000

105

freqmanueverprop = 3840/60
freqthrustprop = 2980/60

%manuever motor & prop weight
mmasskg = 0.25
tmasskg = 0.5

%manuever motor & prop rotational inertia
mmassI = 0.25*0.03^2
tmassI = 0.5*0.03^2

%Beam info
beamE = 70000000000
beamG = 26000000000
beamor = 10/32*25.4/1000;
beamwallthickness = 1/64*25.4/1000;
beamir = beamor-beamwallthickness;
beamI = 0.25*pi*(beamor^4-beamir^4)
beamJ = 0.5*pi*(beamor^4-beamir^4)
beamdens = 2710
beamA = pi*(beamor^2-beamir^2)
beamv = beamA*totalstrutlength;
beamweight = beamv*beamdens

manueverbeamL = mproprdist;
thrustbeamL = tproprdist;

beamstrength = 120000000;
beamload = beamstrength*beamA/2;
verttension = beamload/2/cos(anglemanueverprops);
circumftension = beamload/2/cos(0.6172);

% VERTICAL
kzmanueverwireflat = 2*(2*circumftension/circumfwirelength);
kzmanueverwirevert =
2*wireE*wireA*sin(anglemanueverprops)*sin(anglemanueverprops)/manueverwirelength;
kzmanueverwire = kzmanueverwireflat + kzmanueverwirevert;
kzmanueverstrut = 3*beamE*beamI/(manueverbeamL)^3;

kzthrustwireflat = 2*(2*circumftension/circumfwirelength);
kzthrustwirevert = 2*wireE*wireA*sin(anglethrustprops)*sin(anglethrustprops)/thrustwirelength;
kzthrustwire = kzthrustwireflat + kzthrustwirevert;
kzthruststrut = 3*beamE*beamI/(thrustbeamL)^3;

kzmanuever = kzmanueverwire + kzmanueverstrut;
kzthrust = kzthrustwire + kzthruststrut;

znaturalfreqmanueverstrut = (kzmanuever/mmasskg)^0.5/2/pi
znaturalfreqthruststrut = (kzthrust/tmasskg)^0.5/2/pi

% TANGENTIAL
ktmanueverwireflat =
2*(2*wireE*wireA*sin(flatanglemanueverprops)*sin(flatanglemanueverprops)/circumfwirelength);
ktmanueverwirevert = 2*verttension/manueverwirelength;

106

ktmanueverwire = ktmanueverwireflat + ktmanueverwirevert;
ktmanueverstrut = 3*beamE*beamI/(manueverbeamL)^3;

ktthrustwireflat =
2*(2*wireE*wireA*sin(flatanglethrustprops)*sin(flatanglethrustprops)/thrustwirelength);
ktthrustwirevert = 2*verttension/thrustwirelength;
ktthrustwire = ktthrustwireflat + ktthrustwirevert;
ktthruststrut = 3*beamE*beamI/(thrustbeamL)^3;

ktmanuever = ktmanueverwire + ktmanueverstrut;
ktthrust = ktthrustwire + ktthruststrut;

tnaturalfreqmanueverstrut = (ktmanuever/mmasskg)^0.5/2/pi
tnaturalfreqthruststrut = (ktthrust/tmasskg)^0.5/2/pi

% RADIAL
krmanueverwireflat =
2*(2*wireE*wireA*cos(flatanglemanueverprops)*cos(flatanglemanueverprops)/circumfwirelength);
krmanueverwirevert =
2*wireE*wireA*cos(anglemanueverprops)*cos(anglemanueverprops)/manueverwirelength;
krmanueverwire = krmanueverwireflat + krmanueverwirevert;
krmanueverstrut = beamE*beamA/manueverbeamL;

krthrustwireflat =
2*(2*wireE*wireA*cos(flatanglethrustprops)*cos(flatanglethrustprops)/circumfwirelength);
krthrustwirevert = 2*wireE*wireA*cos(anglethrustprops)*cos(anglethrustprops)/thrustwirelength;
krthrustwire = krthrustwireflat + krthrustwirevert;
krthruststrut = beamE*beamA/thrustbeamL;

krmanuever = krmanueverwire + krmanueverstrut;
krthrust = krthrustwire + krthruststrut;

rnaturalfreqmanueverstrut = (krmanuever/mmasskg)^0.5/2/pi
rnaturalfreqthruststrut = (krthrust/tmasskg)^0.5/2/pi

%Torsional about radius
tkrmanueverwireflat = 0.5*2*(2*circumftension/circumfwirelength)*mtzwidth^2;
tkrmanueverwirevert = 0.5*2*verttension/manueverwirelength*mtzwidth^2;
tkrmanueverwire = tkrmanueverwireflat + tkrmanueverwirevert;
tkrmanueverstrut = beamG*beamJ/manueverbeamL;

tkrthrustwireflat = 0.5*2*(2*circumftension/circumfwirelength)*ttzwidth^2;
tkrthrustwirevert = 0.5*2*verttension/thrustwirelength*ttzwidth^2;
tkrthrustwire = tkrthrustwireflat + tkrthrustwirevert;
tkrthruststrut = beamG*beamJ/thrustbeamL;

tkrmanuever = tkrmanueverwire + tkrmanueverstrut;
tkrthrust = tkrthrustwire + tkrthruststrut;

trnaturalfreqmanueverstrut = (tkrmanuever/mmassI)^0.5/2/pi
trnaturalfreqthruststrut = (tkrthrust/tmassI)^0.5/2/pi

%Torsional about tangent

107

tktmanueverwireflat =
0.5*2*(2*wireE*wireA*cos(flatanglemanueverprops)*cos(flatanglemanueverprops)/circumfwirelength
)*mtzwidth^2;
tktmanueverwirevert =
0.5*2*wireE*wireA*cos(anglemanueverprops)*cos(anglemanueverprops)/manueverwirelength*mtzwi
dth^2;
tktmanueverwire = tktmanueverwireflat + tktmanueverwirevert;
tktmanueverstrut = beamE*beamI/manueverbeamL;

tktthrustwireflat =
0.5*2*(2*wireE*wireA*cos(flatanglethrustprops)*cos(flatanglethrustprops)/circumfwirelength)*ttzwidt
h^2;
tktthrustwirevert =
0.5*2*wireE*wireA*cos(anglethrustprops)*cos(anglethrustprops)/thrustwirelength*ttzwidth^2;
tktthrustwire = tktthrustwireflat + tktthrustwirevert;
tktthruststrut = beamE*beamI/thrustbeamL;

tktmanuever = tktmanueverwire + tktmanueverstrut;
tktthrust = tktthrustwire + tktthruststrut;

ttnaturalfreqmanueverstrut = (tktmanuever/mmassI)^0.5/2/pi
ttnaturalfreqthruststrut = (tktthrust/tmassI)^0.5/2/pi

%Torsional about vertical
tkzmanueverwireflat =
0.5*2*(2*wireE*wireA*cos(flatanglemanueverprops)*cos(flatanglemanueverprops)/circumfwirelength
)*mtzwidth^2;
tkzmanueverwirevert = 0;
tkzmanueverwire = tkzmanueverwireflat + tkzmanueverwirevert;
tkzmanueverstrut = beamE*beamI/manueverbeamL;

tkzthrustwireflat =
0.5*2*(2*wireE*wireA*cos(flatanglethrustprops)*cos(flatanglethrustprops)/circumfwirelength)*ttzwidt
h^2;
tkzthrustwirevert = 0;
tkzthrustwire = tkzthrustwireflat + tkzthrustwirevert;
tkzthruststrut = beamE*beamI/thrustbeamL;

tkzmanuever = tkzmanueverwire + tkzmanueverstrut;
tkzthrust = tkzthrustwire + tkzthruststrut;

tznaturalfreqmanueverstrut = (tkzmanuever/mmassI)^0.5/2/pi
tznaturalfreqthruststrut = (tkzthrust/tmassI)^0.5/2/pi

108

Simulation Files

Table E-6: Simulation File Relationships

 File Called by
Simulink
model

ThreeDAFVsimworking
velocity.mdl

Simulink
m files currfilterest.m ThreeDAFVsimworkingvelocity.mdl
 estimatestate.m ThreeDAFVsimworkingvelocity.mdl
 ffunmine.m srspf.m
 hfunmine.m srspf.m
 IMUgeometry.m ThreeDAFVsimworkingvelocity.mdl
 IMUgeometry_f.m hfunmine.m
 srspf.m estimatestate.m
 ThreeDAFVmodelconsts.m MATLAB user (workspace)
 ThreeDAFVstatedervNew.m ThreeDAFVsimworkingvelocity.mdl
 ThreeDAFVstatedervNoVolts.m ffunmine.m
 ThreeDAFVstatedervThrust.m ThreeDAFVmodelconsts.m
 thrusttorads.m ThreeDAFVsimworkingvelocity.mdl

post-
processing
m files animate_afv.m MATLAB user (workspace)
 display_afv.m animate_afv.m
 make_afv.m animate_afv.m
 myrot.m rotobj.m
 rotobj.m make_afv.m

109

Figure E-8: ThreeDAFVsimworkingvelocity.mdl

110

% currfilterest.m
% Author: Eryk Nice

% this m file replicates the current filtering scheme onboard the vehicle
% using code taken directly from the current DSP code. Filters, etc are
% initialized in the constants m file.

function intedstate = currfilterest(inputvec)

I_accel = inputvec(1);
J_accel = inputvec(2);
K_accel = inputvec(3);
I_rate = inputvec(4);
J_rate = inputvec(5);
K_rate = inputvec(6);

global X_angle Y_angle Z_angle X_vel Y_vel Z_vel X_pos Y_pos Z_pos sample_rate g_local
global X_angle_p Y_angle_p X_angle_ref Y_angle_ref X_angle_lpf Y_angle_lpf
global I_lpf J_lpf K_lpf X_r_f Y_r_f Z_r_f last_X_r last_Y_r last_Z_r
global I_rate_offset J_rate_offset K_rate_offset I_accel_offset J_accel_offset K_accel_offset

Cpsi=cos(Z_angle); % Precompute trig functions
Spsi=sin(Z_angle);
Cphi=cos(X_angle);
Sphi=sin(X_angle);
Ctheta=cos(Y_angle);
Stheta=sin(Y_angle);

% Subtract off rate offsets
I_r_remain=I_rate-I_rate_offset;
J_r_remain=J_rate-J_rate_offset;
K_r_remain=K_rate-K_rate_offset;

% Compute square of local rates (not currently used)
% I_rate_sqr = I_r_remain*I_r_remain;
% J_rate_sqr = J_r_remain*J_r_remain;
% K_rate_sqr = K_r_remain*K_r_remain;

% Centrifugal acceleration correction
% Note that I am not sure on the signs of these constants because of incomplete data from
% Systron
%I_accel -= (K_r_remain*K_r_remain+J_r_remain*J_r_remain)*0.01424;
%J_accel += (K_r_remain*K_r_remain+I_r_remain*I_r_remain)*0.01432;
%K_accel += (I_r_remain*I_r_remain+J_r_remain*J_r_remain)*0.01432;

% Apply rotation matrix to local rates to get global rates
X_rate=(I_r_remain*(Cpsi*Ctheta)+J_r_remain*(Cpsi*Stheta*Sphi-
Spsi*Cphi)+K_r_remain*(Cpsi*Stheta*Cphi+Spsi*Sphi));
Y_rate=(I_r_remain*(Spsi*Ctheta)+J_r_remain*(Spsi*Stheta*Sphi+Cpsi*Cphi)+K_r_remain*(Spsi*St
heta*Cphi-Cpsi*Sphi));
Z_rate=(I_r_remain*(-1*Stheta)+J_r_remain*Ctheta*Sphi+K_r_remain*Ctheta*Cphi);

% Try to avoid actual singularity by not allowing Ctheta to equal zero
if (abs(Ctheta) < 0.000001)

111

 if (Ctheta > 0)
 Ctheta = 0.000001;
 else Ctheta = -0.000001;
 end
end
% Compute Euler angle derivatives from global rates
dX_angle = (Cpsi/Ctheta)*(X_rate)+(Spsi/Ctheta)*(Y_rate);
dY_angle = -Spsi*(X_rate)+Cpsi*(Y_rate);
dZ_angle = (Cpsi*Stheta/Ctheta)*(X_rate)+(Spsi*Stheta/Ctheta)*(Y_rate)+Z_rate;

% Integrate euler angle derivatives. This is all we do with Z angle (Yaw)
% For X and Y (phi and theta), we do this but then we later subtract off the
% low pass filtered angles to combine the gyro data with accelerometer
% estimated tilt angles
X_angle_p = X_angle_p + dX_angle/sample_rate;
Y_angle_p = Y_angle_p + dY_angle/sample_rate;
Z_angle = Z_angle + dZ_angle/sample_rate;

% Low pass filter X and Y angles with a 10 sec time constant
X_angle_lpf=(1.0-1.0/(10.0*sample_rate))*X_angle_lpf+(1.0/(10.0*sample_rate))*X_angle_p;
Y_angle_lpf=(1.0-1.0/(10.0*sample_rate))*Y_angle_lpf+(1.0/(10.0*sample_rate))*Y_angle_p;

% Compute angle estimate as sum of tilt angle reference and gyro estimate
% minus the 10 second average of the gyro data
% This makes the low frequency angle estimate come from accelerometer tilt estimate
% and the high freq info from gyros
X_angle = X_angle_p + X_angle_ref - X_angle_lpf;
Y_angle = Y_angle_p + Y_angle_ref - Y_angle_lpf;

% restore Ctheta to true value because it no longer matters if it becomes 0
Ctheta=cos(Y_angle);

% Subtract off accelerometer offsets
I_remain = I_accel-I_accel_offset;
J_remain = J_accel-J_accel_offset;
K_remain = K_accel-K_accel_offset;

% LPF the accelerometer outpus (without subtracting offsets) to try to estimate
% angle
I_lpf=(1.0-1.0/(10.0*sample_rate))*I_lpf+(1.0/(10.0*sample_rate))*I_accel;
J_lpf=(1.0-1.0/(10.0*sample_rate))*J_lpf+(1.0/(10.0*sample_rate))*J_accel;
K_lpf=(1.0-1.0/(10.0*sample_rate))*K_lpf+(1.0/(10.0*sample_rate))*K_accel;

% Estimate angle from long term average of I,J,K accels
X_angle_ref=atan(J_lpf/(K_lpf));
Y_angle_ref=-atan(I_lpf/(J_lpf*sin(X_angle_ref)+(K_lpf)*cos(X_angle_ref)));

% Apply rotation matrix to accelerations to get global accels
X_r=(I_remain*(Cpsi*Ctheta)+J_remain*(Cpsi*Stheta*Sphi-
Spsi*Cphi)+K_remain*(Cpsi*Stheta*Cphi+Spsi*Sphi));
Y_r=(I_remain*(Spsi*Ctheta)+J_remain*(Spsi*Stheta*Sphi+Cpsi*Cphi)+K_remain*(Spsi*Stheta*Cph
i-Cpsi*Sphi));
Z_r=g_local+(I_remain*(-1*Stheta)+J_remain*Ctheta*Sphi+K_remain*Ctheta*Cphi);

% High-pass filter the global acceleration

112

X_r_f=(1.0-1.0/(25.0*sample_rate))*X_r_f+(X_r-last_X_r);
Y_r_f=(1.0-1.0/(25.0*sample_rate))*Y_r_f+(Y_r-last_Y_r);
Z_r_f=(1.0-1.0/(15.0*sample_rate))*Z_r_f+(Z_r-last_Z_r);

last_X_r=X_r; % used to HPF the global acceleration
last_Y_r=Y_r;
last_Z_r=Z_r;

% Integrate the HPF of the global accelerations to get velocity
X_vel = X_vel + X_r_f/sample_rate;
Y_vel = Y_vel + Y_r_f/sample_rate;
Z_vel = Z_vel + Z_r_f/sample_rate;

% Could try to get position this way but we don't bother
X_pos = X_pos + X_vel/sample_rate;
Y_pos = Y_pos + Y_vel/sample_rate;
Z_pos = Z_pos + Z_vel/sample_rate;

intedstate = [X_vel Y_vel Z_vel X_pos Y_pos Z_pos dX_angle dY_angle dZ_angle X_angle Y_angle
Z_angle]';

113

% estimatestate.m
% Author: Eryk Nice

% This function takes the current state estimate and
% performs a dynamics propogation and measurement update to get a new
% updated state estimate each time it recieves a measurement input.

function outputvecest = estimatestate(inputvec)

zkp1 = inputvec(1:10);
avecu = inputvec(11:14);
adotvecu = inputvec(15:18);

Uvec = [avecu; adotvecu];

global delt xkgk QkSR PkgkSR Rkp1SR count sig_fact dimen

% the current filtering scheme used is a square root implementation of a
% sigma point filter. The m files ffunmine and hfunmine take a state
% estimate and prop RPM information and generate a discrete dynamics update
% or expected measurement, respectively.
[xkp1gkp1,Pkp1gkp1SR,xkp1gk,zkp1gk,nu]=srspf(xkgk,PkgkSR,Uvec,QkSR,'ffunmine',zkp1,Rkp1SR,
'hfunmine',delt,sig_fact,count,dimen);

% prepare global variables for next step. Have option of creating vectors
% for storage here using the count variable or using logging in simulink.
xkgk = xkp1gkp1;
PkgkSR = Pkp1gkp1SR;
outputvecest = xkgk;

114

% ffunmine.m
% Author: Eryk Nice

function nextx = ffunmine(xcurrkgk,uvec,delt)

% generate a set of discrete dynamics update vectors given an array of state estimates
M = size(xcurrkgk,2);
for jj=1:M
 % returns a continuous time derivitive given state and prop RPMs
 [statedervs, localmeas]=ThreeDAFVstatedervNoVolts([xcurrkgk(1:12,jj);uvec(:,jj)]);
 % conversion to a discrete step
 nextx(:,jj) = xcurrkgk(:,jj) + [statedervs*delt; zeros(6,1)];
end

115

% hfunmine.m
% Author: Eryk Nice

function nextz = hfunmine(xcurrkp1gk,uvec,delt)

% produce an expected measurement given the current state estimate
% (including offset estimates) and prop RPMs

% Note: the same variables for corruption of the noise and estimate of the
% measurements are used in both the IMU Dynamics block and the estimator.
% To examine the effects of having different values for the estimator, new
% variables will have to be created and sent to the code used in
% estimation. The same goes for dynamics parameters.

global initgainmat

M = size(xcurrkp1gk,2);
nextz = zeros(10,M);
for jj=1:M
 [statedervs, localmeas]=ThreeDAFVstatedervNoVolts([xcurrkp1gk(1:12,jj);uvec(:,jj)]);
 nextz(1:6,jj) = IMUgeometry_f(localmeas) + xcurrkp1gk(13:18,jj); % add offsets
 nextz(7:10,jj) = initgainmat*[xcurrkp1gk(1:6,jj); xcurrkp1gk(9,jj); xcurrkp1gk(12,jj)];

end

116

% IMUgeometry.m
% Author: Eryk Nice

function shiftedmeas=IMUgeometry(inputvec)

% rotate measurements if IMU is not aligned with vehicle axes, and add
% centrifugal force terms to accel measurements

global betan betao betaa rhon rhoo rhoa

% Current state
% true local accels
noadbldot = inputvec(1:3);
% true local rates
omega = inputvec(4:6);

% Compute trig values once
sinrn = sin(rhon);
sinro = sin(rhoo);
sinra = sin(rhoa);

cosrn = cos(rhon);
cosro = cos(rhoo);
cosra = cos(rhoa);

% Rotation/Translation matrices
% rotation matrix from IMU to vehicle coordinates
R = [cosra*cosro cosra*sinro*sinrn-sinra*cosrn cosra*sinro*cosrn+sinra*sinrn; sinra*cosro
sinra*sinro*sinrn+cosra*cosrn sinra*sinro*cosrn-cosra*sinrn; -sinro cosro*sinrn cosro*cosrn];

% force terms the accels will see due to centrifugal force and vehicle
% rotation
accelcentripvec = [betan*(abs(omega(2))+abs(omega(3))) betao*(abs(omega(1))+abs(omega(3)))
betaa*(abs(omega(1))+abs(omega(2)))]';

accelmeas = R*(noadbldot + accelcentripvec);
ratemeas = R*omega;

shiftedmeas = [accelmeas; ratemeas];

117

% IMUgeometry_f.m
% Author: Eryk Nice

function shiftedmeas=IMUgeometry_f(inputvec)

% rotate measurements if IMU is not aligned with vehicle axes, and add
% centrifugal force terms to accel measurements. Use _f parameters to
% allow constants used in filter to differ from true values.

global betan_f betao_f betaa_f rhon_f rhoo_f rhoa_f

betan = betan_f;
betao = betao_f;
betaa = betaa_f;
rhon = rhon_f;
rhoo = rhoo_f;
rhoa = rhoa_f;

% Current state
% true local accels
noadbldot = inputvec(1:3);
% true local rates
omega = inputvec(4:6);

% Compute trig values once
sinrn = sin(rhon);
sinro = sin(rhoo);
sinra = sin(rhoa);

cosrn = cos(rhon);
cosro = cos(rhoo);
cosra = cos(rhoa);

% Rotation/Translation matrices
% rotation matrix from IMU to vehicle coordinates
R = [cosra*cosro cosra*sinro*sinrn-sinra*cosrn cosra*sinro*cosrn+sinra*sinrn; sinra*cosro
sinra*sinro*sinrn+cosra*cosrn sinra*sinro*cosrn-cosra*sinrn; -sinro cosro*sinrn cosro*cosrn];

% force terms the accels will see due to centrifugal force and vehicle
% rotation
accelcentripvec = [betan*(abs(omega(2))+abs(omega(3))) betao*(abs(omega(1))+abs(omega(3)))
betaa*(abs(omega(1))+abs(omega(2)))]';

accelmeas = R*(noadbldot + accelcentripvec);
ratemeas = R*omega;

shiftedmeas = [accelmeas; ratemeas];

118

% srspf.m

function
[xEst,SxEst,xPred,zPred,innovation]=srspf(xEst,SxEst,U,Qsq,ffun,z,Rsq,hfun,dt,sig_fact,k,dimen);
%
% SQUARE ROOT SPF SIGMA POINT FILTER
% One iteration of SPF, including prediction and correction.
%
% [xEst,SxEst,xPred,zPred,innovation]=srspf(xEst,SxEst,U,Qsq,ffun,z,Rsq,hfun,dt,sig_fact,k,dimen);
%
% INPUTS : - xEst : state mean estimate at time k
% - SxEst : square root state covariance at time k
% - U : vector of control inputs
% - Qsq : square root process noise covariance at time k
% - ffun : process model function
% - z : observation at k+1
% - Rsq : square root measurement noise covariance at k+1
% - hfun : observation model function
% - dt : time step (passed to ffun/hfun)
% - sig_fact : sigma point scaling factor. Defaults to 0.5.
% - k : current iteration
% - dimen : number of states, total number of sigma points inc noise, number of outputs
%
% OUTPUTS : - xEst : updated estimate of state mean at time k+1
% - PEst : updated state covariance at time k+1
% - xPred : prediction of state mean at time k+1
% - PPred : prediction of state covariance at time k+1
% - innovation : innovation vector
%
% CALLS : - ScaledSigmaPts.m
%
% AUTHORS : Simon J. Julier (sjulier@erols.com) 1998-2000
% Shelby Brunke (sbrunke@u.washington.edu) 2000 -
2001
% Mark Campbell (mc288@cornell.edu) 2003
% DATE : 15 Oct 2003
%
% NOTES :
% This code was written to be readable. There is significant
% scope for optimisation even in Matlab.
%

n = dimen(1); %number of states, not counting noise
nsp = dimen(2); %number of sigma points
nxsp=2*n+1; %number of state sigma points
ny = dimen(3); %number of outputs
nn=n+n+ny; %total number of states and noises

%%matrices of all ones that are helpful - could embed in the code below
ensp=ones(1,nsp);
exnsp=ensp(1:nxsp);
e2n=ensp(1:2*n);
e2ny=ensp(1:2*ny);

119

Psqrtm = sig_fact*SxEst';
xSigmaPts=[zeros(n,1) -Psqrtm Psqrtm];
xSigmaPts = xSigmaPts + xEst*exnsp;
%---

%-----GENERATE WEIGHTING MATRICES---
Wi=0.5/sig_fact^2;
W0M=(sig_fact^2-nn)/sig_fact^2;
W0C=(sig_fact^2-nn)/sig_fact^2+3-sig_fact^2/nn;
%---

%-----TIME UPDATE (PROPAGATE SIGMAPOINTS)---------------------------------
xPredSigmaPts = feval(ffun,xSigmaPts,U(:)*exnsp,dt);
xwPredSigmaPts = xPredSigmaPts(:,1)*e2n + sig_fact*[+Qsq' -Qsq'];
xvPredSigmaPts = xPredSigmaPts(:,1)*e2ny;
%%%%%% Calculate Mean (a priori)
xPred = W0M*xPredSigmaPts(:,1) + Wi*sum(xPredSigmaPts(:,2:nxsp),2) +
Wi*(2*n+2*ny)*xPredSigmaPts(:,1); %%Last term due to noise sigma points
%%%%% Calculate (central) Covariance Square Root (a priori)
exSigmaPts = [xPredSigmaPts xwPredSigmaPts xvPredSigmaPts] - xPred*ensp; %%Eqn 10

%-----MEASUREMENT UPDATE (PROPAGATE SIGMAPOINTS)---------------------------------
zPredSigmaPts = feval(hfun,xPredSigmaPts,U(:)*exnsp,dt);
zwPredSigmaPts = feval(hfun,xwPredSigmaPts,U(:)*exnsp,dt);
zvPredSigmaPts = zPredSigmaPts(:,1)*e2ny+sig_fact*[+Rsq' -Rsq'];
%%%%%% Calculate Mean
zPred = W0M*zPredSigmaPts(:,1) + Wi*sum(zPredSigmaPts(:,2:nxsp),2) +
Wi*sum(zwPredSigmaPts,2) + Wi*(2*ny)*zPredSigmaPts(:,1); %%Eqn 9
%%%%% Calculate (central) Covariance Square Root (a priori)
ezSigmaPts = [zPredSigmaPts zwPredSigmaPts zvPredSigmaPts] - zPred*ensp; %%Eqn 10

%%%%%% Calculate Kalman Gain
PxzPred = exSigmaPts(:,2:nsp)*ezSigmaPts(:,2:nsp)' + W0C/Wi*exSigmaPts(:,1)*ezSigmaPts(:,1)';
Pyy = ezSigmaPts(:,2:nsp)*ezSigmaPts(:,2:nsp)' + W0C/Wi*ezSigmaPts(:,1)*ezSigmaPts(:,1)';
K = (PxzPred)*inv(Pyy);

%%%%% Orthogonalize Square Root Matrix
[tmp,Sx_bar] = qr([exSigmaPts(:,2:nsp) - K*ezSigmaPts(:,2:nsp)]',0);
%%%%% Negative weight is handled below using Cholesky update
if W0C < 0
 Sx = cholupdate(sqrt(Wi)*Sx_bar,[exSigmaPts(:,1) - K*ezSigmaPts(:,1)]*sqrt(abs(W0C)),'-');
else
 Sx = cholupdate(sqrt(Wi)*Sx_bar,[exSigmaPts(:,1) - K*ezSigmaPts(:,1)]*sqrt(W0C),'+');
end
SxEst=Sx;

%%%%% Calculate Innovation
innovation = z - zPred;
%%%%%% Update mean
xEst = xPred + K*innovation;

120

% ThreeDAFVmodelconsts.m
% Author: Eryk Nice

%3D model and simulation constants - contains vehicle parameters, estimator
%parameters, LQR control weighting matrices, sensor and process noise
%parameters, etc. Must be run before every simulation run in simulink to
%re-initialize estimators, etc.

clear all

global delt estimatorHz
estimatorHz = 150;
delt = 1/estimatorHz;

% variable to control decimation of stored data for video generation.
% Alter to get video time to reflect real time.
decimatestore = 66;

% process noise power
torquedistpow = 3e-5;
winddistpow = 3e-4;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vehicle parameters
%%%%%%%%%%%%%%%%%
% Suffix of _f is the variable used in all filtering code. Change _f to be
% different from normal variable to see effect of modelling error. Only
% used for those values that are likely to possibly be different from
% modelled, eg prop constants, IMU rotation or position parameters.
% Not completely implemented - if you wish to make more constants different
% for filtered versions, you need only add them below and change them in
% ThreeDAFVstatedervNoVoltsposRPMs and ThreeDAFVstatedervNoVolts as kd and
% kt are handled both here and there. _posRPMs is used in LQR controller
% generation, other is used in filter estimation.

%radial dist of prop [m]
global L
L = 14.955*2.54/100;
%wind to force coeff - [N/wind velocity m/s]
% x y side
global ku
ku = 1;
% z bottom
global ks
ks = 1;

%Rotational inertia of vehicle [kg*m^2]
Jn=6.0513200e02/2.2*2.54^2/10000;
Jo=6.0190021e02/2.2*2.54^2/10000;
Ja=1.1417148e03/2.2*2.54^2/10000;

% have option of replacing this with full rotational inertia matrix
global J
J = [Jn 0 0;0 Jo 0;0 0 Ja];

121

%mass [kg]
global m
m = 6; %6.22;
%gravity [m/s^2]
global g
g = 9.8028737;

% nominal thrust per prop [N]
global Tnom
Tnom = m/4*g;

%prop [m]
%diamet = 18*2.54/100;
global pitch
pitch = 6*2.54/100;
%coeff thrust
global kt kt_f
kt = 8.4e-5;
kt_f = 8.4e-5;
%coeff drag
global kd kd_f
kd = 3.14e-6;
kd_f = 3.14e-6;
%moment inertia prop [kg*m^2]
Jp = 5/2.2*2.54^2/10000;

%motor
%gearing
G = 80/12;
%voltage constant [volts/rad/s]
global kv
kv = 1/2500*60/2/pi*G;
%current constant [Nm/Amp]
global ki
ki = 0.548*0.00706*G;
%Motor resistance [Ohm]
global R
R = 0.3;
% moment inertia motor rotor [kg*m^2]
Jmot = 0;
%total MOI of prop and motor as seen by prop [kg*m^2]
global Jt
Jt = Jmot*G^2+Jp;

% nominal prop rad/s
global radssecnom
radssecnom = (Tnom/kt)^0.5;

% nominal voltage
global Vnom
Vnom = kv*radssecnom + R*kd/ki*radssecnom^2;

% prop local control PID loop
PropP = 0.62;

122

PropI = 3.35;
PropD = 0;

PropN = 1000;

%initial state vector
initstatevec = radssecnom*[zeros(1,12) 1 1 1 1]' + [0; % xdot
 0; % ydot
 0; % zdot
 0; % x
 0; % y
 0; % z
 0; % phidot
 0; % thetadot
 0; % psidot
 pi/15; % phi
 0; % theta
 0; % psi
 zeros(4,1)];

%%%%%%%%%%%%%%%%% Measurement parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%

global kappanoa kappaomega noaoffsetdev omegaoffsetdev accelinitbias rateinitbias

% initial bias parameters
accelinitbias = 8.5e-3*g;%m/s^2
rateinitbias = 1*pi/180; %rad/s

% First guess for estimators - produced from initial IMU calibration
% routine. Note, we use initial accels to get angle, so assume initial
% accel offsets are zero.
accelinitbiasvec0 = accelinitbias*randn(3,1);%m/s^2
rateinitbiasvec0 = rateinitbias*randn(3,1); %rad/s

% Controls the drift rate of accelerometer offsets
kappanoa = 5e-6;
% Controls the drift rate of gyro offsets
kappaomega = 1e-13;

% std dev of white noise driving accel drift
noaoffsetdev = 5e-5;
% std dev of white noise driving rate gyro drift
omegaoffsetdev = 5e-10;

% actual initial bias vectors
accelinitbiasvec = accelinitbiasvec0 + noaoffsetdev*randn(3,1);%m/s^2
rateinitbiasvec = rateinitbiasvec0 + omegaoffsetdev*randn(3,1); %rad/s

global betan betao betaa rhon rhoo rhoa accelnoisedev ratenoisedev
% variables used in filter meas update step - change values below to
% examine impact of modelling errors.
global betan_f betao_f betaa_f rhon_f rhoo_f rhoa_f

123

% linear offsets of accelerometers from vehicle CM
betan = 0;
betan_f = 0;
betao = 0;
betao_f = 0;
betaa = 0;
betaa_f = 0;

%rotation of IMU from vehicle coordinates
rhon = 0;
rhon_f = 0;
rhoo = 0;
rhoo_f = 0;
rhoa = 0;
rhoa_f = 0;

% standard dev of accelerometer white noise
accelnoisedev = 60e-6*g*30^.5;
% standard dev of rate gyro white noise
ratenoisedev = 1e-10;

% standard dev of local torque and global wind force process noise
torqueprocnoisedev = torquedistpow^.5;
forceprocnoisedev = winddistpow^.5;

%%%%%%%%%%%%%%%%% HUMAN OUTER CONTROL LOOP
%%%%%%%%%%%%%%%%%%%%%%%
% initial PD gains
Dxy0 = .3;
Dz0 = .4;
Pxy0 = .5;
Pz0 = .5;
Dyaw0 = .22;
Pyaw0 = .8;

global initgainvec initgainmat
initgainvec = 1*[Dxy0 Dz0 Pxy0 Pz0 Dyaw0 Pyaw0]';
% used in meas prediction step in filter
initgainmat = 1*[Dxy0 0 0 Pxy0 0 0 0 0;
 0 Dxy0 0 0 Pxy0 0 0 0;
 0 0 Dz0 0 0 Pz0 0 0;
 0 0 0 0 0 0 Dyaw0 Pyaw0];

% feedback matrix to control gain drift
kappaDxy = 5e-1;
kappaDz = 5e-1;
kappaPxy = 5e-1;
kappaPz = 5e-1;
kappaDyaw = 5e-1;
kappaPyaw = 5e-1;
kappagainmat = -diag([kappaDxy kappaDz kappaPxy kappaPz kappaDyaw kappaPyaw]);

 %noise power driving gain drifts

124

Dxypow = 1e-3;
Dzpow = 1e-3;
Pxypow = 1e-3;
Pzpow = 1e-3;
Dyawpow = 1e-3;
Pyawpow = 1e-3;
gaindriftdrivingnoisevec = 1*[Dxypow Dzpow Pxypow Pzpow Dyawpow Pyawpow]';

%%%%%%%%%%%%%%%%%%%%%%% Filter variables
%%%%%%%%%%%%%%%%%%%%%%%
global xkgk QkSR PkgkSR Rkp1SR count sig_fact dimen

% state estimate - added term is errors introduced in initial guess
xkgk = [initstatevec(1:12); zeros(6,1)] + [0; % xdot
 0; % ydot
 0; % zdot
 0; % x
 0; % y
 0; % z
 0; % phidot
 0; % thetadot
 0; % psidot
 0; % phi
 0; % theta
 0; % psi
 0*accelinitbiasvec0; % Dnoa accel offset vec -
 % zeros since we use accel bias for
 % initial angle in calibration
 rateinitbiasvec0]; % Dwnoa rate offset vec

% assumed process noise standard devs
delvels = forceprocnoisedev; % m/s/s
delposs = 1e-8;%forceprocnoisedev/estimatorHz*10; % m/s
delws = torqueprocnoisedev; % rad/s/s
delangs = 1e-9;%torqueprocnoisedev/estimatorHz*10; % rad/s
delacceloffs = noaoffsetdev/1e4; % m/s^2/s
delwoffs = omegaoffsetdev; % rad/s/s

procnoisevec = [delvels/10*[ku ku ks] delposs*[ku ku ks] delws*[1 1 1] delangs*[1 1 1]
delacceloffs*[1 1 1] delwoffs*[1 1 1]]';
% process noise covariance square root matrix
QkSRnom = diag(procnoisevec);%./estimatorHz;
QkSR = 1/1*QkSRnom;

% initial state covariance square root matrix
PkgkSR = QkSR + diag([zeros(12,1); accelinitbias*[1 1 1]'; zeros(3,1)]);
PkgkSR = 5*PkgkSR;

xynoisedev = (Dxypow + Pxypow)^0.5;
znoisedev = (Dzpow + Pzpow)^0.5;
yawnoisedev = (Dyawpow + Pyawpow)^0.5;
% measurement noise covariance square root matrix

125

Rkp1SRnom = diag([10*accelnoisedev*[1 1 1] ratenoisedev*[1 1 1] 1/2*[xynoisedev xynoisedev
znoisedev yawnoisedev]]);
Rkp1SR = 1/1*Rkp1SRnom;

count = 1;

% sigma factor used in sqare root sigma point filter
sig_fact = 0.5;

% ESTABLISH DIMENSIONS OF SYSTEM
n = 12; % order of system -- '1' returns row dimension
no = 10; % number of outputs -- '1' returns row dimension
ni = 8; % number of inputs -- '1' returns row dimension
np = 6; % number of parameters to estimate (6 aero forces/moments)
nsp = 2*(n+np)+1; % number of "state" sigma points
% Set up a vector of the important dimensions to pass to the SPF function
dimen=[n+np 2*(n+np+n+np+no)+1 no]; % number of states, total number of sigma points inc noise,
number of outputs

%%%%%%%%%%%%%%%%%%%%%%%% Current filtering scheme variables
%%%%%%%%%%%%%%%%%%%%%%%%%
% code yanked directly from DSP, but requires initialization below.
% Initialization is the equivalent of the calibration step on the vehicle.
global X_angle Y_angle Z_angle X_vel Y_vel Z_vel X_pos Y_pos Z_pos sample_rate g_local
global X_angle_p Y_angle_p X_angle_ref Y_angle_ref X_angle_lpf Y_angle_lpf
global I_lpf J_lpf K_lpf X_r_f Y_r_f Z_r_f last_X_r last_Y_r last_Z_r
global I_rate_offset J_rate_offset K_rate_offset I_accel_offset J_accel_offset K_accel_offset

sample_rate = 600;
g_local = g;
X_vel = xkgk(1);
Y_vel = xkgk(2);
Z_vel = xkgk(3);
X_pos = xkgk(4);
Y_pos = xkgk(5);
Z_pos = xkgk(6);
X_angle = xkgk(10);
X_angle_p = X_angle;
X_angle_ref = X_angle;
X_angle_lpf = 0;
Y_angle = xkgk(11);
Y_angle_p = Y_angle;
Y_angle_ref = Y_angle;
Y_angle_lpf = 0;
Z_angle = xkgk(12);

I_accel_offset = xkgk(13);
J_accel_offset = xkgk(14);
K_accel_offset = xkgk(15);
I_rate_offset = xkgk(16);
J_rate_offset = xkgk(17);
K_rate_offset = xkgk(18);

I_lpf = 0;
J_lpf = 0;

126

K_lpf = g_local;
X_r_f = 0;
Y_r_f = 0;
Z_r_f = 0;
last_X_r = 0;
last_Y_r = 0;
last_Z_r = g_local;

%%%%%%%%%%%%%%%%%%%%%% LQRY Controller
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

syms xdot ydot zdot x y z phidot thetadot psidot phi theta psi T1 T2 T3 T4 real
sendvec = [xdot ydot zdot x y z phidot thetadot psidot phi theta psi T1 T2 T3 T4]';

[fsym, htruesym]=ThreeDAFVstatedervThrust(sendvec);

Amatsym = jacobian(fsym,sendvec(1:12));

Bmatsym = jacobian(fsym,sendvec(13:16));

% Once symbolic differentiation is done, evaluate jacobians at state to be
% linearized about.
xdot = 0;
ydot = 0;
zdot = 0;
x = 0;
y = 0;
z = 0;
phidot = 0;
thetadot = 0;
psidot = 0;
phi = 0;
theta = 0;
psi = 0;

T1 = Tnom;
T2 = Tnom;
T3 = Tnom;
T4 = Tnom;

Amat = eval(Amatsym);
Bmat = eval(Bmatsym);

% gains from original simulink controller
% xydotweight = 4.5;
% zdotweight = 6;
% xyweight = 0;
% zweight = 0;
% rollpitchdotweight = 3.9;
% yawdotweight = 3.3;
% rollpitchweight = 18;
% yawweight = 12;

127

% weights for LQR control design
xydotweight = 1;
zdotweight = 1;
xyweight = 1;
zweight = 1;
rollpitchdotweight = 1;
yawdotweight = 1;
rollpitchweight = 1;
yawweight = 1;

thrustweight = 1;

Rxxweight = diag([xydotweight*[1 1] zdotweight xyweight*[1 1] zweight rollpitchdotweight*[1 1]
yawdotweight rollpitchweight*[1 1] yawweight]);
Ruuweight = diag(thrustweight*[1 1 1 1]);

[Kmat,Smat,Emat] = lqr(Amat,Bmat,Rxxweight,Ruuweight);

128

% ThreeDAFVstatedervNew.m
% Author: Eryk Nice

function outputvec=ThreeDAFVstatedervNew(inputvec)

global L ku ks J m g pitch kt kd kv ki R Jt

% Current state
% global velocities
xdot = inputvec(1);
ydot = inputvec(2);
zdot = inputvec(3);
% global position
x = inputvec(4);
y = inputvec(5);
z = inputvec(6);
% Euler angle rates
phidot = inputvec(7);
thetadot = inputvec(8);
psidot = inputvec(9);
% Euler angles
phi = inputvec(10);
theta = inputvec(11);
psi = inputvec(12);
% prop rad/s
a1 = inputvec(13);
a2 = inputvec(14);
a3 = inputvec(15);
a4 = inputvec(16);

% Disturbances
% global wind
wx = inputvec(17);
wy = inputvec(18);
wz = inputvec(19);
% local torques
tn = inputvec(20);
to = inputvec(21);
ta = inputvec(22);

% Control input
% motor voltages
V1 = inputvec(23);
V2 = inputvec(24);
V3 = inputvec(25);
V4 = inputvec(26);

% prevent div/0 error
if a1 == 0
 a1 = 1e-100;
end
if a2 == 0
 a2 = 1e-100;
end

129

if a3 == 0
 a3 = 1e-100;
end
if a4 == 0
 a4 = 1e-100;
end

% Assemble variables in to vectors for manipulation
xyzdotvec = [xdot ydot zdot]';
xyzvec = [x y z]';
eulerdotvec = [phidot thetadot psidot]';
eulervec = [phi theta psi]';
avec = [a1 a2 a3 a4]';
wxyzvec = [wx wy wz]';
tnoavec = [tn to ta]';
Vvec = [V1 V2 V3 V4]';
onevec = ones(4,1);

% Compute trig values once
sinphi = sin(phi);
sintheta = sin(theta);
sinpsi = sin(psi);

cosphi = cos(phi);
costheta = cos(theta);
cospsi = cos(psi);

% Rotation/Translation matrices
% rotation matrix from local to global coordinates and its inverse
A = [cospsi*costheta cospsi*sintheta*sinphi-sinpsi*cosphi cospsi*sintheta*cosphi+sinpsi*sinphi;
sinpsi*costheta sinpsi*sintheta*sinphi+cospsi*cosphi sinpsi*sintheta*cosphi-cospsi*sinphi; -sintheta
costheta*sinphi costheta*cosphi];
Ainv = inv(A);

% matrix transformation from euler angular rates to global angular rates
% and its inverse
Minv = [cospsi/costheta sinpsi/costheta 0; -sinpsi cospsi 0; cospsi*sintheta/costheta
sinpsi*sintheta/costheta 1];
M = inv(Minv);
% partial derivative of Minv with respect to psi and theta, used in
% computing euler angle second derivatives
diffMinvAphi = [0,
cospsi/costheta*(cospsi*sintheta*cosphi+sinpsi*sinphi)+sinpsi/costheta*(sinpsi*sintheta*cosphi-
cospsi*sinphi), cospsi/costheta*(-cospsi*sintheta*sinphi+sinpsi*cosphi)+sinpsi/costheta*(-
sinpsi*sintheta*sinphi-cospsi*cosphi);
 0, -sinpsi*(cospsi*sintheta*cosphi+sinpsi*sinphi)+cospsi*(sinpsi*sintheta*cosphi-cospsi*sinphi), -
sinpsi*(-cospsi*sintheta*sinphi+sinpsi*cosphi)+cospsi*(-sinpsi*sintheta*sinphi-cospsi*cosphi);
 0,
cospsi*sintheta/costheta*(cospsi*sintheta*cosphi+sinpsi*sinphi)+sinpsi*sintheta/costheta*(sinpsi*sinth
eta*cosphi-cospsi*sinphi)+costheta*cosphi, cospsi*sintheta/costheta*(-
cospsi*sintheta*sinphi+sinpsi*cosphi)+sinpsi*sintheta/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)-costheta*sinphi];
diffMinvAtheta = [0, cospsi/costheta^2*(cospsi*sintheta*sinphi-
sinpsi*cosphi)*sintheta+cospsi^2*sinphi+sinpsi/costheta^2*(sinpsi*sintheta*sinphi+cospsi*cosphi)*sin

130

theta+sinpsi^2*sinphi,
cospsi/costheta^2*(cospsi*sintheta*cosphi+sinpsi*sinphi)*sintheta+cospsi^2*cosphi+sinpsi/costheta^2
*(sinpsi*sintheta*cosphi-cospsi*sinphi)*sintheta+sinpsi^2*cosphi;
 0, 0, 0;
 cospsi^2*costheta+sinpsi^2*costheta-costheta, cospsi*(cospsi*sintheta*sinphi-
sinpsi*cosphi)+cospsi*sintheta^2/costheta^2*(cospsi*sintheta*sinphi-
sinpsi*cosphi)+cospsi^2*sintheta*sinphi+sinpsi*(sinpsi*sintheta*sinphi+cospsi*cosphi)+sinpsi*sinthet
a^2/costheta^2*(sinpsi*sintheta*sinphi+cospsi*cosphi)+sinpsi^2*sintheta*sinphi-sintheta*sinphi,
cospsi*(cospsi*sintheta*cosphi+sinpsi*sinphi)+cospsi*sintheta^2/costheta^2*(cospsi*sintheta*cosphi+
sinpsi*sinphi)+cospsi^2*sintheta*cosphi+sinpsi*(sinpsi*sintheta*cosphi-
cospsi*sinphi)+sinpsi*sintheta^2/costheta^2*(sinpsi*sintheta*cosphi-
cospsi*sinphi)+sinpsi^2*sintheta*cosphi-sintheta*cosphi];
diffMinvApsi = [0, cospsi/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)+cospsi/costheta*(sinpsi*sintheta*sinphi+cospsi*cosphi), cospsi/costheta*(-
sinpsi*sintheta*cosphi+cospsi*sinphi)+cospsi/costheta*(sinpsi*sintheta*cosphi-cospsi*sinphi);
 0, -sinpsi*(-sinpsi*sintheta*sinphi-cospsi*cosphi)-sinpsi*(sinpsi*sintheta*sinphi+cospsi*cosphi), -
sinpsi*(-sinpsi*sintheta*cosphi+cospsi*sinphi)-sinpsi*(sinpsi*sintheta*cosphi-cospsi*sinphi);
 0, cospsi*sintheta/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)+cospsi*sintheta/costheta*(sinpsi*sintheta*sinphi+cospsi*cosphi),
cospsi*sintheta/costheta*(-
sinpsi*sintheta*cosphi+cospsi*sinphi)+cospsi*sintheta/costheta*(sinpsi*sintheta*cosphi-
cospsi*sinphi)];

% vector of torque generated by each of the four motors based on control
% input, voltage
tmvec = ki/R*(Vvec-kv*avec);

% global wind disturbance translated into local wind
wnoavec = Ainv*wxyzvec;

% global vehicle velocity translated into local velocity
noadotvec = Ainv*xyzdotvec;

% drag loading due to difference between local wind and local velocity
% simulates either the buffeting caused by a strong wind or the minor
% amounts of damping caused by drag at high velocities
Fnoarelativevec = (wnoavec-noadotvec).*[ks ks ku]';

% drag loading translated into global coordinates
Fxyzrelativevec = A*Fnoarelativevec;

% global angular rate vector obtained from euler angle rates - euler rates
% are NOT the same as global rates since two of the three euler rates are
% rotated by the other euler angles
omegaxyzvec = M*eulerdotvec;
% global angular rate vector translated into local angular rate vector
omeganoavec = Ainv*omegaxyzvec;

% vector of variables that take into account the pitch speed of a prop -
% the translation rate at which the prop spinning at its current RPM fails
% to produce thrust. Picture a windmill spinning freely in a blowing wind
kpvec = onevec./(avec/2/pi*pitch);

% vector of variables handling the above described situation as caused by

131

% roll or pitch of the vehicle
kwvec = L*kpvec;

% vector of the absolute values of the thrust forces generated by each of
% the four props, assuming they are rotating in their intended direction
Tvec = kt*abs(avec).*avec.*(onevec+kwvec.*[-omeganoavec(2) omeganoavec(1) omeganoavec(2) -
omeganoavec(1)]'+kpvec*(noadotvec(3)-wnoavec(3)));

% vector of the absolute values of the drag (torque) forces produced by
% each of the four props, assuming they are rotating in their intended
% direction
Dvec = kd*abs(avec).*avec.*(onevec+kwvec.*[-omeganoavec(2) omeganoavec(1) omeganoavec(2) -
omeganoavec(1)]'+kpvec*(noadotvec(3)-wnoavec(3)));

% vector of the acceleration of each of the four props caused by motor
% torque minus prop drag
adotvec = (tmvec-Dvec)/Jt;

% vehicle torque caused by temporary inequalities in the amount the props
% are being accelerated or decelerated. Generally small.
Mma = Jt*[1 -1 1 -1]*adotvec;

% total local torque exerted on the vehicle from thrust differentials
% causing roll and pitch moments, prop drag and prop accel/deccel causing
% yaw torque, and local disturbance torques.
torquenoatotalvec = [L*(Tvec(4)-Tvec(2)) L*(Tvec(1)-Tvec(3)) [1 -1 1 -1]*Dvec+Mma]'+tnoavec;

% local torques and angular rate coupling (precessive effects) yield total
% rate of change of local rates
omeganoadotvec = inv(J)*torquenoatotalvec + inv(J)*cross(omeganoavec,J*omeganoavec);

% total global forces exerted on the vehicle from gravity, prop thrust, and
% global wind loading cause global accelerations
xyzdbldotvec = [0 0 g]'-1/m*A*[0 0 onevec'*Tvec]'-Fxyzrelativevec;

noadbldotvec = Ainv*xyzdbldotvec;

% rate of change of euler rates is determined by differentiation of the
% base relationship between euler angle rates and global angular rates.
eulerdbldotvec = phidot*diffMinvAphi*omeganoavec + thetadot*diffMinvAtheta*omeganoavec +
psidot*diffMinvApsi*omeganoavec + Minv*A*omeganoadotvec;

% state derivative returned
statedervs = [xyzdbldotvec; xyzdotvec; eulerdbldotvec; eulerdotvec; adotvec];
localmeas = [noadbldotvec; omeganoavec];
outputvec = [statedervs; localmeas];

132

% ThreeDAFVstatedervNoVolts.m
% Author: Eryk Nice

function [statedervs, localmeas]=ThreeDAFVstatedervNoVolts(inputvec)

% This version of the state dynamics accepts prop rad/s information rather
% than Voltage input.

global L ku ks J m g pitch kt_f kd_f kv ki R Jt

kt = kt_f;
kd = kd_f;

% Current state
% global velocities
xdot = inputvec(1);
ydot = inputvec(2);
zdot = inputvec(3);
% global position
x = inputvec(4);
y = inputvec(5);
z = inputvec(6);
% Euler angle rates
phidot = inputvec(7);
thetadot = inputvec(8);
psidot = inputvec(9);
% Euler angles
phi = inputvec(10);
theta = inputvec(11);
psi = inputvec(12);
% prop rad/s
a1 = inputvec(13);
a2 = inputvec(14);
a3 = inputvec(15);
a4 = inputvec(16);
% prop rad/s
a1dot = inputvec(17);
a2dot = inputvec(18);
a3dot = inputvec(19);
a4dot = inputvec(20);

% Disturbances
% global wind
wx = 0;
wy = 0;
wz = 0;
% local torques
tn = 0;
to = 0;
ta = 0;

% prevent div/0 error
if a1 == 0

133

 a1 = 1e-100;
end
if a2 == 0
 a2 = 1e-100;
end
if a3 == 0
 a3 = 1e-100;
end
if a4 == 0
 a4 = 1e-100;
end

% Assemble variables in to vectors for manipulation
xyzdotvec = [xdot ydot zdot]';
xyzvec = [x y z]';
eulerdotvec = [phidot thetadot psidot]';
eulervec = [phi theta psi]';
avec = [a1 a2 a3 a4]';
adotvec = [a1dot a2dot a3dot a4dot]';
wxyzvec = [wx wy wz]';
tnoavec = [tn to ta]';
onevec = ones(4,1);

% Compute trig values once
sinphi = sin(phi);
sintheta = sin(theta);
sinpsi = sin(psi);

cosphi = cos(phi);
costheta = cos(theta);
cospsi = cos(psi);

% Rotation/Translation matrices
% rotation matrix from local to global coordinates and its inverse
A = [cospsi*costheta cospsi*sintheta*sinphi-sinpsi*cosphi cospsi*sintheta*cosphi+sinpsi*sinphi;
sinpsi*costheta sinpsi*sintheta*sinphi+cospsi*cosphi sinpsi*sintheta*cosphi-cospsi*sinphi; -sintheta
costheta*sinphi costheta*cosphi];
Ainv = inv(A);

% matrix transformation from euler angular rates to global angular rates
% and its inverse
Minv = [cospsi/costheta sinpsi/costheta 0; -sinpsi cospsi 0; cospsi*sintheta/costheta
sinpsi*sintheta/costheta 1];
M = inv(Minv);
% partial derivative of Minv with respect to psi and theta, used in
% computing euler angle second derivatives
diffMinvAphi = [0,
cospsi/costheta*(cospsi*sintheta*cosphi+sinpsi*sinphi)+sinpsi/costheta*(sinpsi*sintheta*cosphi-
cospsi*sinphi), cospsi/costheta*(-cospsi*sintheta*sinphi+sinpsi*cosphi)+sinpsi/costheta*(-
sinpsi*sintheta*sinphi-cospsi*cosphi);
 0, -sinpsi*(cospsi*sintheta*cosphi+sinpsi*sinphi)+cospsi*(sinpsi*sintheta*cosphi-cospsi*sinphi), -
sinpsi*(-cospsi*sintheta*sinphi+sinpsi*cosphi)+cospsi*(-sinpsi*sintheta*sinphi-cospsi*cosphi);
 0,
cospsi*sintheta/costheta*(cospsi*sintheta*cosphi+sinpsi*sinphi)+sinpsi*sintheta/costheta*(sinpsi*sinth

134

eta*cosphi-cospsi*sinphi)+costheta*cosphi, cospsi*sintheta/costheta*(-
cospsi*sintheta*sinphi+sinpsi*cosphi)+sinpsi*sintheta/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)-costheta*sinphi];
diffMinvAtheta = [0, cospsi/costheta^2*(cospsi*sintheta*sinphi-
sinpsi*cosphi)*sintheta+cospsi^2*sinphi+sinpsi/costheta^2*(sinpsi*sintheta*sinphi+cospsi*cosphi)*sin
theta+sinpsi^2*sinphi,
cospsi/costheta^2*(cospsi*sintheta*cosphi+sinpsi*sinphi)*sintheta+cospsi^2*cosphi+sinpsi/costheta^2
*(sinpsi*sintheta*cosphi-cospsi*sinphi)*sintheta+sinpsi^2*cosphi;
 0, 0, 0;
 cospsi^2*costheta+sinpsi^2*costheta-costheta, cospsi*(cospsi*sintheta*sinphi-
sinpsi*cosphi)+cospsi*sintheta^2/costheta^2*(cospsi*sintheta*sinphi-
sinpsi*cosphi)+cospsi^2*sintheta*sinphi+sinpsi*(sinpsi*sintheta*sinphi+cospsi*cosphi)+sinpsi*sinthet
a^2/costheta^2*(sinpsi*sintheta*sinphi+cospsi*cosphi)+sinpsi^2*sintheta*sinphi-sintheta*sinphi,
cospsi*(cospsi*sintheta*cosphi+sinpsi*sinphi)+cospsi*sintheta^2/costheta^2*(cospsi*sintheta*cosphi+
sinpsi*sinphi)+cospsi^2*sintheta*cosphi+sinpsi*(sinpsi*sintheta*cosphi-
cospsi*sinphi)+sinpsi*sintheta^2/costheta^2*(sinpsi*sintheta*cosphi-
cospsi*sinphi)+sinpsi^2*sintheta*cosphi-sintheta*cosphi];
diffMinvApsi = [0, cospsi/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)+cospsi/costheta*(sinpsi*sintheta*sinphi+cospsi*cosphi), cospsi/costheta*(-
sinpsi*sintheta*cosphi+cospsi*sinphi)+cospsi/costheta*(sinpsi*sintheta*cosphi-cospsi*sinphi);
 0, -sinpsi*(-sinpsi*sintheta*sinphi-cospsi*cosphi)-sinpsi*(sinpsi*sintheta*sinphi+cospsi*cosphi), -
sinpsi*(-sinpsi*sintheta*cosphi+cospsi*sinphi)-sinpsi*(sinpsi*sintheta*cosphi-cospsi*sinphi);
 0, cospsi*sintheta/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)+cospsi*sintheta/costheta*(sinpsi*sintheta*sinphi+cospsi*cosphi),
cospsi*sintheta/costheta*(-
sinpsi*sintheta*cosphi+cospsi*sinphi)+cospsi*sintheta/costheta*(sinpsi*sintheta*cosphi-
cospsi*sinphi)];

% global wind disturbance translated into local wind
wnoavec = Ainv*wxyzvec;

% global vehicle velocity translated into local velocity
noadotvec = Ainv*xyzdotvec;

% drag loading due to difference between local wind and local velocity
% simulates either the buffeting caused by a strong wind or the minor
% amounts of damping caused by drag at high velocities
Fnoarelativevec = (wnoavec-noadotvec).*[ks ks ku]';

% drag loading translated into global coordinates
Fxyzrelativevec = A*Fnoarelativevec;

% global angular rate vector obtained from euler angle rates - euler rates
% are NOT the same as global rates since two of the three euler rates are
% rotated by the other euler angles
omegaxyzvec = M*eulerdotvec;
% global angular rate vector translated into local angular rate vector
omeganoavec = Ainv*omegaxyzvec;

% vector of variables that take into account the pitch speed of a prop -
% the translation rate at which the prop spinning at its current RPM fails
% to produce thrust. Picture a windmill spinning freely in a blowing wind
kpvec = onevec./(avec/2/pi*pitch);

135

% vector of variables handling the above described situation as caused by
% roll or pitch of the vehicle
kwvec = L*kpvec;

% vector of the absolute values of the thrust forces generated by each of
% the four props, assuming they are rotating in their intended direction
Tvec = kt*abs(avec).*avec.*(onevec+kwvec.*[-omeganoavec(2) omeganoavec(1) omeganoavec(2) -
omeganoavec(1)]'+kpvec*(noadotvec(3)-wnoavec(3)));

% vector of the absolute values of the drag (torque) forces produced by
% each of the four props, assuming they are rotating in their intended
% direction
Dvec = kd*abs(avec).*avec.*(onevec+kwvec.*[-omeganoavec(2) omeganoavec(1) omeganoavec(2) -
omeganoavec(1)]'+kpvec*(noadotvec(3)-wnoavec(3)));

% vehicle torque caused by temporary inequalities in the amount the props
% are being accelerated or decelerated. Generally small.
Mma = Jt*[1 -1 1 -1]*adotvec;

% total local torque exerted on the vehicle from thrust differentials
% causing roll and pitch moments, prop drag and prop accel/deccel causing
% yaw torque, and local disturbance torques.
torquenoatotalvec = [L*(Tvec(4)-Tvec(2)) L*(Tvec(1)-Tvec(3)) [1 -1 1 -1]*Dvec+Mma]'+tnoavec;

% local torques and angular rate coupling (precessive effects) yield total
% rate of change of local rates
omeganoadotvec = inv(J)*torquenoatotalvec + inv(J)*cross(omeganoavec,J*omeganoavec);

% total global forces exerted on the vehicle from gravity, prop thrust, and
% global wind loading cause global accelerations
xyzdbldotvec = [0 0 g]'-1/m*A*[0 0 onevec'*Tvec]'-Fxyzrelativevec;

noadbldotvec = Ainv*xyzdbldotvec;

% rate of change of euler rates is determined by differentiation of the
% base relationship between euler angle rates and global angular rates.
eulerdbldotvec = phidot*diffMinvAphi*omeganoavec + thetadot*diffMinvAtheta*omeganoavec +
psidot*diffMinvApsi*omeganoavec + Minv*A*omeganoadotvec;

% state derivative returned
statedervs = [xyzdbldotvec; xyzdotvec; eulerdbldotvec; eulerdotvec];
localmeas = [noadbldotvec; omeganoavec];

136

% ThreeDAFVstatedervThrust.m
% Author: Eryk Nice

function [statedervs, localmeas]=ThreeDAFVstatedervThrust(inputvec)

% This version of state dynamics accepts thrust as an input

global L ku ks J m g pitch kt_f kd_f kv ki R Jt

kt = kt_f;
kd = kd_f;

% Current state
% global velocities
xdot = inputvec(1);
ydot = inputvec(2);
zdot = inputvec(3);
% global position
x = inputvec(4);
y = inputvec(5);
z = inputvec(6);
% Euler angle rates
phidot = inputvec(7);
thetadot = inputvec(8);
psidot = inputvec(9);
% Euler angles
phi = inputvec(10);
theta = inputvec(11);
psi = inputvec(12);
% prop rad/s
T1 = inputvec(13);
T2 = inputvec(14);
T3 = inputvec(15);
T4 = inputvec(16);

% Disturbances
% global wind
wx = 0;
wy = 0;
wz = 0;
% local torques
tn = 0;
to = 0;
ta = 0;

% Assemble variables in to vectors for manipulation
xyzdotvec = [xdot ydot zdot]';
xyzvec = [x y z]';
eulerdotvec = [phidot thetadot psidot]';
eulervec = [phi theta psi]';
Tvec = [T1 T2 T3 T4]';
wxyzvec = [wx wy wz]';
tnoavec = [tn to ta]';

137

onevec = ones(4,1);

% Compute trig values once
sinphi = sin(phi);
sintheta = sin(theta);
sinpsi = sin(psi);

cosphi = cos(phi);
costheta = cos(theta);
cospsi = cos(psi);

% Rotation/Translation matrices
% rotation matrix from local to global coordinates and its inverse
A = [cospsi*costheta cospsi*sintheta*sinphi-sinpsi*cosphi cospsi*sintheta*cosphi+sinpsi*sinphi;
sinpsi*costheta sinpsi*sintheta*sinphi+cospsi*cosphi sinpsi*sintheta*cosphi-cospsi*sinphi; -sintheta
costheta*sinphi costheta*cosphi];
Ainv = inv(A);

% matrix transformation from euler angular rates to global angular rates
% and its inverse
Minv = [cospsi/costheta sinpsi/costheta 0; -sinpsi cospsi 0; cospsi*sintheta/costheta
sinpsi*sintheta/costheta 1];
M = inv(Minv);
% partial derivative of Minv with respect to psi and theta, used in
% computing euler angle second derivatives
diffMinvAphi = [0,
cospsi/costheta*(cospsi*sintheta*cosphi+sinpsi*sinphi)+sinpsi/costheta*(sinpsi*sintheta*cosphi-
cospsi*sinphi), cospsi/costheta*(-cospsi*sintheta*sinphi+sinpsi*cosphi)+sinpsi/costheta*(-
sinpsi*sintheta*sinphi-cospsi*cosphi);
 0, -sinpsi*(cospsi*sintheta*cosphi+sinpsi*sinphi)+cospsi*(sinpsi*sintheta*cosphi-cospsi*sinphi), -
sinpsi*(-cospsi*sintheta*sinphi+sinpsi*cosphi)+cospsi*(-sinpsi*sintheta*sinphi-cospsi*cosphi);
 0,
cospsi*sintheta/costheta*(cospsi*sintheta*cosphi+sinpsi*sinphi)+sinpsi*sintheta/costheta*(sinpsi*sinth
eta*cosphi-cospsi*sinphi)+costheta*cosphi, cospsi*sintheta/costheta*(-
cospsi*sintheta*sinphi+sinpsi*cosphi)+sinpsi*sintheta/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)-costheta*sinphi];
diffMinvAtheta = [0, cospsi/costheta^2*(cospsi*sintheta*sinphi-
sinpsi*cosphi)*sintheta+cospsi^2*sinphi+sinpsi/costheta^2*(sinpsi*sintheta*sinphi+cospsi*cosphi)*sin
theta+sinpsi^2*sinphi,
cospsi/costheta^2*(cospsi*sintheta*cosphi+sinpsi*sinphi)*sintheta+cospsi^2*cosphi+sinpsi/costheta^2
*(sinpsi*sintheta*cosphi-cospsi*sinphi)*sintheta+sinpsi^2*cosphi;
 0, 0, 0;
 cospsi^2*costheta+sinpsi^2*costheta-costheta, cospsi*(cospsi*sintheta*sinphi-
sinpsi*cosphi)+cospsi*sintheta^2/costheta^2*(cospsi*sintheta*sinphi-
sinpsi*cosphi)+cospsi^2*sintheta*sinphi+sinpsi*(sinpsi*sintheta*sinphi+cospsi*cosphi)+sinpsi*sinthet
a^2/costheta^2*(sinpsi*sintheta*sinphi+cospsi*cosphi)+sinpsi^2*sintheta*sinphi-sintheta*sinphi,
cospsi*(cospsi*sintheta*cosphi+sinpsi*sinphi)+cospsi*sintheta^2/costheta^2*(cospsi*sintheta*cosphi+
sinpsi*sinphi)+cospsi^2*sintheta*cosphi+sinpsi*(sinpsi*sintheta*cosphi-
cospsi*sinphi)+sinpsi*sintheta^2/costheta^2*(sinpsi*sintheta*cosphi-
cospsi*sinphi)+sinpsi^2*sintheta*cosphi-sintheta*cosphi];
diffMinvApsi = [0, cospsi/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)+cospsi/costheta*(sinpsi*sintheta*sinphi+cospsi*cosphi), cospsi/costheta*(-
sinpsi*sintheta*cosphi+cospsi*sinphi)+cospsi/costheta*(sinpsi*sintheta*cosphi-cospsi*sinphi);

138

 0, -sinpsi*(-sinpsi*sintheta*sinphi-cospsi*cosphi)-sinpsi*(sinpsi*sintheta*sinphi+cospsi*cosphi), -
sinpsi*(-sinpsi*sintheta*cosphi+cospsi*sinphi)-sinpsi*(sinpsi*sintheta*cosphi-cospsi*sinphi);
 0, cospsi*sintheta/costheta*(-sinpsi*sintheta*sinphi-
cospsi*cosphi)+cospsi*sintheta/costheta*(sinpsi*sintheta*sinphi+cospsi*cosphi),
cospsi*sintheta/costheta*(-
sinpsi*sintheta*cosphi+cospsi*sinphi)+cospsi*sintheta/costheta*(sinpsi*sintheta*cosphi-
cospsi*sinphi)];

% global wind disturbance translated into local wind
wnoavec = Ainv*wxyzvec;

% global vehicle velocity translated into local velocity
noadotvec = Ainv*xyzdotvec;

% drag loading due to difference between local wind and local velocity
% simulates either the buffeting caused by a strong wind or the minor
% amounts of damping caused by drag at high velocities
Fnoarelativevec = (wnoavec-noadotvec).*[ks ks ku]';

% drag loading translated into global coordinates
Fxyzrelativevec = A*Fnoarelativevec;

% global angular rate vector obtained from euler angle rates - euler rates
% are NOT the same as global rates since two of the three euler rates are
% rotated by the other euler angles
omegaxyzvec = M*eulerdotvec;
% global angular rate vector translated into local angular rate vector
omeganoavec = Ainv*omegaxyzvec;

% vector of the absolute values of the drag (torque) forces produced by
% each of the four props, assuming they are rotating in their intended
% direction
Dvec = Tvec/kt*kd;

% total local torque exerted on the vehicle from thrust differentials
% causing roll and pitch moments, prop drag and prop accel/deccel causing
% yaw torque, and local disturbance torques.
torquenoatotalvec = [L*(Tvec(4)-Tvec(2)) L*(Tvec(1)-Tvec(3)) [1 -1 1 -1]*Dvec]'+tnoavec;

% local torques and angular rate coupling (precessive effects) yield total
% rate of change of local rates
omeganoadotvec = inv(J)*torquenoatotalvec + inv(J)*cross(omeganoavec,J*omeganoavec);

% total global forces exerted on the vehicle from gravity, prop thrust, and
% global wind loading cause global accelerations
xyzdbldotvec = [0 0 g]'-1/m*A*[0 0 onevec'*Tvec]'-Fxyzrelativevec;

noadbldotvec = Ainv*xyzdbldotvec;

% rate of change of euler rates is determined by differentiation of the
% base relationship between euler angle rates and global angular rates.
eulerdbldotvec = phidot*diffMinvAphi*omeganoavec + thetadot*diffMinvAtheta*omeganoavec +
psidot*diffMinvApsi*omeganoavec + Minv*A*omeganoadotvec;

139

% state derivative returned
statedervs = [xyzdbldotvec; xyzdotvec; eulerdbldotvec; eulerdotvec];
localmeas = [noadbldotvec; omeganoavec];

140

% thrusttorads.m
% Author: Eryk Nice

function proprads = thrusttorads(thrust)

% This function converts a commanded thrust into a commanded prop rad/s

global kt

if thrust ==0
 proprads = 0;
elseif thrust > 0
 proprads = (thrust/kt)^0.5;
else
 proprads = -(-thrust/kt)^0.5;
end

141

Simulation Animation Files

% animate_afv.m
% Original Author: Sean Breheny
% Modified by: Eryk Nice

% AFV 3D animation
% NOTE: requires display_afv.m,make_afv.m,rotobj.m,myrot.m, and afv4.bmp

global cube_x cube_y cube_z rod0_x rod0_y rod0_z rod1_x rod1_y rod1_z
global rod2_x rod2_y rod2_z rod3_x rod3_y rod3_z
global motor0_x motor0_y motor0_z motor1_x motor1_y motor1_z
global motor2_x motor2_y motor2_z motor3_x motor3_y motor3_z
global prop0_x prop0_y prop0_z prop1_x prop1_y prop1_z
global prop2_x prop2_y prop2_z prop3_x prop3_y prop3_z
global l l2 X

% Read in texture map for AFV body (cube)
[X,map]=imread('afv4.bmp');

make_afv % Construct the matrices that describe the AFV (used by display_afv)

% Data to show motion of AFVs
t = xvecf.time;

% Create AFV file for output
% NOTE: compression is strange, if set to 'none', AVI plays back slowly and in a jerky manner (in
Windows Media Player)
% if set to CinePak, file size is the same but file plays smoother in Windows Media Player
% NOTE: Current frame size (1000x700) is large enough that you should play the video in full screen
to get best results
clear av
av=avifile('test11.avi','compression','CinePak');

% Frame loop
for q=1:1:length(t)
 h=figure(1);
 plot3(0,0,0) % Display axes
 hold on

 b=get(h,'CurrentAxes'); % Get handle to axes
 %set(b,'Visible','off'); % Turn them off
 set(h,'Renderer','zbuffer','MenuBar','none','Position',[10 10 1000 700]); % Last two numbers set
frame size (horiz vert)

 % Call display_afv once per AFV
 % Format is display_afv(x,y,z,psi,phi,theta)
 % Rotation is performed theta first, then phi, then psi
 % psi is rotation about x, phi about y, theta about z
 % follows right-hand rule
 display_afv(1/0.0254*xvecf.signals.values(1,1,q),-1/0.0254*yvecf.signals.values(1,1,q),-
1/0.0254*zvecf.signals.values(1,1,q),pi/180*rollvecf.signals.values(1,1,q),-
pi/180*pitchvecf.signals.values(1,1,q),-pi/180*yawvecf.signals.values(1,1,q))

142

% display_afv(-2,0,0,psi(q),0,0)
% display_afv(0,psi(q),0,0,0,0)
% display_afv(2,bb(4,q),0,0,0,0)
% display_afv(4,0,0,0,0,bb(5,q))
 % May need to change this axis setting to make the AFVs fit nicely in window
 % (i.e., this controls the correspondence between meters and pixels, each AFV is 1 meter wide
 axis(40*[-1 1 -1 1 -1 1])

 b=get(h,'CurrentAxes'); % Get handle to axes
 %set(b,'Visible','off'); % Turn them off

 % Add frame to AVI
 av = addframe(av,h);
 hold off % release figure so it will be cleared at beginning of loop
end
av=close(av);

143

% display_afv.m
% Original Author: Sean Breheny
% Modified by: Eryk Nice

function display_afv(x,y,z,psi,phi,theta)

global cube_x cube_y cube_z rod0_x rod0_y rod0_z rod1_x rod1_y rod1_z
global rod2_x rod2_y rod2_z rod3_x rod3_y rod3_z
global motor0_x motor0_y motor0_z motor1_x motor1_y motor1_z
global motor2_x motor2_y motor2_z motor3_x motor3_y motor3_z
global prop0_x prop0_y prop0_z prop1_x prop1_y prop1_z
global prop2_x prop2_y prop2_z prop3_x prop3_y prop3_z
global l l2 X

% Update each part according to position and orientation

[hcube_x,hcube_y,hcube_z]=rotobj(psi,phi,theta,cube_x,cube_y,cube_z,x,y,z);

[hrod0_x,hrod0_y,hrod0_z]=rotobj(psi,phi,theta,rod0_x,rod0_y,rod0_z,x,y,z);
[hrod1_x,hrod1_y,hrod1_z]=rotobj(psi,phi,theta,rod1_x,rod1_y,rod1_z,x,y,z);
[hrod2_x,hrod2_y,hrod2_z]=rotobj(psi,phi,theta,rod2_x,rod2_y,rod2_z,x,y,z);
[hrod3_x,hrod3_y,hrod3_z]=rotobj(psi,phi,theta,rod3_x,rod3_y,rod3_z,x,y,z);

[hmotor0_x,hmotor0_y,hmotor0_z]=rotobj(psi,phi,theta,motor0_x,motor0_y,motor0_z,x,y,z);
[hmotor1_x,hmotor1_y,hmotor1_z]=rotobj(psi,phi,theta,motor1_x,motor1_y,motor1_z,x,y,z);
[hmotor2_x,hmotor2_y,hmotor2_z]=rotobj(psi,phi,theta,motor2_x,motor2_y,motor2_z,x,y,z);
[hmotor3_x,hmotor3_y,hmotor3_z]=rotobj(psi,phi,theta,motor3_x,motor3_y,motor3_z,x,y,z);

[hprop0_x,hprop0_y,hprop0_z]=rotobj(psi,phi,theta,prop0_x,prop0_y,prop0_z,x,y,z);
[hprop1_x,hprop1_y,hprop1_z]=rotobj(psi,phi,theta,prop1_x,prop1_y,prop1_z,x,y,z);
[hprop2_x,hprop2_y,hprop2_z]=rotobj(psi,phi,theta,prop2_x,prop2_y,prop2_z,x,y,z);
[hprop3_x,hprop3_y,hprop3_z]=rotobj(psi,phi,theta,prop3_x,prop3_y,prop3_z,x,y,z);

[p q]=size(hcube_z);
l2=surf(hcube_x,hcube_y,hcube_z,0.65*ones(p,q));
set(l2,'CData',X,'FaceColor','texturemap')
hold on

[p q]=size(hrod0_z);
surf(hrod0_x,hrod0_y,hrod0_z,0.1*ones(p,q));
surf(hrod1_x,hrod1_y,hrod1_z,0.1*ones(p,q));
surf(hrod2_x,hrod2_y,hrod2_z,0.1*ones(p,q));
surf(hrod3_x,hrod3_y,hrod3_z,0.1*ones(p,q));

[p q]=size(hmotor0_z);
surf(hmotor0_x,hmotor0_y,hmotor0_z,0.55*ones(p,q))
surf(hmotor1_x,hmotor1_y,hmotor1_z,0.7*ones(p,q))
surf(hmotor2_x,hmotor2_y,hmotor2_z,0.7*ones(p,q))
surf(hmotor3_x,hmotor3_y,hmotor3_z,0.7*ones(p,q))

[p q]=size(hprop0_z);
surf(hprop0_x,hprop0_y,hprop0_z,0.55*ones(p,q))
surf(hprop1_x,hprop1_y,hprop1_z,0.7*ones(p,q))

144

surf(hprop2_x,hprop2_y,hprop2_z,0.7*ones(p,q))
surf(hprop3_x,hprop3_y,hprop3_z,0.7*ones(p,q))

shading flat
caxis([0 1])
b=[gray(32);hsv(32)];
colormap(b)
l=light;

145

% make_afv.m
% Original Author: Sean Breheny
% Modified by: Eryk Nice

% Construct 3D AFV graphics object

global cube_x cube_y cube_z rod0_x rod0_y rod0_z rod1_x rod1_y rod1_z
global rod2_x rod2_y rod2_z rod3_x rod3_y rod3_z
global motor0_x motor0_y motor0_z motor1_x motor1_y motor1_z
global motor2_x motor2_y motor2_z motor3_x motor3_y motor3_z
global prop0_x prop0_y prop0_z prop1_x prop1_y prop1_z
global prop2_x prop2_y prop2_z prop3_x prop3_y prop3_z

% Construct AFV

% Make components

% 9" R prop rotor with .5" thickness
[p_prop_x,p_prop_y,p_prop_z]=cylinder(ones(1,2),25);
p_prop_x=9*p_prop_x;
p_prop_y=9*p_prop_y;
p_prop_z=0.5*(p_prop_z)+.5;

% 1.5" dia motor cylinders with 2.5" height
[p_motor_x,p_motor_y,p_motor_z]=cylinder(ones(1,2),15);
p_motor_x=0.75*p_motor_x;
p_motor_y=0.75*p_motor_y;
p_motor_z=2.5*(p_motor_z)-2.5;

% 3/8" dia rod with 12" length
[p_rod_x,p_rod_y,p_rod_z]=cylinder(ones(1,2),10);
% 0.5745
p_rod_x=3/8*p_rod_x/2;
p_rod_y=3/8*p_rod_y/2;
p_rod_z=12*(p_rod_z);

% 3.5" cube
p_cube_x=3.5*[0 1 1 0;0 0 0 0;0 0 0 0;1 1 1 1;1 1 1 1];
p_cube_y=3.5*[zeros(5,2) ones(5,2)];
p_cube_z=3.5*[0 0 0 0;0 0 0 0;0 1 1 0;0 1 1 0;0 0 0 0];

% Assemble AFV

% Center cube at 0,0,0

cube_x=p_cube_x-3.5/2;
cube_y=p_cube_y-3.5/2;
cube_z=p_cube_z-3.5/2;

% Rod 0

psi=-pi/2;

146

phi=0;
theta=0*pi/180;

xoff=0;
yoff=3.5/2;
zoff=0;

[rod0_x,rod0_y,rod0_z]=rotobj(psi,phi,theta,p_rod_x,p_rod_y,p_rod_z,xoff,yoff,zoff);

% Rod 1

psi=-pi/2;
phi=pi/2;
theta=0*pi/180;

xoff=3.5/2;
yoff=0;
zoff=0;

[rod1_x,rod1_y,rod1_z]=rotobj(psi,phi,theta,p_rod_x,p_rod_y,p_rod_z,xoff,yoff,zoff);

% Rod 2

psi=-pi/2;
phi=pi;
theta=0*pi/180;

xoff=0;
yoff=-3.5/2;
zoff=0;

[rod2_x,rod2_y,rod2_z]=rotobj(psi,phi,theta,p_rod_x,p_rod_y,p_rod_z,xoff,yoff,zoff);

% Rod 3

psi=-pi/2;
phi=3*pi/2;
theta=0*pi/180;

xoff=-3.5/2;
yoff=0;
zoff=0;

[rod3_x,rod3_y,rod3_z]=rotobj(psi,phi,theta,p_rod_x,p_rod_y,p_rod_z,xoff,yoff,zoff);

% Motors

propraddist = 12+3.5/2;
motor0_x=p_motor_x+propraddist;
motor0_y=p_motor_y;
motor0_z=p_motor_z;

motor1_x=p_motor_x-propraddist;
motor1_y=p_motor_y;

147

motor1_z=p_motor_z;

motor2_x=p_motor_x;
motor2_y=p_motor_y+propraddist;
motor2_z=p_motor_z;

motor3_x=p_motor_x;
motor3_y=p_motor_y-propraddist;
motor3_z=p_motor_z;

% Props

prop0_x=p_prop_x+propraddist;
prop0_y=p_prop_y;
prop0_z=p_prop_z+0.1;

prop1_x=p_prop_x-propraddist;
prop1_y=p_prop_y;
prop1_z=p_prop_z+0.1;

prop2_x=p_prop_x;
prop2_y=p_prop_y+propraddist;
prop2_z=p_prop_z+0.1;

prop3_x=p_prop_x;
prop3_y=p_prop_y-propraddist;
prop3_z=p_prop_z+0.1;

148

% myrot.m
% Author: Sean Breheny

function outvect=myrot(psi,phi,theta,invect)

Rpsi=[1 0 0;0 cos(psi) -sin(psi);0 sin(psi) cos(psi)];
Rphi=[cos(phi) 0 sin(phi);0 1 0;-sin(phi) 0 cos(phi)];
Rtheta=[cos(theta) -sin(theta) 0;sin(theta) cos(theta) 0;0 0 1];

R=Rpsi*Rphi*Rtheta;

outvect=R*invect;

149

% rotobj.m
% Author: Sean Breheny

function [xout,yout,zout]=rotobj (psi,phi,theta,xin,yin,zin,xoff,yoff,zoff)
[p,q]=size(xin);

xout=xin;
yout=yin;
zout=zin;

for x1=1:1:p
 for x2=1:1:q
 V=[xin(x1,x2);yin(x1,x2);zin(x1,x2)];
 V=myrot(psi,phi,theta,V);
 xout(x1,x2)=V(1)+xoff;
 yout(x1,x2)=V(2)+yoff;
 zout(x1,x2)=V(3)+zoff;
 end
end

150

APPENDIX F:

Pro/E FILE INFORMATION AND MACHINING SPEC SHEETS

Table F-7: Pro/E Files Information

Name Parent assembly
prt_imumount asm_bodycent
prt_imu asm_bodycent
prt_centbaseimusidestandoff asm_bodycent
prt_strutmount asm_bodycent
prt_strutplulong asm_bodycent
prt_strutplug asm_bodycent
prt_centbaseboardsidestandoff asm_bodycent
prt_boardmount asm_bodycent
prt_strutimuside asm_bodycent
prt_strutlongprop asm_bodycent
prt_strutshortprop asm_bodycent
prt_strutbasewiremount asm_bodycent
asm_eemain asm_bodycent
prt_eemainboard asm_eemain
prt_eestandoff asm_eemain
prt_centthreadrod asm_bodycent
asm_lipolypack2x2 asm_bodycent
prt_lipolybattcell asm_lipolypack(config)
prt_eebattretainer asm_bodycent
prt_recievermount asm_bodycent
prt_reciever asm_bodycent
prt_recieverclipbar asm_bodycent
asm_lipolybatthungnew asm_bodycent
prt_lipolybatthanger asm_lipolybatthungnew
asm_lipolypack2x3 asm_lipolybatthungnew
asm_lipolypack2x4 asm_lipolybatthungnew
prt_lipolybatthangerretainerrod asm_lipolybatthungnew
asm_pulleyboxmaxcim asm_bodycent
prt_pulleyboxmaxcim asm_pulleyboxmaxcim
prt_pulleyboxextension asm_pulleyboxmaxcim
prt_maxcimmotor asm_pulleyboxmaxcim
prt_quarterbearing asm_pulleyboxmaxcim
prt_propshaft asm_pulleyboxmaxcim
prt_encoder asm_pulleyboxmaxcim
prt_18x6prop asm_pulleyboxmaxcim
prt_propwasher asm_pulleyboxmaxcim

151

Table F-7 (Continued)

prt_quartershaftcollar asm_pulleyboxmaxcim
prt_15thpulley asm_pulleyboxmaxcim
prt_100thpulley asm_pulleyboxmaxcim
prt_strutend asm_pulleyboxmaxcim
prt_strutplug asm_pulleyboxmaxcim
asm_landinggear asm_bodycent
prt_landinggearbase asm_landinggear
prt_strutlanding asm_landinggear
prt_eestandoff asm_landinggear
prt_eemotorboard asm_landinggear
prt_landingbaseplug asm_landinggear
prt_landingspringchannel asm_landinggear
asm_bodycent

152

Fi
gu

re
 F

-9
: d

rw
_b

oa
rd

m
ou

nt

153

Fi
gu

re
 F

-1
0:

 d
rw

_c
en

tb
as

eb
oa

rd
si

de
st

an
do

ff

154

Fi
gu

re
 F

-1
1:

 d
rw

_c
en

tb
as

ei
m

us
id

es
ta

nd
of

f

155

Fi
gu

re
 F

-1
2:

 d
rw

_e
eb

at
tre

ta
in

er

156

Fi
gu

re
 F

-1
3:

 d
rw

_i
m

um
ou

nt

157

Fi
gu

re
 F

-1
4:

 d
rw

_l
an

di
ng

ba
se

pl
ug

158

Fi
gu

re
 F

-1
5:

 d
rw

_l
an

di
ng

ge
ar

ba
se

159

Fi
gu

re
 F

-1
6:

 d
rw

_l
an

di
ng

sp
rin

gc
ha

nn
el

160

Fi
gu

re
 F

-1
7:

 d
rw

_l
ip

ol
yb

at
th

an
ge

r

161

Fi
gu

re
 F

-1
8:

 d
rw

_l
ip

ol
yb

at
th

an
ge

rr
et

ai
ne

rr
od

162

Fi
gu

re
 F

-1
9:

 d
rw

_p
ro

ps
ha

ft

163

Fi
gu

re
 F

-2
0:

 d
rw

_p
ro

pw
as

he
r

164

Fi
gu

re
 F

-2
1:

 d
rw

_p
ul

le
yb

ox
ex

te
ns

io
n

165

Fi
gu

re
 F

-2
2:

 d
rw

_p
ul

le
yb

ox
m

ax
ci

m

166

Fi
gu

re
 F

-2
3:

 d
rw

_r
ec

ie
ve

rc
lip

ba
r

167

Fi
gu

re
 F

-2
4:

 d
rw

_r
ec

ie
ve

rm
ou

nt

168

Fi
gu

re
 F

-2
5:

 d
rw

_s
tru

tb
as

ew
ire

m
ou

nt

169

Fi
gu

re
 F

-2
6:

 d
rw

_s
tru

te
nd

170

Fi
gu

re
 F

-2
7:

 d
rw

_s
tru

tim
us

id
e

171

Fi
gu

re
 F

-2
8:

 d
rw

_s
tru

tla
nd

in
g

172

Fi
gu

re
 F

-2
9:

 d
rw

_s
tru

tlo
ng

pr
op

173

Fi
gu

re
 F

-3
0:

 d
rw

_s
tru

tm
ou

nt

174

Fi
gu

re
 F

-3
1:

 d
rw

_s
tru

tp
lu

g

175

Fi
gu

re
 F

-3
2:

 d
rw

_s
tru

tp
lu

gl
on

g

176

Fi
gu

re
 F

-3
3:

 d
rw

_s
tru

ts
ho

rtp
ro

p

177

REFERENCES

[1] S. Breheny, AFV Electronics Documentation,

AFVMechECD:\Documentation\2003-2004\AFV Electronics
Documentation.doc, 2003.

[2] S. Breheny and R. D’Andrea, Using Airborne Vehicle-Based Antenna Arrays to
Improve Communications with UAV Clusters, Conference on Decision and
Control, 4158-4162, 2003.

[3] S. Breheny, An Investigation of Vehicle-based Antenna Arrays for Unmanned
Aerial Vehicle Communications, 2004.

[4] P. Castillo, A. Dzul and R. Lozano, Real-time Stabilization and Tracking of a
Four Rotor Mini-Rotorcraft,
http://www.hds.utc.fr/~castillo/publications/4rotor.pdf

[5] O. Fong and S. L. Huggins IV, Mechanical and Aerodynamic System Design,
AFVMechECD:\Documentation\2001\ Mechanical and Aerodynamic System
Design.doc, 2001.

[6] P. Pounds, R. Mahony, P. Hynes, and J. Roberts, Design of a Four-Rotor Aerial
Robot, Proc. 2002 Australasian Conference on Robotics and Automation,
http://www.araa.asn.au/acra/acra2002/Papers/Pounds-Mahony-Hynes-
Roberts.pdf , 2002

[7] Association for Unmanned Vehicle Systems, International, Aerial Robotics
Competition homepage,
http://avdil.gtri.gatech.edu/AUVS/IARCLaunchPoint.html

[8] Draganfly Innovations Inc., Draganflyer IV homepage,
http://www.rctoys.com/draganflyer4.php

[9] I. Kroo and F. Prinz, The Mesicopter: A Meso-Scale Flight Vehicle, Mesicopter
homepage, http://aero.stanford.edu/mesicopter/

[10] Experimental Rocket Propulsion Society, Inc., The GizmoCopter Project
homepage, http://gizmocopter.org/

[11] D. Fitzgerald, XUV-5 PipeDream Quad Project homepage,
http://www.eese.bee.qut.edu.au/QUAV/index2.html , 2002

[12] J. Borenstein, The Hoverbot – An Electrically Powered Flying Robot,
http://www-personal.engin.umich.edu/~johannb/hoverbot.htm

178

[13] S. Breheny, Design and Implementation of Control and Sensing Electronics for
the Cornell Autonomous Flying Vehicle,
AFVMechECD:\Documentation\2001\Design&ImpofControl&SensingforCU
AFV.doc , 2001

[14] T. Cimato, MaxCim Motors Technical Specs,
http://www.maxcim.com/technical.html

[15] Stock Drive Products/Sterling Instrument, Online Catalog, https://sdp-
si.com/eStore/

[16] US Digital, Online Catalog, http://www.usdigital.com/products/e5s/

[17] Bishop Power Products, Online Catalog, http://www.b-p-p.com/Etec1200.htm

